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Abstract Miller, Stibich and Moore [6] developed a set-valued coarse invariant
σ (X, ξ) of pointed metric spaces. DeLyser, LaBuz and Tobash [2] provided a
different way to construct σ (X, ξ) (as the set of all sequential ends). This
paper provides yet another definition of σ (X, ξ). To do this, we introduce
a metric on the set S (X, ξ) of coarse maps (N,0) → (X, ξ), and prove that
σ (X, ξ) is equal to the set of coarsely connected components of S (X, ξ). As
a by-product, our reformulation trivialises some known theorems on σ (X, ξ),
including the functoriality and the coarse invariance.

1 Introduction

Miller, Stibich and Moore [6] developed a set-valued coarse invariant σ (X, ξ) of
σ-stable pointed metric spaces (X, ξ). DeLyser, LaBuz and Wetsell [3] gener-
alised it to pointed metric spaces (without σ-stability). The coarse invariance
of σ (X, ξ) was proved by Fox, LaBuz and Laskowsky [4] for σ-stable spaces,
and by DeLyser, LaBuz and Wetsell [3] for general spaces.

We start with recalling the definition of σ (X, ξ). We adopt a simplified
definition given by DeLyser, LaBuz and Tobash [2]. Let (X, ξ) be a pointed
metric space. A coarse sequence in (X, ξ) is a coarse map s ∶ (N,0) → (X, ξ).
Denote the set of coarse sequences in (X, ξ) by S (X, ξ). Given s, t ∈ S (X, ξ),
we write s ⊑σX,ξ t if s is a subsequence of t. Denote the equivalence closure of
⊑σX,ξ by ≡σX,ξ. In other words, s ≡σX,ξ t if and only if there exists a finite sequence
{ui}ni=0 in S (X, ξ) such that u0 = s, un = t, and ui ⊑σX,ξ ui+1 or ui+1 ⊑σX,ξ ui for
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all i < n. The desired invariant is then defined as the quotient set:

σ (X, ξ) ∶= S (X, ξ) / ≡σX,ξ

∶= {[s]σX,ξ ∣s ∈ S (X, ξ)},

where [s]σX,ξ is the ≡σX,ξ-equivalence class of s. As noted in [5], there is no
difficulty in generalising σ (X, ξ) to pointed coarse spaces (X, ξ). See the sub-
section Notation and terminology below for the definitions of the terms
used here.

DeLyser, LaBuz and Tobash [2] provided an alternative definition of σ (X, ξ).
Suppose (X, ξ) is a pointed metric space. Two coarse sequences s, t ∈ S (X, ξ)
are said to converge to the same sequential end (and denoted by s ≡eX,ξ t) if there
is a K > 0 such that for all bounded subsets B of X there is an N ∈ N such that
{s (i) ∣i ≥ N} and {t (i) ∣i ≥ N} are contained in the same K-chain-connected
component of X ∖ B. The ≡eX,ξ-equivalence classes are called sequential ends
in (X, ξ). It was proved that ≡σX,ξ and ≡eX,ξ coincides. As a result, σ (X, ξ)
is equal to the set of sequential ends in (X, ξ). This gives another view of
σ (X, ξ).

This paper aims to provide yet another view of σ (X, ξ). Consider the
following diagram:

Coarse∗
σ ��

S ��

Sets

Metrb forget
��Coarseb

Q

��

where Coarse∗ is the category of pointed coarse spaces and (base point pre-
serving) coarse maps, Metrb the category of metric spaces and bornologous
maps, Coarseb the category of coarse spaces and bornologous maps, and Sets
the category of sets and maps. In Section 2, we introduce the so-called coarsely
connected component functor Q ∶ Coarseb → Sets. The coarse invariance of Q
is proved. In Section 3, we introduce a metric on the set S (X, ξ), where the
metric is allowed to take the value ∞. This forms a functor S ∶ Coarse∗ →Metrb.
We prove the preservation of bornotopy by S. In Section 4, we prove that σ can
be considered as the composition of the two functors Q and S, which commutes
the above diagram. As a by-product, our reformulation trivialises some known
theorems on σ (X, ξ), including the functoriality and the coarse invariance.
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Notation and terminology

Let f, g∶X → Y be maps, E,F binary relations on X (i.e. subsets of X ×X),
and n ∈ N. Then

E ○ F ∶= {(x, y) ∈X ×X ∣ (x, z) ∈ E and (z, y) ∈ F for some z ∈X},
E−1 ∶= {(y, x) ∈X ×X ∣ (x, y) ∈ E},
E0 ∶=ΔX ∶= {(x,x) ∣x ∈X},

En+1 ∶= En ○E,

(f × g) (E) ∶= {(f (x) , g (y)) ∣ (x, y) ∈ E}.

