Another view of the coarse invariant σ

Takuma Imamura

Takuma Imamura is a Ph.D. student at Kyoto University majoring in mathematical logic. This article is a part of a research project which aims to develop nonstandard methods in large-scale topology.

Abstract

Miller, Stibich and Moore [6] developed a set-valued coarse invariant $\sigma(X, \xi)$ of pointed metric spaces. DeLyser, LaBuz and Tobash [2] provided a different way to construct $\sigma(X, \xi)$ (as the set of all sequential ends). This paper provides yet another definition of $\sigma(X, \xi)$. To do this, we introduce a metric on the set $S(X, \xi)$ of coarse maps $(\mathbb{N}, 0) \rightarrow(X, \xi)$, and prove that $\sigma(X, \xi)$ is equal to the set of coarsely connected components of $S(X, \xi)$. As a by-product, our reformulation trivialises some known theorems on $\sigma(X, \xi)$, including the functoriality and the coarse invariance.

1 Introduction

Miller, Stibich and Moore [6] developed a set-valued coarse invariant $\sigma(X, \xi)$ of σ-stable pointed metric spaces (X, ξ). DeLyser, LaBuz and Wetsell [3] generalised it to pointed metric spaces (without σ-stability). The coarse invariance of $\sigma(X, \xi)$ was proved by Fox, LaBuz and Laskowsky [4] for σ-stable spaces, and by DeLyser, LaBuz and Wetsell [3] for general spaces.

We start with recalling the definition of $\sigma(X, \xi)$. We adopt a simplified definition given by DeLyser, LaBuz and Tobash [2]. Let (X, ξ) be a pointed metric space. A coarse sequence in (X, ξ) is a coarse map $s:(\mathbb{N}, 0) \rightarrow(X, \xi)$. Denote the set of coarse sequences in (X, ξ) by $S(X, \xi)$. Given $s, t \in S(X, \xi)$, we write $s \subseteq_{X, \xi}^{\sigma} t$ if s is a subsequence of t. Denote the equivalence closure of $\sqsubseteq_{X, \xi}^{\sigma}$ by $\Xi_{X, \xi}^{\sigma}$. In other words, $s \Xi_{X, \xi}^{\sigma}$ if and only if there exists a finite sequence $\left\{u_{i}\right\}_{i=0}^{n}$ in $S(X, \xi)$ such that $u_{0}=s, u_{n}=t$, and $u_{i} \sqsubseteq_{X, \xi}^{\sigma} u_{i+1}$ or $u_{i+1} \sqsubseteq_{X, \xi}^{\sigma} u_{i}$ for
all $i<n$. The desired invariant is then defined as the quotient set:

$$
\begin{aligned}
\sigma(X, \xi) & :=S(X, \xi) / \Xi_{X, \xi}^{\sigma} \\
& :=\left\{[s]_{X, \xi}^{\sigma} \mid s \in S(X, \xi)\right\}
\end{aligned}
$$

where $[s]_{X, \xi}^{\sigma}$ is the $\equiv_{X, \xi}^{\sigma}$-equivalence class of s. As noted in [5], there is no difficulty in generalising $\sigma(X, \xi)$ to pointed coarse spaces (X, ξ). See the subsection Notation and terminology below for the definitions of the terms used here.

DeLyser, LaBuz and Tobash [2] provided an alternative definition of $\sigma(X, \xi)$. Suppose (X, ξ) is a pointed metric space. Two coarse sequences $s, t \in S(X, \xi)$ are said to converge to the same sequential end (and denoted by $s \equiv_{X, \xi}^{e} t$) if there is a $K>0$ such that for all bounded subsets B of X there is an $N \in \mathbb{N}$ such that $\{s(i) \mid i \geq N\}$ and $\{t(i) \mid i \geq N\}$ are contained in the same K-chain-connected component of $X \backslash B$. The $\equiv_{X, \xi}^{e}$-equivalence classes are called sequential ends in (X, ξ). It was proved that $\equiv_{X, \xi}^{\sigma}$ and $\equiv_{X, \xi}^{e}$ coincides. As a result, $\sigma(X, \xi)$ is equal to the set of sequential ends in (X, ξ). This gives another view of $\sigma(X, \xi)$.

This paper aims to provide yet another view of $\sigma(X, \xi)$. Consider the following diagram:

where Coarse ${ }_{*}$ is the category of pointed coarse spaces and (base point preserving) coarse maps, Metr b the category of metric spaces and bornologous maps, Coarse ${ }_{b}$ the category of coarse spaces and bornologous maps, and Sets the category of sets and maps. In Section 2, we introduce the so-called coarsely connected component functor $\mathcal{Q}:$ Coarse $_{b} \rightarrow$ Sets. The coarse invariance of \mathcal{Q} is proved. In Section 3, we introduce a metric on the set $S(X, \xi)$, where the metric is allowed to take the value ∞. This forms a functor $S:$ Coarse $_{*} \rightarrow$ Metr $_{b}$. We prove the preservation of bornotopy by S. In Section 4, we prove that σ can be considered as the composition of the two functors \mathcal{Q} and S, which commutes the above diagram. As a by-product, our reformulation trivialises some known theorems on $\sigma(X, \xi)$, including the functoriality and the coarse invariance.

