Ball State Undergraduate Mathematics Exchange https://lib.bsu.edu/beneficencepress/mathexchange Vol. 14, No. 1 (Fall 2020) Pages 14 - 24

Another view of the coarse invariant σ

Takuma Imamura

Takuma Imamura is a Ph.D. student at Kyoto University majoring in mathematical logic. This article is a part of a research project which aims to develop nonstandard methods in large-scale topology.

Abstract Miller, Stibich and Moore [6] developed a set-valued coarse invariant $\sigma(X,\xi)$ of pointed metric spaces. DeLyser, LaBuz and Tobash [2] provided a different way to construct $\sigma(X,\xi)$ (as the set of all sequential ends). This paper provides yet another definition of $\sigma(X,\xi)$. To do this, we introduce a metric on the set $S(X,\xi)$ of coarse maps $(\mathbb{N},0) \to (X,\xi)$, and prove that $\sigma(X,\xi)$ is equal to the set of coarsely connected components of $S(X,\xi)$. As a by-product, our reformulation trivialises some known theorems on $\sigma(X,\xi)$, including the functoriality and the coarse invariance.

1 Introduction

Miller, Stibich and Moore [6] developed a set-valued coarse invariant $\sigma(X,\xi)$ of σ -stable pointed metric spaces (X,ξ) . DeLyser, LaBuz and Wetsell [3] generalised it to pointed metric spaces (without σ -stability). The coarse invariance of $\sigma(X,\xi)$ was proved by Fox, LaBuz and Laskowsky [4] for σ -stable spaces, and by DeLyser, LaBuz and Wetsell [3] for general spaces.

We start with recalling the definition of $\sigma(X,\xi)$. We adopt a simplified definition given by DeLyser, LaBuz and Tobash [2]. Let (X,ξ) be a pointed metric space. A coarse sequence in (X,ξ) is a coarse map $s:(\mathbb{N},0)\to (X,\xi)$. Denote the set of coarse sequences in (X,ξ) by $S(X,\xi)$. Given $s,t\in S(X,\xi)$, we write $s =_{X,\xi}^{\sigma} t$ if s is a subsequence of t. Denote the equivalence closure of $=_{X,\xi}^{\sigma} t$ by $=_{X,\xi}^{\sigma} t$. In other words, $s =_{X,\xi}^{\sigma} t$ if and only if there exists a finite sequence $\{u_i\}_{i=0}^n$ in $S(X,\xi)$ such that $u_0 = s$, $u_n = t$, and $u_i =_{X,\xi}^{\sigma} t$ if or $u_{i+1} =_{X,\xi}^{\sigma} u_i$ for

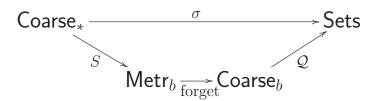
all i < n. The desired invariant is then defined as the quotient set:

$$\begin{split} \sigma\left(X,\xi\right) &\coloneqq S\left(X,\xi\right) \big/ \equiv^{\sigma}_{X,\xi} \\ &\coloneqq \{ [s]^{\sigma}_{X,\xi} \, | s \in S\left(X,\xi\right) \}, \end{split}$$

where $[s]_{X,\xi}^{\sigma}$ is the $\equiv_{X,\xi}^{\sigma}$ -equivalence class of s. As noted in [5], there is no difficulty in generalising $\sigma(X,\xi)$ to pointed coarse spaces (X,ξ) . See the subsection **Notation and terminology** below for the definitions of the terms used here.

DeLyser, LaBuz and Tobash [2] provided an alternative definition of $\sigma\left(X,\xi\right)$. Suppose (X,ξ) is a pointed metric space. Two coarse sequences $s,t\in S\left(X,\xi\right)$ are said to converge to the same sequential end (and denoted by $s\equiv_{X,\xi}^e t$) if there is a K>0 such that for all bounded subsets B of X there is an $N\in\mathbb{N}$ such that $\{s\left(i\right)|i\geq N\}$ and $\{t\left(i\right)|i\geq N\}$ are contained in the same K-chain-connected component of $X\smallsetminus B$. The $\equiv_{X,\xi}^e$ -equivalence classes are called sequential ends in (X,ξ) . It was proved that $\equiv_{X,\xi}^\sigma$ and $\equiv_{X,\xi}^e$ coincides. As a result, $\sigma\left(X,\xi\right)$ is equal to the set of sequential ends in (X,ξ) . This gives another view of $\sigma\left(X,\xi\right)$.