A coarse structure on a set X is a family CX of binary relations on X with
the following properties:

1. ΔX ∈ CX ;

2. E ⊆ F ∈ CX *⇒ E ∈ CX ; and

3. E,F ∈ CX *⇒ E ∪ F,E ○ F,E−1 ∈ CX .

A set equipped with a coarse structure is called a coarse space. A subset A
of X is called a bounded set if A ×A ∈ CX . We denote the family of bounded
subsets of X by BX . This family satisfies the following:

1. ⋃BX =X;

2. A ⊆ B ∈ BX *⇒ A ∈ BX ;

3. A,B ∈ BX ,A ∩B ≠ ∅ *⇒ A ∪B ∈ BX .

A typical example of a coarse structure is the bounded coarse structure induced
by a metric dX ∶X ×X → R≥0 ∪ {∞}:

CdX
∶= {E ⊆X ×X ∣ supdX (E) < ∞} ∪ {∅}.

Then the boundedness defined above agrees with the usual boundedness. We
assume that every metric space is endowed with the bounded coarse structure
throughout this paper.

Let f, g ∶ X → Y be maps from a set X to a coarse space Y . We say that
f and g are bornotopic (or close) if (f × g) (ΔX) ∈ CY . Obviously bornotopy
gives an equivalence relation on the set Y X of all maps from X to Y .

Suppose f ∶X → Y is a map between coarse spaces X,Y . Then f is said to
be

1. proper if f−1 (B) ∈ BX for all B ∈ BY ;

2. bornologous if (f × f) (E) ∈ CY for all E ∈ CX ;

3. coarse if it is proper and bornologous;

4. an asymorphism (or an isomorphism of coarse spaces) if it is a bornolo-
gous bijection such that the inverse map is also bornologous;
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5. a coarse equivalence (or a bornotopy equivalence) if it is bornologous, and
there exists a bornologous map g ∶ Y → X (called a coarse inverse or a
bornotopy inverse of f) such that g ○ f and f ○ g are bornotopic to the
identity maps idX and idY , respectively.

For more information, see the monograph [7] by John Roe.

2 Coarsely connected components

Let X be a coarse space. A subset A of X is said to be coarsely connected if
{x, y} ∈ BX for all x, y ∈ A ([7, Definition 2.11]). For x ∈X, we set

QX (x) ∶= ⋃
x∈B∈BX

B,

and call it the coarsely connected component of X containing x. It is easy to see
that QX (x) is the largest coarsely connected subset of X that contains x (see
also [7, Remark 2.20]). We denote the set of all coarsely connected components
of X by Q(X):

Q(X) ∶= {QX (x) ∣x ∈X}.

Lemma 1. Let f ∶ X → Y be a bornologous map. If X is coarsely connected,
then so is the image f (X).

Proof. The statement is immediate from the fact that every bornologous map
preserves boundedness.

Theorem 2 (Functoriality). Every bornologous map f ∶ X → Y functorially
induces a map Q(f) ∶ Q(X) → Q(Y ) by Q(f) (QX (x)) ∶= QY (f (x)).

Proof. It suffices to verify the well-definedness. Let x, y ∈ X and suppose
QX (x) = QX (y). Since f is bornologous and QX (x) is coarsely connected,
f (QX (x)) is coarsely connected and contains f (x). By the maximality of
QY (f (x)), we have that f (y) ∈ f (QX (y)) = f (QX (x)) ⊆ QY (f (x)). By
the maximality of QY (f (y)), we have that QY (f (x)) ⊆ QY (f (y)). By sym-
metry, QY (f (y)) ⊆ QY (f (x)) holds. Therefore QY (f (x)) = QY (f (y)).

Theorem 3 (Coarse invariance). If two bornologous maps f, g ∶ X → Y are
bornotopic, then Q(f) = Q(g).

Proof. The proof is similar to that of Theorem 2. Let x ∈ X. Since f and g
are bornotopic, (f (x) , g (x)) ∈ (f × g) (ΔX) ∈ CY , so {f (x) , g (x)} is bounded
in Y . Thus {f (x) , g (x)} is coarsely connected and contains f (x). By the
maximality of QY (f (x)), we have that g (x) ∈ {f (x) , g (x)} ⊆ QY (f (x)).
By the maximality of QY (g (x)), we have that QY (f (x)) ⊆ QY (g (x)). The
reverse inclusion QY (g (x)) ⊆ QY (f (x)) holds by symmetry. It follows that
Q(f) (QX (x)) = QY (f (x)) = QY (g (x)) = Q(g) (QX (x)).
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3 Metrisation of S (X, ξ)

Let (X, ξ) be a pointed coarse space. A coarse map s ∶ (N,0) → (X, ξ) is called
a coarse sequence in (X, ξ). Denote by S (X, ξ) the set of all coarse sequences
of (X, ξ). In the preceding studies [6, 4, 3, 2], S (X, ξ) is just a set with no
structure. In fact, as we shall see below, S (X, ξ) has a geometric structure
relevant to σ (X, ξ). We define a metric dS(X,ξ) ∶ S (X, ξ) ×S (X, ξ) → N∪{∞}
on S (X, ξ) as follows:

dS(X,ξ) (s, t) ∶= inf{n ∈ N∣ (s, t) ∈ (⊑σX,ξ ∪ ⊒σX,ξ)
n},

where inf ∅ ∶= ∞. It is easy to check that dS(X,ξ) is a metric. Thus S (X, ξ) is
equipped with a coarse structure, viz., the bounded coarse structure induced
by dS(X,ξ).