Notation and terminology

Let $f, g: X \rightarrow Y$ be maps, E, F binary relations on X (i.e. subsets of $X \times X$), and $n \in \mathbb{N}$. Then

$$
\begin{aligned}
E \circ F & :=\{(x, y) \in X \times X \mid(x, z) \in E \text { and }(z, y) \in F \text { for some } z \in X\}, \\
E^{-1} & :=\{(y, x) \in X \times X \mid(x, y) \in E\} \\
E^{0} & :=\Delta_{X}:=\{(x, x) \mid x \in X\} \\
E^{n+1} & :=E^{n} \circ E, \\
(f \times g)(E) & :=\{(f(x), g(y)) \mid(x, y) \in E\} .
\end{aligned}
$$

A coarse structure on a set X is a family \mathcal{C}_{X} of binary relations on X with the following properties:

1. $\Delta_{X} \in \mathcal{C}_{X}$;
2. $E \subseteq F \in \mathcal{C}_{X} \Longrightarrow E \in \mathcal{C}_{X}$; and
3. $E, F \in \mathcal{C}_{X} \Longrightarrow E \cup F, E \circ F, E^{-1} \in \mathcal{C}_{X}$.

A set equipped with a coarse structure is called a coarse space. A subset A of X is called a bounded set if $A \times A \in \mathcal{C}_{X}$. We denote the family of bounded subsets of X by \mathcal{B}_{X}. This family satisfies the following:

1. $\cup \mathcal{B}_{X}=X$;
2. $A \subseteq B \in \mathcal{B}_{X} \Longrightarrow A \in \mathcal{B}_{X}$;
3. $A, B \in \mathcal{B}_{X}, A \cap B \neq \varnothing \Longrightarrow A \cup B \in \mathcal{B}_{X}$.

A typical example of a coarse structure is the bounded coarse structure induced by a metric $d_{X}: X \times X \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$:

$$
\mathcal{C}_{d_{X}}:=\left\{E \subseteq X \times X \mid \sup d_{X}(E)<\infty\right\} \cup\{\varnothing\}
$$

Then the boundedness defined above agrees with the usual boundedness. We assume that every metric space is endowed with the bounded coarse structure throughout this paper.

Let $f, g: X \rightarrow Y$ be maps from a set X to a coarse space Y. We say that f and g are bornotopic (or close) if $(f \times g)\left(\Delta_{X}\right) \in \mathcal{C}_{Y}$. Obviously bornotopy gives an equivalence relation on the set Y^{X} of all maps from X to Y.

Suppose $f: X \rightarrow Y$ is a map between coarse spaces X, Y. Then f is said to be

1. proper if $f^{-1}(B) \in \mathcal{B}_{X}$ for all $B \in \mathcal{B}_{Y}$;
2. bornologous if $(f \times f)(E) \in \mathcal{C}_{Y}$ for all $E \in \mathcal{C}_{X}$;
3. coarse if it is proper and bornologous;
4. an asymorphism (or an isomorphism of coarse spaces) if it is a bornologous bijection such that the inverse map is also bornologous;
5. a coarse equivalence (or a bornotopy equivalence) if it is bornologous, and there exists a bornologous map $g: Y \rightarrow X$ (called a coarse inverse or a bornotopy inverse of f) such that $g \circ f$ and $f \circ g$ are bornotopic to the identity maps id_{X} and id_{Y}, respectively.

For more information, see the monograph [7] by John Roe.

2 Coarsely connected components

Let X be a coarse space. A subset A of X is said to be coarsely connected if $\{x, y\} \in \mathcal{B}_{X}$ for all $x, y \in A([7$, Definition 2.11]). For $x \in X$, we set

$$
\mathcal{Q}_{X}(x):=\bigcup_{x \in B \in \mathcal{B}_{X}} B
$$

and call it the coarsely connected component of X containing x. It is easy to see that $\mathcal{Q}_{X}(x)$ is the largest coarsely connected subset of X that contains x (see also [7, Remark 2.20]). We denote the set of all coarsely connected components of X by $\mathcal{Q}(X)$:

$$
\mathcal{Q}(X):=\left\{\mathcal{Q}_{X}(x) \mid x \in X\right\}
$$

Lemma 1. Let $f: X \rightarrow Y$ be a bornologous map. If X is coarsely connected, then so is the image $f(X)$.

Proof. The statement is immediate from the fact that every bornologous map preserves boundedness.

Theorem 2 (Functoriality). Every bornologous map $f: X \rightarrow Y$ functorially induces a map $\mathcal{Q}(f): \mathcal{Q}(X) \rightarrow \mathcal{Q}(Y)$ by $\mathcal{Q}(f)\left(\mathcal{Q}_{X}(x)\right):=\mathcal{Q}_{Y}(f(x))$.