This paper aims to provide yet another view of $\sigma(X,\xi)$. Consider the following diagram:



where Coarse_* is the category of pointed coarse spaces and (base point preserving) coarse maps, Metr_b the category of metric spaces and bornologous maps, Coarse_b the category of coarse spaces and bornologous maps, and Sets the category of sets and maps. In Section 2, we introduce the so-called coarsely connected component functor $\mathcal{Q}:\mathsf{Coarse}_b\to\mathsf{Sets}$. The coarse invariance of \mathcal{Q} is proved. In Section 3, we introduce a metric on the set $S(X,\xi)$, where the metric is allowed to take the value ∞ . This forms a functor $S:\mathsf{Coarse}_*\to\mathsf{Metr}_b$. We prove the preservation of bornotopy by S. In Section 4, we prove that σ can be considered as the composition of the two functors \mathcal{Q} and S, which commutes the above diagram. As a by-product, our reformulation trivialises some known theorems on $\sigma(X,\xi)$, including the functoriality and the coarse invariance.

Notation and terminology

Let $f,g\colon\! X\to Y$ be maps, E,F binary relations on X (i.e. subsets of $X\times X$), and $n\in\mathbb{N}.$ Then

$$\begin{split} E \circ F &\coloneqq \{(x,y) \in X \times X | \, (x,z) \in E \text{ and } (z,y) \in F \text{ for some } z \in X\}, \\ E^{-1} &\coloneqq \{(y,x) \in X \times X | \, (x,y) \in E\}, \\ E^0 &\coloneqq \Delta_X \coloneqq \{(x,x) | x \in X\}, \\ E^{n+1} &\coloneqq E^n \circ E, \\ (f \times g) \, (E) &\coloneqq \{(f \, (x) \, , g \, (y)) \, | \, (x,y) \in E\}. \end{split}$$

A coarse structure on a set X is a family \mathcal{C}_X of binary relations on X with the following properties:

- 1. $\Delta_X \in \mathcal{C}_X$;
- 2. $E \subseteq F \in \mathcal{C}_X \implies E \in \mathcal{C}_X$; and
- 3. $E, F \in \mathcal{C}_X \implies E \cup F, E \circ F, E^{-1} \in \mathcal{C}_X$.

A set equipped with a coarse structure is called a *coarse space*. A subset A of X is called a *bounded set* if $A \times A \in \mathcal{C}_X$. We denote the family of bounded subsets of X by \mathcal{B}_X . This family satisfies the following:

- 1. $\bigcup \mathcal{B}_X = X$;
- 2. $A \subseteq B \in \mathcal{B}_X \implies A \in \mathcal{B}_X$;
- 3. $A, B \in \mathcal{B}_X, A \cap B \neq \emptyset \implies A \cup B \in \mathcal{B}_X$.

A typical example of a coarse structure is the bounded coarse structure induced by a metric $d_X: X \times X \to \mathbb{R}_{\geq 0} \cup \{\infty\}$:

$$C_{d_X} := \{ E \subseteq X \times X | \sup d_X (E) < \infty \} \cup \{\emptyset\}.$$

Then the boundedness defined above agrees with the usual boundedness. We assume that every metric space is endowed with the bounded coarse structure throughout this paper.

Let $f, g: X \to Y$ be maps from a set X to a coarse space Y. We say that f and g are bornotopic (or close) if $(f \times g)(\Delta_X) \in \mathcal{C}_Y$. Obviously bornotopy gives an equivalence relation on the set Y^X of all maps from X to Y.

Suppose $f: X \to Y$ is a map between coarse spaces X, Y. Then f is said to be

- 1. proper if $f^{-1}(B) \in \mathcal{B}_X$ for all $B \in \mathcal{B}_Y$;
- 2. bornologous if $(f \times f)(E) \in \mathcal{C}_Y$ for all $E \in \mathcal{C}_X$;
- 3. coarse if it is proper and bornologous;
- 4. an asymorphism (or an isomorphism of coarse spaces) if it is a bornologous bijection such that the inverse map is also bornologous;

5. a coarse equivalence (or a bornotopy equivalence) if it is bornologous, and there exists a bornologous map $g: Y \to X$ (called a coarse inverse or a bornotopy inverse of f) such that $g \circ f$ and $f \circ g$ are bornotopic to the identity maps id_X and id_Y , respectively.

For more information, see the monograph [7] by John Roe.

2 Coarsely connected components

Let X be a coarse space. A subset A of X is said to be coarsely connected if $\{x,y\} \in \mathcal{B}_X$ for all $x,y \in A$ ([7, Definition 2.11]). For $x \in X$, we set

$$Q_X(x) \coloneqq \bigcup_{x \in B \in \mathcal{B}_X} B,$$

and call it the coarsely connected component of X containing x. It is easy to see that $\mathcal{Q}_X(x)$ is the largest coarsely connected subset of X that contains x (see also [7, Remark 2.20]). We denote the set of all coarsely connected components of X by $\mathcal{Q}(X)$:

$$Q(X) := \{Q_X(x) | x \in X\}.$$

Lemma 1. Let $f: X \to Y$ be a bornologous map. If X is coarsely connected, then so is the image f(X).