Proof. It suffices to verify the well-definedness. Let $x, y \in X$ and suppose $\mathcal{Q}_{X}(x)=\mathcal{Q}_{X}(y)$. Since f is bornologous and $\mathcal{Q}_{X}(x)$ is coarsely connected, $f\left(\mathcal{Q}_{X}(x)\right)$ is coarsely connected and contains $f(x)$. By the maximality of $\mathcal{Q}_{Y}(f(x))$, we have that $f(y) \in f\left(\mathcal{Q}_{X}(y)\right)=f\left(\mathcal{Q}_{X}(x)\right) \subseteq \mathcal{Q}_{Y}(f(x))$. By the maximality of $\mathcal{Q}_{Y}(f(y))$, we have that $\mathcal{Q}_{Y}(f(x)) \subseteq \mathcal{Q}_{Y}(f(y))$. By symmetry, $\mathcal{Q}_{Y}(f(y)) \subseteq \mathcal{Q}_{Y}(f(x))$ holds. Therefore $\mathcal{Q}_{Y}(f(x))=\mathcal{Q}_{Y}(f(y))$.

Theorem 3 (Coarse invariance). If two bornologous maps $f, g: X \rightarrow Y$ are bornotopic, then $\mathcal{Q}(f)=\mathcal{Q}(g)$.

Proof. The proof is similar to that of Theorem 2. Let $x \in X$. Since f and g are bornotopic, $(f(x), g(x)) \in(f \times g)\left(\Delta_{X}\right) \in \mathcal{C}_{Y}$, so $\{f(x), g(x)\}$ is bounded in Y. Thus $\{f(x), g(x)\}$ is coarsely connected and contains $f(x)$. By the maximality of $\mathcal{Q}_{Y}(f(x))$, we have that $g(x) \in\{f(x), g(x)\} \subseteq \mathcal{Q}_{Y}(f(x))$. By the maximality of $\mathcal{Q}_{Y}(g(x))$, we have that $\mathcal{Q}_{Y}(f(x)) \subseteq \mathcal{Q}_{Y}(g(x))$. The reverse inclusion $\mathcal{Q}_{Y}(g(x)) \subseteq \mathcal{Q}_{Y}(f(x))$ holds by symmetry. It follows that $\mathcal{Q}(f)\left(\mathcal{Q}_{X}(x)\right)=\mathcal{Q}_{Y}(f(x))=\mathcal{Q}_{Y}(g(x))=\mathcal{Q}(g)\left(\mathcal{Q}_{X}(x)\right)$.

3 Metrisation of $S(X, \xi)$

Let (X, ξ) be a pointed coarse space. A coarse map $s:(\mathbb{N}, 0) \rightarrow(X, \xi)$ is called a coarse sequence in (X, ξ). Denote by $S(X, \xi)$ the set of all coarse sequences of (X, ξ). In the preceding studies $[6,4,3,2], S(X, \xi)$ is just a set with no structure. In fact, as we shall see below, $S(X, \xi)$ has a geometric structure relevant to $\sigma(X, \xi)$. We define a metric $d_{S(X, \xi)}: S(X, \xi) \times S(X, \xi) \rightarrow \mathbb{N} \cup\{\infty\}$ on $S(X, \xi)$ as follows:

$$
d_{S(X, \xi)}(s, t):=\inf \left\{n \in \mathbb{N} \mid(s, t) \in\left(\sqsubseteq_{X, \xi}^{\sigma} \cup \exists_{X, \xi}^{\sigma}\right)^{n}\right\}
$$

where $\inf \varnothing:=\infty$. It is easy to check that $d_{S(X, \xi)}$ is a metric. Thus $S(X, \xi)$ is equipped with a coarse structure, viz., the bounded coarse structure induced by $d_{S(X, \xi)}$.
Lemma 4. Let (X, ξ) be a pointed coarse space and $s, t \in S(X, \xi)$.

1. The following are equivalent:
(a) $s \equiv_{X, \xi}^{\sigma} t$;
(b) $d_{S(X, \xi)}(s, t) \in \mathbb{N}$;
(c) there exists a sequence $\left\{u_{i}\right\}_{i=0}^{n}$ in $S(X, \xi)$ of length $n+1$ such that $u_{0}=s, u_{n}=t$ and $d_{S(X, \xi)}\left(u_{i}, u_{i+1}\right)=1$ for all $i<n$, where n is an arbitrary constant greater than or equal to $d_{S(X, \xi)}(s, t)$.
2. The following are equivalent:
(a) $s \not \equiv_{X, \xi}^{\sigma} t$;
(b) $d_{S(X, \xi)}(s, t)=\infty$;
(c) there is no finite sequence $\left\{u_{i}\right\}_{i=0}^{n}$ in $S(X, \xi)$ such that $u_{0}=s, u_{n}=t$ and $d_{S(X, \xi)}\left(u_{i}, u_{i+1}\right)=1$ for all $i<n$.

Proof. Notice that $d_{S(X, \xi)}(s, t) \leq n$ if and only if there exists a sequence $\left\{u_{i}\right\}_{i=0}^{n}$ in $S(X, \xi)$ of length $n+1$ such that $u_{0}=s, u_{n}=t$, and $u_{i} \sqsubseteq_{X, \xi}^{\sigma} u_{i+1}$ or $u_{i+1} \sqsubseteq_{X, \xi}^{\sigma}$ u_{i} for all $i<n$. Also, note that $d_{S(X, \xi)}(s, t)=\infty$ if and only if there is no such finite sequence in $S(X, \xi)$. The above equivalences are now obvious.

Theorem 5 (Functoriality). Each coarse map $f:(X, \xi) \rightarrow(Y, \eta)$ functorially induces a bornologous map $S(f): S(X, \xi) \rightarrow S(Y, \eta)$ by $S(f)(s):=f \circ s$.
Proof. Well-definedness: let $s \in S(X, \xi)$. Clearly $S(f)(s)$ is a map from $(\mathbb{N}, 0)$ to (Y, η). The class of coarse maps is closed under composition, so $S(f)(s)$ is coarse. (Let $E \in \mathcal{C}_{\mathbb{N}}$. Then $(s \times s)(E) \in \mathcal{C}_{X}$ by the bornologousness of s, so $(f \circ s \times f \circ s)(E)=(f \times f)((s \times s)(E)) \in \mathcal{C}_{Y}$ by the bornologousness of f. Let $B \in \mathcal{B}_{Y}$. Then $f^{-1}(B) \in \mathcal{B}_{X}$ by the properness of f, and hence $(f \circ s)^{-1}(B)=$ $s^{-1} \circ f^{-1}(B) \in \mathcal{B}_{\mathbb{N}}$ by the properness of s.) Hence $S(f)(s) \in S(Y, \eta)$.

Bornologousness: Let $s, t \in S(X, \xi)$ and suppose $d_{S(X, \xi)}(s, t) \leq n$, i.e., there is a sequence $\left\{u_{i}\right\}_{i=0}^{n}$ in $S(X, \xi)$ of length $n+1$ such that $u_{0}=s, u_{n}=t$, and $u_{i} \sqsubseteq_{X, \xi}^{\sigma} u_{i+1}$ or $u_{i+1} \sqsubseteq_{X, \xi}^{\sigma} u_{i}$ for all $i<n$. Then the sequence $\left\{f \circ u_{i}\right\}_{i=0}^{n}$ witnesses that $d_{S(Y, \eta)}(S(f)(s), S(f)(t))=d_{S(Y, \eta)}(f \circ s, f \circ t) \leq n$.

Theorem 6 (Preservation of bornotopy). If coarse maps $f, g:(X, \xi) \rightarrow(Y, \eta)$ are bornotopic, then so are $S(f), S(g): S(X, \xi) \rightarrow S(Y, \eta)$.

Proof. Let $s \in S(X, \xi)$. We define a map $t:(\mathbb{N}, 0) \rightarrow(Y, \eta)$ as follows:

$$
t(i):= \begin{cases}S(f)(s)(j), & i=2 j \\ S(g)(s)(j), & i=2 j+1\end{cases}
$$

Let us verify that $t \in S(Y, \eta)$. Firstly, let $B \in \mathcal{B}_{Y}$. Then

$$
t^{-1}(B)=2(S(f)(s))^{-1}(B) \cup\left(2(S(g)(s))^{-1}(B)+1\right)
$$

Since $S(f)(s)$ and $S(g)(s)$ are proper, the two sets $2(S(f)(s))^{-1}(B)$ and $2(S(g)(s))^{-1}(B)+1$ are bounded in \mathbb{N} (i.e. finite), so $t^{-1}(B) \in \mathcal{B}_{\mathbb{N}}$. Therefore t is proper. Secondly, let $n \in \mathbb{N}$. Since $S(f)(s)$ and $S(g)(s)$ are bornologous, there exists an $E \in \mathcal{C}_{Y}$ such that $(S(f)(s)(i), S(f)(s)(j)) \in E$ and $(S(g)(s)(i), S(g)(s)(j)) \in E$ hold for all $i, j \in \mathbb{N}$ with $|i-j| \leq n$. Since f and g are bornotopic,

$$
\begin{aligned}
F & :=\{(S(f)(s)(i), S(g)(s)(i)) \mid i \in \mathbb{N}\} \\
& =\{(f \circ s(i), g \circ s(i)) \mid i \in \mathbb{N}\} \\
& \subseteq(f \times g)\left(\Delta_{X}\right) \\
& \in \mathcal{C}_{Y} .
\end{aligned}
$$

Then $(S(f)(s)(i), S(g)(s)(j)) \in E \circ F \in \mathcal{C}_{Y}$ and $(S(g)(s)(i), S(f)(s)(j)) \in$ $E \circ F^{-1} \in \mathcal{C}_{Y}$ hold for all $i, j \in \mathbb{N}$ with $|i-j| \leq n$. Now let $G:=E \cup(E \circ F) \cup$ $\left(E \circ F^{-1}\right) \in \mathcal{C}_{Y}$. Then $(t(i), t(j)) \in G$ holds for all $i, j \in \mathbb{N}$ with $|i-j| \leq n$. Therefore t is bornologous.