Proof. The statement is immediate from the fact that every bornologous map preserves boundedness. $\hfill\Box$

Theorem 2 (Functoriality). Every bornologous map $f: X \to Y$ functorially induces a map $Q(f): Q(X) \to Q(Y)$ by $Q(f)(Q_X(x)) := Q_Y(f(x))$.

Proof. It suffices to verify the well-definedness. Let $x, y \in X$ and suppose $Q_X(x) = Q_X(y)$. Since f is bornologous and $Q_X(x)$ is coarsely connected, $f(Q_X(x))$ is coarsely connected and contains f(x). By the maximality of $Q_Y(f(x))$, we have that $f(y) \in f(Q_X(y)) = f(Q_X(x)) \subseteq Q_Y(f(x))$. By the maximality of $Q_Y(f(y))$, we have that $Q_Y(f(x)) \subseteq Q_Y(f(y))$. By symmetry, $Q_Y(f(y)) \subseteq Q_Y(f(x))$ holds. Therefore $Q_Y(f(x)) = Q_Y(f(y))$. \square

Theorem 3 (Coarse invariance). If two bornologous maps $f, g: X \to Y$ are bornotopic, then $\mathcal{Q}(f) = \mathcal{Q}(g)$.

Proof. The proof is similar to that of Theorem 2. Let $x \in X$. Since f and g are bornotopic, $(f(x), g(x)) \in (f \times g) (\Delta_X) \in \mathcal{C}_Y$, so $\{f(x), g(x)\}$ is bounded in Y. Thus $\{f(x), g(x)\}$ is coarsely connected and contains f(x). By the maximality of $\mathcal{Q}_Y(f(x))$, we have that $g(x) \in \{f(x), g(x)\} \subseteq \mathcal{Q}_Y(f(x))$. By the maximality of $\mathcal{Q}_Y(g(x))$, we have that $\mathcal{Q}_Y(f(x)) \subseteq \mathcal{Q}_Y(g(x))$. The reverse inclusion $\mathcal{Q}_Y(g(x)) \subseteq \mathcal{Q}_Y(f(x))$ holds by symmetry. It follows that $\mathcal{Q}(f)(\mathcal{Q}_X(x)) = \mathcal{Q}_Y(f(x)) = \mathcal{Q}_Y(g(x)) = \mathcal{Q}(g)(\mathcal{Q}_X(x))$.

3 Metrisation of $S(X,\xi)$

Let (X,ξ) be a pointed coarse space. A coarse map $s:(\mathbb{N},0)\to (X,\xi)$ is called a coarse sequence in (X,ξ) . Denote by $S(X,\xi)$ the set of all coarse sequences of (X,ξ) . In the preceding studies $[6,4,3,2], S(X,\xi)$ is just a set with no structure. In fact, as we shall see below, $S(X,\xi)$ has a geometric structure relevant to $\sigma(X,\xi)$. We define a metric $d_{S(X,\xi)}:S(X,\xi)\times S(X,\xi)\to\mathbb{N}\cup\{\infty\}$ on $S(X,\xi)$ as follows:

$$d_{S(X,\xi)}(s,t) \coloneqq \inf\{n \in \mathbb{N} | (s,t) \in \left(\sqsubseteq_{X,\xi}^{\sigma} \cup \beth_{X,\xi}^{\sigma}\right)^n\},\,$$

where $\inf \emptyset := \infty$. It is easy to check that $d_{S(X,\xi)}$ is a metric. Thus $S(X,\xi)$ is equipped with a coarse structure, viz., the bounded coarse structure induced by $d_{S(X,\xi)}$.

Lemma 4. Let (X,ξ) be a pointed coarse space and $s,t \in S(X,\xi)$.

- 1. The following are equivalent:
 - (a) $s \equiv_{X, \varepsilon}^{\sigma} t$;
 - (b) $d_{S(X,\xi)}(s,t) \in \mathbb{N};$
 - (c) there exists a sequence $\{u_i\}_{i=0}^n$ in $S(X,\xi)$ of length n+1 such that $u_0 = s$, $u_n = t$ and $d_{S(X,\xi)}(u_i,u_{i+1}) = 1$ for all i < n, where n is an arbitrary constant greater than or equal to $d_{S(X,\xi)}(s,t)$.
- 2. The following are equivalent:
 - (a) $s \not\equiv_{X,\xi}^{\sigma} t$;
 - (b) $d_{S(X,\xi)}(s,t) = \infty$;
 - (c) there is no finite sequence $\{u_i\}_{i=0}^n$ in $S(X,\xi)$ such that $u_0 = s$, $u_n = t$ and $d_{S(X,\xi)}(u_i,u_{i+1}) = 1$ for all i < n.