Both $S(f)(s)$ and $S(g)(s)$ are subsequences of t, i.e., $S(f)(s) \sqsubseteq_{Y, \eta}^{\sigma} t \sqsupset_{Y, \eta}^{\sigma}$ $S(g)(s)$, so $d_{S(Y, \eta)}(S(f)(s), S(g)(s)) \leq 2$. Hence

$$
\begin{aligned}
(S(f) \times S(g))\left(\Delta_{S(X, \xi)}\right) & \subseteq\left\{(u, v) \in S(Y, \eta) \times S(Y, \eta) \mid d_{S(Y, \eta)}(u, v) \leq 2\right\} \\
& \in \mathcal{C}_{S(Y, \eta)}
\end{aligned}
$$

Therefore $S(f)$ and $S(g)$ are bornotopic.

The next theorem shows that the base point can be replaced with any other point lying in the same coarsely connected component.

Theorem 7 (Changing the base point). Let X be a coarse space, and $\xi_{1}, \xi_{2} \in X$. If $\mathcal{Q}_{X}\left(\xi_{1}\right)=\mathcal{Q}_{X}\left(\xi_{2}\right)$, then $S\left(X, \xi_{1}\right)$ and $S\left(X, \xi_{2}\right)$ are isometric.

Proof. Define maps $T_{21}: S\left(X, \xi_{1}\right) \rightarrow S\left(X, \xi_{2}\right)$ and $T_{12}: S\left(X, \xi_{2}\right) \rightarrow S\left(X, \xi_{1}\right)$
by

$$
\begin{aligned}
& T_{21}(s)(i):= \begin{cases}\xi_{2}, & i=0 \\
s(i), & i>0\end{cases} \\
& T_{12}(t)(i):= \begin{cases}\xi_{1}, & i=0 \\
t(i), & i>0\end{cases}
\end{aligned}
$$

We first verify the well-definedness, i.e. $T_{21}(s) \in S\left(X, \xi_{2}\right)$ and $T_{12}(t) \in$ $S\left(X, \xi_{1}\right)$. Obviously $T_{21}(s)(0)=\xi_{2}$. Let $B \in \mathcal{B}_{X}$. Then $\left(T_{21}(s)\right)^{-1}(B) \subseteq$ $s^{-1}(B) \cup\{0\}$, where $s^{-1}(B)$ is bounded in \mathbb{N} (i.e. finite) by the properness of s, so $\left(T_{21}(s)\right)^{-1}(B)$ is also bounded in \mathbb{N}. Hence $T_{21}(s)$ is proper. Next, let $E \in \mathcal{C}_{\mathbb{N}}$. For each $(i, j) \in E$, there are the following possibilities:

Case 1. $i=j=0$.
Then $T_{21}(s)(i)=\xi_{2}=T_{21}(s)(j)$, so $\left(T_{21}(s)(i), T_{21}(s)(j)\right) \in \Delta_{X} \in \mathcal{C}_{X}$.
Case 2. $i=0$ and $j \neq 0$.
In this case, $T_{21}(s)(i)=\xi_{2}, s(i)=\xi_{1}$ and $s(j)=T_{21}(s)(j)$.
So $\left(T_{21}(s)(i), T_{21}(s)(j)\right) \in\left\{\left(\xi_{2}, \xi_{1}\right)\right\} \circ(s \times s)(E) \in \mathcal{C}_{X}$.
Case 3. $i \neq 0$ and $j=0$.
Similar to the above case, we have $\left(T_{21}(s)(i), T_{21}(s)(j)\right) \in(s \times s)(E) \circ$ $\left\{\left(\xi_{1}, \xi_{2}\right)\right\} \in \mathcal{C}_{X}$.

Case 4. $i \neq 0$ and $j \neq 0$.
Then $T_{21}(s)(i)=s(i)$ and $T_{21}(s)(j)=s(j)$, whence we have $\left(T_{21}(s)(i), T_{21}(s)(j)\right) \in(s \times s)(E) \in \mathcal{C}_{X}$.

Set $F:=\Delta_{X} \cup\left(\left\{\left(\xi_{2}, \xi_{1}\right)\right\} \circ(s \times s)(E)\right) \cup\left((s \times s)(E) \circ\left\{\left(\xi_{1}, \xi_{2}\right)\right\}\right) \cup(s \times s)(E)$. Then $\left(T_{21}(s), T_{21}(s)\right)(E) \subseteq F \in \mathcal{C}_{X}$, so $\left(T_{21}(s), T_{21}(s)\right)(E) \in \mathcal{C}_{X}$. Hence $T_{21}(s)$ is bornologous. Since the definitions are symmetric, the same argument applies to $T_{12}(t)$.

Clearly $T_{12} \circ T_{21}=\operatorname{id}_{S\left(X, \xi_{1}\right)}$ and $T_{21} \circ T_{12}=\operatorname{id}_{S\left(X, \xi_{2}\right)}$. It suffices to prove that T_{21} is an isometry.

Let $s, t \in S\left(X, \xi_{1}\right)$ and suppose that $s \sqsubseteq_{X, \xi}^{\sigma} t$, i.e., there is a strictly monotone function $\kappa: \mathbb{N} \rightarrow \mathbb{N}$ such that $s=t \circ \kappa$. Since $\kappa(i) \geq i$, we have $T_{21}(s)(i)=s(i)=t(\kappa(i))=T_{21}(t)(\kappa(i))$ for all $i>0$. Now, define

$$
\kappa^{\prime}(i):= \begin{cases}0, & i=0 \\ \kappa(i), & i>0\end{cases}
$$

Then $T_{21}(s)(i)=T_{21}(t)\left(\kappa^{\prime}(i)\right)$ holds for all $i \in \mathbb{N}$ (including the case $\left.i=0\right)$. Hence $T_{21}(s) \sqsubseteq_{X, \xi_{2}}^{\sigma} T_{21}(t)$. Note that, by symmetry, the same applies to T_{12}. Conversely, let $s, t \in S\left(X, \xi_{1}\right)$ and suppose $T_{21}(s) \sqsubseteq_{X, \xi_{2}}^{\sigma} T_{21}(t)$. Then $s=T_{12} \circ T_{21}(s) \sqsubseteq_{X, \xi_{1}}^{\sigma} T_{12} \circ T_{21}(t)=t$.

Now, let $s, t \in S\left(X, \xi_{1}\right)$ and suppose $d_{S\left(X, \xi_{1}\right)}(s, t) \leq n$, i.e., there is a
sequence $\left\{u_{i}\right\}_{i=0}^{n}$ in $S(X, \xi)$ of length $n+1$ such that $u_{0}=s, u_{n}=t$, and $u_{i} \sqsubseteq_{X, \xi}^{\sigma}$ u_{i+1} or $u_{i+1} \sqsubseteq_{X, \xi}^{\sigma} u_{i}$ for all $i<n$. By the previous paragraph, $T_{21}\left(u_{i}\right) \sqsubseteq_{X, \xi}^{\sigma}$ $T_{21}\left(u_{i+1}\right)$ or $T_{21}\left(u_{i+1}\right) \sqsubseteq_{X, \xi}^{\sigma} T_{21}\left(u_{i}\right)$ for all $i<n$. So $d_{S\left(X, \xi_{2}\right)}\left(T_{21}(s), T_{21}(t)\right) \leq$ n. The same applies to T_{12} by symmetry. Conversely, let $s, t \in S\left(X, \xi_{1}\right)$ and suppose $d_{S\left(X, \xi_{2}\right)}\left(T_{21}(s), T_{21}(t)\right) \leq n$. Then it follows that $d_{S\left(X, \xi_{1}\right)}(s, t)=$ $d_{S\left(X, \xi_{1}\right)}\left(T_{12} \circ T_{21}(s), T_{12} \circ T_{21}(t)\right) \leq n$. Consequently, both T_{21} and T_{12} are isometries.

In fact, the metric function $d_{S(X, \xi)}$ only takes the values $0,1,2$ and ∞. To show this fact, we need the "confluence" property of $\sqsubseteq_{X, \xi}^{\sigma}$.
Lemma 8 (DeLyser, LaBuz and Tobash [2, Lemma 3.1]). Let $s, t, u \in S(X, \xi)$ and suppose $s \sqsubseteq_{X, \xi}^{\sigma} t$, u. Then there is a $v \in S(X, \xi)$ such that $t, u \sqsubseteq_{X, \xi}^{\sigma} v$.

Proof. By the definition of "subsequence", there are strictly monotone functions $\kappa, \lambda: \mathbb{N} \rightarrow \mathbb{N}$ such that $s=t \circ \kappa=u \circ \lambda$. The desired sequence $v \in S(X, \xi)$ is given by

$$
\underbrace{s(0), t(1), \ldots, t(\kappa(1)-1), s(1)}_{t(0), \ldots, t(\kappa(1))}, \underbrace{s(0), u(1), \ldots, u(\lambda(1)-1), s(1)}_{u(0), \ldots, u(\lambda(1))}
$$