Proof. Notice that $d_{S(X,\xi)}(s,t) \le n$ if and only if there exists a sequence $\{u_i\}_{i=0}^n$ in $S(X,\xi)$ of length n+1 such that $u_0 = s$, $u_n = t$, and $u_i \sqsubseteq_{X,\xi}^{\sigma} u_{i+1}$ or $u_{i+1} \sqsubseteq_{X,\xi}^{\sigma} u_i$ for all i < n. Also, note that $d_{S(X,\xi)}(s,t) = \infty$ if and only if there is no such finite sequence in $S(X,\xi)$. The above equivalences are now obvious.

Theorem 5 (Functoriality). Each coarse map $f:(X,\xi) \to (Y,\eta)$ functorially induces a bornologous map $S(f):S(X,\xi) \to S(Y,\eta)$ by $S(f)(s) \coloneqq f \circ s$.

Proof. Well-definedness: let $s \in S(X, \xi)$. Clearly S(f)(s) is a map from $(\mathbb{N}, 0)$ to (Y, η) . The class of coarse maps is closed under composition, so S(f)(s) is coarse. (Let $E \in \mathcal{C}_{\mathbb{N}}$. Then $(s \times s)(E) \in \mathcal{C}_X$ by the bornologousness of s, so $(f \circ s \times f \circ s)(E) = (f \times f)((s \times s)(E)) \in \mathcal{C}_Y$ by the bornologousness of f. Let $B \in \mathcal{B}_Y$. Then $f^{-1}(B) \in \mathcal{B}_X$ by the properness of f, and hence $(f \circ s)^{-1}(B) = s^{-1} \circ f^{-1}(B) \in \mathcal{B}_{\mathbb{N}}$ by the properness of s.) Hence $S(f)(s) \in S(Y, \eta)$.

Bornologousness: Let $s, t \in S(X, \xi)$ and suppose $d_{S(X,\xi)}(s,t) \le n$, i.e., there is a sequence $\{u_i\}_{i=0}^n$ in $S(X,\xi)$ of length n+1 such that $u_0 = s$, $u_n = t$, and $u_i \sqsubseteq_{X,\xi}^{\sigma} u_{i+1}$ or $u_{i+1} \sqsubseteq_{X,\xi}^{\sigma} u_i$ for all i < n. Then the sequence $\{f \circ u_i\}_{i=0}^n$ witnesses that $d_{S(Y,\eta)}(S(f)(s), S(f)(t)) = d_{S(Y,\eta)}(f \circ s, f \circ t) \le n$.

Theorem 6 (Preservation of bornotopy). If coarse maps $f, g: (X, \xi) \to (Y, \eta)$ are bornotopic, then so are $S(f), S(g): S(X, \xi) \to S(Y, \eta)$.

Proof. Let $s \in S(X, \xi)$. We define a map $t: (\mathbb{N}, 0) \to (Y, \eta)$ as follows:

$$t(i) \coloneqq \begin{cases} S(f)(s)(j), & i = 2j, \\ S(g)(s)(j), & i = 2j + 1. \end{cases}$$

Let us verify that $t \in S(Y, \eta)$. Firstly, let $B \in \mathcal{B}_Y$. Then

$$t^{-1}(B) = 2(S(f)(s))^{-1}(B) \cup (2(S(g)(s))^{-1}(B) + 1).$$

Since S(f)(s) and S(g)(s) are proper, the two sets $2(S(f)(s))^{-1}(B)$ and $2(S(g)(s))^{-1}(B)+1$ are bounded in \mathbb{N} (i.e. finite), so $t^{-1}(B) \in \mathcal{B}_{\mathbb{N}}$. Therefore t is proper. Secondly, let $n \in \mathbb{N}$. Since S(f)(s) and S(g)(s) are bornologous, there exists an $E \in \mathcal{C}_Y$ such that $(S(f)(s)(i), S(f)(s)(j)) \in E$ and $(S(g)(s)(i), S(g)(s)(j)) \in E$ hold for all $i, j \in \mathbb{N}$ with $|i-j| \leq n$. Since f and g are bornotopic,

$$F := \{ (S(f)(s)(i), S(g)(s)(i)) | i \in \mathbb{N} \}$$

$$= \{ (f \circ s(i), g \circ s(i)) | i \in \mathbb{N} \}$$

$$\subseteq (f \times g)(\Delta_X)$$

$$\in \mathcal{C}_Y.$$

Then $(S(f)(s)(i), S(g)(s)(j)) \in E \circ F \in C_Y$ and $(S(g)(s)(i), S(f)(s)(j)) \in E \circ F^{-1} \in C_Y$ hold for all $i, j \in \mathbb{N}$ with $|i-j| \le n$. Now let $G := E \cup (E \circ F) \cup (E \circ F^{-1}) \in C_Y$. Then $(t(i), t(j)) \in G$ holds for all $i, j \in \mathbb{N}$ with $|i-j| \le n$. Therefore t is bornologous.