$\underbrace{s(1), t(\kappa(1)+1), \ldots, t(\kappa(2)-1), s(2)}_{t(\kappa(1)), \ldots, t(\kappa(2))}, \underbrace{s(1), u(\lambda(1)+1), \ldots, u(\lambda(2)-1), s(2)}_{u(\lambda(1)), \ldots, u(\lambda(2))}$,
\vdots
Obviously v has t and u as subsequences. Let $E=\{(i, j) \| i-j \mid \leq 1\}$. (Note that $\mathcal{C}_{\mathbb{N}}$ is generated by $\left\{E^{n} \mid n \in \mathbb{N}\right\}$.) Since s, t and u are bornologous, $(s \times s)(E),(t \times t)(E),(u \times u)(E) \in \mathcal{C}_{X}$. Note that any two adjacent points $(v(i), v(i \pm 1))$ are one of the following forms:

$$
(t(j), t(j \pm 1)),(s(j), s(j \pm 1)),(u(j), u(j \pm 1)),(s(j), s(j))
$$

so $(v \times v)(E) \subseteq(t \times t)(E) \cup(s \times s)(E) \cup(u \times u)(E) \cup \Delta_{X} \in \mathcal{C}_{X}$. Hence v is bornologous. Similarly, one can easily prove that v is proper (i.e. diverges to infinity).

Lemma 9 (DeLyser, LaBuz and Tobash [2, Proposition 3.2]). Let $s, t \in S(X, \xi)$ and suppose $s \equiv_{X, \xi}^{\sigma} t$. Then there is a $u \in S(X, \xi)$ such that $s, t \sqsubseteq_{X, \xi}^{\sigma} u$.

Proof. Choose a sequence $\left\{u_{i}\right\}_{i=0}^{n}$ in $S(X, \xi)$ such that $u_{0}=s, u_{n}=t$, and $u_{i} \sqsubseteq_{X, \xi}^{\sigma} u_{i+1}$ or $u_{i+1} \sqsubseteq_{X, \xi}^{\sigma} u_{i}$ for all $i<n$. We show that there is a $v \in S(X, \xi)$ such that $u_{0}, u_{n} \sqsubseteq_{X, \xi}^{\sigma} v$ by induction on the length n. The base case $n=0$ is trivial. Suppose $n>0$. Since $u_{0} \equiv_{X, \xi}^{\sigma} u_{n-1}$, there is a $v \in S(X, \xi)$ such that $u_{0}, u_{n-1} \sqsubseteq_{X, \xi}^{\sigma} v$ by the induction hypothesis.

Case 1. $u_{n-1} \sqsubseteq_{X, \xi}^{\sigma} u_{n}$.
Since $u_{n-1} \sqsubseteq_{X, \xi}^{\sigma} u_{n}, v$, there is a $v^{\prime} \in S(X, \xi)$ such that $u_{n}, v \sqsubseteq_{X, \xi}^{\sigma} v^{\prime}$ by Lemma 8. Then $u \sqsubseteq_{X, \xi}^{\sigma} v \sqsubseteq_{X, \xi}^{\sigma} v^{\prime}$, so $u_{0} \sqsubseteq_{X, \xi}^{\sigma} v^{\prime}$.

Case 2. $u_{n-1} \exists_{X, \xi}^{\sigma} u_{n}$.
Then $u_{n} \sqsubseteq_{X, \xi}^{\sigma} u_{n-1} \sqsubseteq_{X, \xi}^{\sigma} v$, so $u_{n} \sqsubseteq_{X, \xi}^{\sigma} v$.

Theorem 10. $d_{S(X, \xi)}: X \times X \rightarrow\{0,1,2, \infty\}$.
Proof. Let $s, t \in S(X, \xi)$ and suppose $s \equiv_{X, \xi}^{\sigma} t$. There is a $u \in S(X, \xi)$ such that $s, t \sqsubseteq_{X, \xi}^{\sigma} u$ by Lemma 9 . Hence $d_{S(X, \xi)}(s, t) \leq 2$.

A similar argument in Lemma 9 is often used in the context of rewriting systems (such as lambda calculus). See also [1, Chapter 6].

4 Alternative definition of σ

Our main theorem is the following. This gives an alternative definition of $\sigma(X, \xi)$ in terms of the coarse structure of $S(X, \xi)$.

Theorem 11. Let (X, ξ) be a pointed coarse space. Then $[s]_{X, \xi}^{\sigma}=\mathcal{Q}_{S(X, \xi)}(s)$ for all $s \in S(X, \xi)$. Hence $\sigma(X, \xi)=\mathcal{Q}(S(X, \xi))$.

Proof. Let $s \in S(X, \xi)$. Then, by Lemma $4-(1),[s]_{X, \xi}^{\sigma}$ is coarsely connected (in fact, 1-chain-connected) as a subset of $S(X, \xi)$, and contains s. Hence $[s]_{X, \xi}^{\sigma} \subseteq \mathcal{Q}_{S(X, \xi)}(s)$ by the maximality of $\mathcal{Q}_{S(X, \xi)}(s)$. Conversely, let $t \in$ $\mathcal{Q}_{S(X, \xi)}(s)$. By Lemma 4-(2), $s \equiv_{X, \xi}^{\sigma} t$ must hold, and therefore $t \in[s]_{X, \xi}^{\sigma}$. Hence $\mathcal{Q}_{S(X, \xi)}(s) \subseteq[s]_{X, \xi}^{\sigma}$.

This theorem yields quite simple and systematic proofs of some existing results on $\sigma(X, \xi)$.

Theorem 12. Each coarse map $f:(X, \xi) \rightarrow(Y, \eta)$ functorially induces a map $\sigma(f): \sigma(X, \xi) \rightarrow \sigma(Y, \eta)$ by $\sigma(f)\left([s]_{X, \xi}^{\sigma}\right):=[f \circ s]_{Y, \eta}^{\sigma}$.

Proof. Immediate from Theorem 2, Theorem 5 and Theorem 11.
Corollary 13 (Miller, Stibich and Moore [6, Theorem 10]). If pointed coarse spaces (X, ξ) and (Y, η) are asymorphic, then $\sigma(X, \xi) \cong \sigma(Y, \eta)$.

Proof. Obvious from the fact that every functor preserves isomorphisms.
Theorem 14. If coarse maps $f, g:(X, \xi) \rightarrow(Y, \eta)$ are bornotopic, then $\sigma(f)=$ $\sigma(g)$.

Proof. Immediate from Theorem 6, Theorem 3 and Theorem 11.
Corollary 15 (DeLyser, LaBuz and Wetsell [3, Theorem 4]). If pointed coarse spaces (X, ξ) and (Y, η) are coarsely equivalent, then $\sigma(X, \xi) \cong \sigma(Y, \eta)$.

Proof. Let $f:(X, \xi) \rightarrow(Y, \eta)$ be a coarse equivalence with a coarse inverse $g:(Y, \eta) \rightarrow(X, \xi)$. Then $f \circ g$ and $g \circ f$ are bornotopic to $\operatorname{id}_{(Y, \eta)}$ and $\operatorname{id}_{(X, \xi)}$, respectively. By Theorem 12 and Theorem 14,

$$
\begin{aligned}
\operatorname{id}_{\sigma(Y, \eta)} & =\sigma\left(\operatorname{id}_{(Y, \eta)}\right) \\
& =\sigma(f \circ g) \\
& =\sigma(f) \circ \sigma(g), \\
\operatorname{id}_{\sigma(X, \xi)} & =\sigma\left(\operatorname{id}_{(X, \xi)}\right) \\
& =\sigma(g \circ f) \\
& =\sigma(g) \circ \sigma(f),
\end{aligned}
$$

so $\sigma(f)$ and $\sigma(g)$ are inverse to each other. Hence $\sigma(X, \xi) \cong \sigma(Y, \eta)$.
Corollary 16 (DeLyser, LaBuz and Wetsell [3, Proposition 3]). Let X be a coarse space, and $\xi_{1}, \xi_{2} \in X$. If $\mathcal{Q}_{X}\left(\xi_{1}\right)=\mathcal{Q}_{X}\left(\xi_{2}\right)$, then $\sigma\left(X, \xi_{1}\right)$ and $\sigma\left(X, \xi_{2}\right)$ are equipotent (i.e. have the same cardinality).

Proof. By Theorem 7, $S\left(X, \xi_{1}\right)$ and $S\left(X, \xi_{2}\right)$ are isometric and hence asymorphic. So $\sigma\left(X, \xi_{1}\right)=\mathcal{Q}\left(S\left(X, \xi_{1}\right)\right) \cong \mathcal{Q}\left(S\left(X, \xi_{2}\right)\right)=\sigma\left(X, \xi_{2}\right)$ by Theorem 2 and Theorem 11.

5 Acknowledgement

The author is grateful to the anonymous referee for valuable comments which improved the quality of the manuscript. The referee pointed out that the metric function $d_{S(X, \xi)}$ only takes the values $0,1,2$ and ∞ by [2, Proposition 3.2].

Bibliography

[1] Franz Baader and Tobias Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.
[2] M. DeLyser, B. LaBuz, and M. Tobash, Sequential ends of metric spaces, 2013, arXiv:1303.0711.
[3] M. DeLyser, B. LaBuz, and B. Wetsell, A coarse invariant for all metric spaces, Mathematics Exchange 8 (2011), no. 1, 7-13.
[4] A. Fox, B. LaBuz, and R. Laskowsky, A coarse invariant, Mathematics Exchange 8 (2011), no. 1, 1-6.
[5] Takuma Imamura, A nonstandard invariant of coarse spaces, The Graduate Journal of Mathematics 5 (2020), no. 1, 1-8.
[6] Brittany Miller, Laura Stibich, and Julie Moore, An invariant of metric spaces under bornologous equivalences, Mathematics Exchange 7 (2010), no. 1, 12-19.
[7] John Roe, Lectures on Coarse Geometry, American Mathematical Society, 2003.