Both S(f)(s) and S(g)(s) are subsequences of t, i.e., $S(f)(s) \sqsubseteq_{Y,\eta}^{\sigma} t \sqsupseteq_{Y,\eta}^{\sigma} S(g)(s)$, so $d_{S(Y,\eta)}(S(f)(s), S(g)(s)) \le 2$. Hence

$$(S(f) \times S(g)) (\Delta_{S(X,\xi)}) \subseteq \{(u,v) \in S(Y,\eta) \times S(Y,\eta) | d_{S(Y,\eta)}(u,v) \le 2\}$$

 $\in \mathcal{C}_{S(Y,\eta)}.$

Therefore S(f) and S(g) are bornotopic.

The next theorem shows that the base point can be replaced with any other point lying in the same coarsely connected component.

Theorem 7 (Changing the base point). Let X be a coarse space, and $\xi_1, \xi_2 \in X$. If $\mathcal{Q}_X(\xi_1) = \mathcal{Q}_X(\xi_2)$, then $S(X, \xi_1)$ and $S(X, \xi_2)$ are isometric.

Proof. Define maps $T_{21}:S(X,\xi_1)\to S(X,\xi_2)$ and $T_{12}:S(X,\xi_2)\to S(X,\xi_1)$

by

$$T_{21}(s)(i) := \begin{cases} \xi_{2}, & i = 0, \\ s(i), & i > 0, \end{cases}$$
$$T_{12}(t)(i) := \begin{cases} \xi_{1}, & i = 0, \\ t(i), & i > 0. \end{cases}$$

We first verify the well-definedness, i.e. $T_{21}(s) \in S(X, \xi_2)$ and $T_{12}(t) \in$ $S(X,\xi_1)$. Obviously $T_{21}(s)(0) = \xi_2$. Let $B \in \mathcal{B}_X$. Then $(T_{21}(s))^{-1}(B) \subseteq s^{-1}(B) \cup \{0\}$, where $s^{-1}(B)$ is bounded in \mathbb{N} (i.e. finite) by the properness of s, so $(T_{21}(s))^{-1}(B)$ is also bounded in N. Hence $T_{21}(s)$ is proper. Next, let $E \in \mathcal{C}_{\mathbb{N}}$. For each $(i, j) \in E$, there are the following possibilities:

Case 1. i = j = 0.

Then $T_{21}(s)(i) = \xi_2 = T_{21}(s)(j)$, so $(T_{21}(s)(i), T_{21}(s)(j)) \in \Delta_X \in \mathcal{C}_X$.

Case 2. i = 0 and $j \neq 0$.

In this case, $T_{21}(s)(i) = \xi_2$, $s(i) = \xi_1$ and $s(j) = T_{21}(s)(j)$. So $(T_{21}(s)(i), T_{21}(s)(j)) \in \{(\xi_2, \xi_1)\} \circ (s \times s)(E) \in \mathcal{C}_X$.

Case 3. $i \neq 0$ and j = 0.

Similar to the above case, we have $(T_{21}(s)(i), T_{21}(s)(j)) \in (s \times s)(E)$ $\{(\xi_1, \xi_2)\} \in \mathcal{C}_X$.

Case 4. $i \neq 0$ and $j \neq 0$.

Then $T_{21}(s)(i) = s(i)$ and $T_{21}(s)(j) = s(j)$, whence we have $(T_{21}(s)(i), T_{21}(s)(j)) \in (s \times s)(E) \in C_X.$

Set $F := \Delta_X \cup (\{(\xi_2, \xi_1)\} \circ (s \times s) (E)) \cup ((s \times s) (E) \circ \{(\xi_1, \xi_2)\}) \cup (s \times s) (E)$. Then $(T_{21}(s), T_{21}(s))(E) \subseteq F \in C_X$, so $(T_{21}(s), T_{21}(s))(E) \in C_X$. Hence $T_{21}(s)$ is bornologous. Since the definitions are symmetric, the same argument applies to $T_{12}(t)$.

Clearly $T_{12}\circ T_{21}=\mathrm{id}_{S(X,\xi_1)}$ and $T_{21}\circ T_{12}=\mathrm{id}_{S(X,\xi_2)}$. It suffices to prove that T_{21} is an isometry.

Let $s,t\in S\left(X,\xi_{1}\right)$ and suppose that $s\in_{X,\xi}^{\sigma}t,$ i.e., there is a strictly monotone function $\kappa : \mathbb{N} \to \mathbb{N}$ such that $s = t \circ \kappa$. Since $\kappa(i) \geq i$, we have $T_{21}(s)(i) = s(i) = t(\kappa(i)) = T_{21}(t)(\kappa(i))$ for all i > 0. Now, define

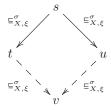
$$\kappa'(i) \coloneqq \begin{cases} 0, & i = 0, \\ \kappa(i), & i > 0. \end{cases}$$

Then $T_{21}(s)(i) = T_{21}(t)(\kappa'(i))$ holds for all $i \in \mathbb{N}$ (including the case i = 0). Hence $T_{21}(s) \sqsubseteq_{X,\xi_2}^{\sigma} T_{21}(t)$. Note that, by symmetry, the same applies to T_{12} . Conversely, let $s,t \in S(X,\xi_1)$ and suppose $T_{21}(s) \sqsubseteq_{X,\xi_2}^{\sigma} T_{21}(t)$. Then $s = T_{12} \circ T_{21}\left(s\right) \sqsubseteq_{X,\xi_{1}}^{\sigma} T_{12} \circ T_{21}\left(t\right) = t.$ Now, let $s,t \in S\left(X,\xi_{1}\right)$ and suppose $d_{S\left(X,\xi_{1}\right)}\left(s,t\right) \leq n$, i.e., there is a

sequence $\{u_i\}_{i=0}^n$ in $S\left(X,\xi\right)$ of length n+1 such that $u_0=s,\ u_n=t,$ and $u_i \sqsubseteq_{X,\xi}^\sigma u_{i+1}$ or $u_{i+1} \sqsubseteq_{X,\xi}^\sigma u_i$ for all i < n. By the previous paragraph, $T_{21}\left(u_i\right) \sqsubseteq_{X,\xi}^\sigma T_{21}\left(u_{i+1}\right)$ or $T_{21}\left(u_{i+1}\right) \sqsubseteq_{X,\xi}^\sigma T_{21}\left(u_i\right)$ for all i < n. So $d_{S\left(X,\xi_2\right)}\left(T_{21}\left(s\right),T_{21}\left(t\right)\right) \le n$. The same applies to T_{12} by symmetry. Conversely, let $s,t \in S\left(X,\xi_1\right)$ and suppose $d_{S\left(X,\xi_2\right)}\left(T_{21}\left(s\right),T_{21}\left(t\right)\right) \le n$. Then it follows that $d_{S\left(X,\xi_1\right)}\left(s,t\right) = d_{S\left(X,\xi_1\right)}\left(T_{12} \circ T_{21}\left(s\right),T_{12} \circ T_{21}\left(t\right)\right) \le n$. Consequently, both T_{21} and T_{12} are isometries.

In fact, the metric function $d_{S(X,\xi)}$ only takes the values 0, 1, 2 and ∞ . To show this fact, we need the "confluence" property of $\sqsubseteq_{X,\xi}^{\sigma}$.

Lemma 8 (DeLyser, LaBuz and Tobash [2, Lemma 3.1]). Let $s, t, u \in S(X, \xi)$ and suppose $s \sqsubseteq_{X,\xi}^{\sigma} t, u$. Then there is a $v \in S(X,\xi)$ such that $t, u \sqsubseteq_{X,\xi}^{\sigma} v$.



Proof. By the definition of "subsequence", there are strictly monotone functions $\kappa, \lambda : \mathbb{N} \to \mathbb{N}$ such that $s = t \circ \kappa = u \circ \lambda$. The desired sequence $v \in S(X, \xi)$ is given by

$$\underbrace{s(0),t(1),...,t(\kappa(1)-1),s(1)}_{t(0),...,t(\kappa(1))},\underbrace{s(0),u(1),...,u(\lambda(1)-1),s(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1)-1),s(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1)-1),s(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1)-1),s(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1)-1),s(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1)-1),s(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1)-1),s(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1)-1),s(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1)-1),s(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1)-1),s(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1)-1),s(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1)-1),s(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1))}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1))}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1))}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1))}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1))}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1))}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1))}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1))}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1))}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1))}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),...,u(\lambda(1))}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1),...,u(\lambda(1))}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1),...,u(\lambda(1))}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(\lambda(1))},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(1)},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(1)},\underbrace{s(0),u(1),u(1)}_{u(0),...,u(1)},\underbrace{s(0),u(1),u(1)}_{u(0),..$$

$$\underbrace{s\left(1\right),t\left(\kappa\left(1\right)+1\right),\ldots,t\left(\kappa\left(2\right)-1\right),s\left(2\right)}_{t\left(\kappa\left(1\right)\right),\ldots,t\left(\kappa\left(2\right)\right)},\underbrace{s\left(1\right),u\left(\lambda\left(1\right)+1\right),\ldots,u\left(\lambda\left(2\right)-1\right),s\left(2\right)}_{u\left(\lambda\left(1\right)\right),\ldots,u\left(\lambda\left(2\right)\right)}$$

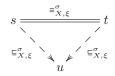
$$\vdots$$

Obviously v has t and u as subsequences. Let $E = \{(i,j) | |i-j| \leq 1\}$. (Note that $C_{\mathbb{N}}$ is generated by $\{E^n | n \in \mathbb{N}\}$.) Since s, t and u are bornologous, $(s \times s)(E), (t \times t)(E), (u \times u)(E) \in C_X$. Note that any two adjacent points $(v(i), v(i \pm 1))$ are one of the following forms:

$$(t(j),t(j\pm 1)), (s(j),s(j\pm 1)), (u(j),u(j\pm 1)), (s(j),s(j)),$$

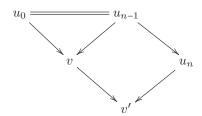
so $(v \times v)(E) \subseteq (t \times t)(E) \cup (s \times s)(E) \cup (u \times u)(E) \cup \Delta_X \in \mathcal{C}_X$. Hence v is bornologous. Similarly, one can easily prove that v is proper (i.e. diverges to infinity).

Lemma 9 (DeLyser, LaBuz and Tobash [2, Proposition 3.2]). Let $s, t \in S(X, \xi)$ and suppose $s \equiv_{X, \xi}^{\sigma} t$. Then there is a $u \in S(X, \xi)$ such that $s, t \equiv_{X, \xi}^{\sigma} u$.

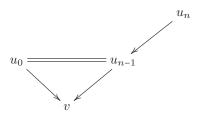


Proof. Choose a sequence $\{u_i\}_{i=0}^n$ in $S(X,\xi)$ such that $u_0=s,\ u_n=t,$ and $u_i \sqsubseteq_{X,\xi}^\sigma u_{i+1}$ or $u_{i+1} \sqsubseteq_{X,\xi}^\sigma u_i$ for all i < n. We show that there is a $v \in S(X,\xi)$ such that $u_0, u_n \sqsubseteq_{X,\xi}^\sigma v$ by induction on the length n. The base case n=0 is trivial. Suppose n>0. Since $u_0 \equiv_{X,\xi}^\sigma u_{n-1}$, there is a $v \in S(X,\xi)$ such that $u_0, u_{n-1} \sqsubseteq_{X,\xi}^\sigma v$ by the induction hypothesis.

Case 1. $u_{n-1} \sqsubseteq_{X,\xi}^{\sigma} u_n$. Since $u_{n-1} \sqsubseteq_{X,\xi}^{\sigma} u_n, v$, there is a $v' \in S(X,\xi)$ such that $u_n, v \sqsubseteq_{X,\xi}^{\sigma} v'$ by Lemma 8. Then $u_0 \sqsubseteq_{X,\xi}^{\sigma} v \sqsubseteq_{X,\xi}^{\sigma} v'$, so $u_0 \sqsubseteq_{X,\xi}^{\sigma} v'$.



Case 2. $u_{n-1} \supseteq_{X,\xi}^{\sigma} u_n$. Then $u_n \sqsubseteq_{X,\xi}^{\sigma} u_{n-1} \sqsubseteq_{X,\xi}^{\sigma} v$, so $u_n \sqsubseteq_{X,\xi}^{\sigma} v$.



Theorem 10. $d_{S(X,\xi)}: X \times X \to \{0,1,2,\infty\}.$

Proof. Let $s, t \in S(X, \xi)$ and suppose $s \equiv_{X, \xi}^{\sigma} t$. There is a $u \in S(X, \xi)$ such that $s, t \equiv_{X, \xi}^{\sigma} u$ by Lemma 9. Hence $d_{S(X, \xi)}(s, t) \leq 2$.

A similar argument in Lemma 9 is often used in the context of rewriting systems (such as lambda calculus). See also [1, Chapter 6].

4 Alternative definition of σ

Our main theorem is the following. This gives an alternative definition of $\sigma(X,\xi)$ in terms of the coarse structure of $S(X,\xi)$.

Theorem 11. Let (X,ξ) be a pointed coarse space. Then $[s]_{X,\xi}^{\sigma} = \mathcal{Q}_{S(X,\xi)}(s)$ for all $s \in S(X,\xi)$. Hence $\sigma(X,\xi) = \mathcal{Q}(S(X,\xi))$.

Proof. Let $s \in S(X, \xi)$. Then, by Lemma 4-(1), $[s]_{X,\xi}^{\sigma}$ is coarsely connected (in fact, 1-chain-connected) as a subset of $S(X,\xi)$, and contains s. Hence $[s]_{X,\xi}^{\sigma} \subseteq \mathcal{Q}_{S(X,\xi)}(s)$ by the maximality of $\mathcal{Q}_{S(X,\xi)}(s)$. Conversely, let $t \in \mathcal{Q}_{S(X,\xi)}(s)$. By Lemma 4-(2), $s \equiv_{X,\xi}^{\sigma} t$ must hold, and therefore $t \in [s]_{X,\xi}^{\sigma}$. Hence $\mathcal{Q}_{S(X,\xi)}(s) \subseteq [s]_{X,\xi}^{\sigma}$.

This theorem yields quite simple and systematic proofs of some existing results on $\sigma(X,\xi)$.

Theorem 12. Each coarse map $f:(X,\xi)\to (Y,\eta)$ functorially induces a map $\sigma(f):\sigma(X,\xi)\to\sigma(Y,\eta)$ by $\sigma(f)\left([s]_{X,\xi}^{\sigma}\right)\coloneqq [f\circ s]_{Y,\eta}^{\sigma}$.

Proof. Immediate from Theorem 2, Theorem 5 and Theorem 11. \Box

Corollary 13 (Miller, Stibich and Moore [6, Theorem 10]). *If pointed coarse spaces* (X, ξ) *and* (Y, η) *are asymorphic, then* $\sigma(X, \xi) \cong \sigma(Y, \eta)$.

Proof. Obvious from the fact that every functor preserves isomorphisms. \Box

Theorem 14. If coarse maps $f, g: (X, \xi) \to (Y, \eta)$ are bornotopic, then $\sigma(f) = \sigma(g)$.

Proof. Immediate from Theorem 6, Theorem 3 and Theorem 11. \Box

Corollary 15 (DeLyser, LaBuz and Wetsell [3, Theorem 4]). If pointed coarse spaces (X, ξ) and (Y, η) are coarsely equivalent, then $\sigma(X, \xi) \cong \sigma(Y, \eta)$.

Proof. Let $f:(X,\xi) \to (Y,\eta)$ be a coarse equivalence with a coarse inverse $g:(Y,\eta) \to (X,\xi)$. Then $f \circ g$ and $g \circ f$ are bornotopic to $\mathrm{id}_{(Y,\eta)}$ and $\mathrm{id}_{(X,\xi)}$, respectively. By Theorem 12 and Theorem 14,

$$\begin{aligned} \operatorname{id}_{\sigma(Y,\eta)} &= \sigma\left(\operatorname{id}_{(Y,\eta)}\right) \\ &= \sigma\left(f \circ g\right) \\ &= \sigma\left(f\right) \circ \sigma\left(g\right), \\ \operatorname{id}_{\sigma(X,\xi)} &= \sigma\left(\operatorname{id}_{(X,\xi)}\right) \\ &= \sigma\left(g \circ f\right) \\ &= \sigma\left(g\right) \circ \sigma\left(f\right), \end{aligned}$$

so $\sigma(f)$ and $\sigma(g)$ are inverse to each other. Hence $\sigma(X,\xi) \cong \sigma(Y,\eta)$.

Corollary 16 (DeLyser, LaBuz and Wetsell [3, Proposition 3]). Let X be a coarse space, and $\xi_1, \xi_2 \in X$. If $Q_X(\xi_1) = Q_X(\xi_2)$, then $\sigma(X, \xi_1)$ and $\sigma(X, \xi_2)$ are equipotent (i.e. have the same cardinality).

Proof. By Theorem 7, $S(X,\xi_1)$ and $S(X,\xi_2)$ are isometric and hence asymorphic. So $\sigma(X,\xi_1) = \mathcal{Q}(S(X,\xi_1)) \cong \mathcal{Q}(S(X,\xi_2)) = \sigma(X,\xi_2)$ by Theorem 2 and Theorem 11.

5 Acknowledgement

The author is grateful to the anonymous referee for valuable comments which improved the quality of the manuscript. The referee pointed out that the metric function $d_{S(X,\xi)}$ only takes the values 0, 1, 2 and ∞ by [2, Proposition 3.2].

Bibliography

- [1] Franz Baader and Tobias Nipkow, *Term Rewriting and All That*, Cambridge University Press, 1998.
- [2] M. DeLyser, B. LaBuz, and M. Tobash, Sequential ends of metric spaces, 2013, arXiv:1303.0711.
- [3] M. DeLyser, B. LaBuz, and B. Wetsell, A coarse invariant for all metric spaces, Mathematics Exchange 8 (2011), no. 1, 7–13.
- [4] A. Fox, B. LaBuz, and R. Laskowsky, *A coarse invariant*, Mathematics Exchange 8 (2011), no. 1, 1–6.
- [5] Takuma Imamura, A nonstandard invariant of coarse spaces, The Graduate Journal of Mathematics 5 (2020), no. 1, 1–8.
- [6] Brittany Miller, Laura Stibich, and Julie Moore, An invariant of metric spaces under bornologous equivalences, Mathematics Exchange 7 (2010), no. 1, 12–19.
- [7] John Roe, Lectures on Coarse Geometry, American Mathematical Society, 2003.