Lemma 4. Let (X, ξ) be a pointed coarse space and s, t ∈ S (X, ξ).

1. The following are equivalent:

(a) s ≡σX,ξ t;

(b) dS(X,ξ) (s, t) ∈ N;
(c) there exists a sequence {ui}ni=0 in S (X, ξ) of length n + 1 such that

u0 = s, un = t and dS(X,ξ) (ui, ui+1) = 1 for all i < n, where n is an
arbitrary constant greater than or equal to dS(X,ξ) (s, t).

2. The following are equivalent:

(a) s /≡σX,ξ t;

(b) dS(X,ξ) (s, t) = ∞;

(c) there is no finite sequence {ui}ni=0 in S (X, ξ) such that u0 = s, un = t
and dS(X,ξ) (ui, ui+1) = 1 for all i < n.

Proof. Notice that dS(X,ξ) (s, t) ≤ n if and only if there exists a sequence {ui}ni=0
in S (X, ξ) of length n+1 such that u0 = s, un = t, and ui ⊑σX,ξ ui+1 or ui+1 ⊑σX,ξ

ui for all i < n. Also, note that dS(X,ξ) (s, t) = ∞ if and only if there is no such
finite sequence in S (X, ξ). The above equivalences are now obvious.

Theorem 5 (Functoriality). Each coarse map f ∶ (X, ξ) → (Y, η) functorially
induces a bornologous map S (f) ∶ S (X, ξ) → S (Y, η) by S (f) (s) ∶= f ○ s.

Proof. Well-definedness: let s ∈ S (X, ξ). Clearly S (f) (s) is a map from (N,0)
to (Y, η). The class of coarse maps is closed under composition, so S (f) (s)
is coarse. (Let E ∈ CN. Then (s × s) (E) ∈ CX by the bornologousness of s, so
(f ○ s × f ○ s) (E) = (f × f) ((s × s) (E)) ∈ CY by the bornologousness of f . Let

B ∈ BY . Then f−1 (B) ∈ BX by the properness of f , and hence (f ○ s)−1 (B) =
s−1 ○ f−1 (B) ∈ BN by the properness of s.) Hence S (f) (s) ∈ S (Y, η).

Bornologousness: Let s, t ∈ S (X, ξ) and suppose dS(X,ξ) (s, t) ≤ n, i.e., there
is a sequence {ui}ni=0 in S (X, ξ) of length n + 1 such that u0 = s, un = t, and
ui ⊑σX,ξ ui+1 or ui+1 ⊑σX,ξ ui for all i < n. Then the sequence {f ○ui}ni=0 witnesses
that dS(Y,η) (S (f) (s) , S (f) (t)) = dS(Y,η) (f ○ s, f ○ t) ≤ n.
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Theorem 6 (Preservation of bornotopy). If coarse maps f, g ∶ (X, ξ) → (Y, η)
are bornotopic, then so are S (f) , S (g) ∶ S (X, ξ) → S (Y, η).

Proof. Let s ∈ S (X, ξ). We define a map t ∶ (N,0) → (Y, η) as follows:

t (i) ∶=
⎧⎪⎪⎨⎪⎪⎩

S (f) (s) (j) , i = 2j,

S (g) (s) (j) , i = 2j + 1.

Let us verify that t ∈ S (Y, η). Firstly, let B ∈ BY . Then

t−1 (B) = 2 (S (f) (s))−1 (B) ∪ (2 (S (g) (s))−1 (B) + 1) .

Since S (f) (s) and S (g) (s) are proper, the two sets 2 (S (f) (s))−1 (B) and

2 (S (g) (s))−1 (B)+1 are bounded in N (i.e. finite), so t−1 (B) ∈ BN. Therefore
t is proper. Secondly, let n ∈ N. Since S (f) (s) and S (g) (s) are bornolo-
gous, there exists an E ∈ CY such that (S (f) (s) (i) , S (f) (s) (j)) ∈ E and
(S (g) (s) (i) , S (g) (s) (j)) ∈ E hold for all i, j ∈ N with ∣i − j∣ ≤ n. Since f and
g are bornotopic,

F ∶= {(S (f) (s) (i) , S (g) (s) (i)) ∣i ∈ N}
= {(f ○ s (i) , g ○ s (i)) ∣i ∈ N}
⊆ (f × g) (ΔX)
∈ CY .

Then (S (f) (s) (i) , S (g) (s) (j)) ∈ E○F ∈ CY and (S (g) (s) (i) , S (f) (s) (j)) ∈
E ○ F −1 ∈ CY hold for all i, j ∈ N with ∣i − j∣ ≤ n. Now let G ∶= E ∪ (E ○ F ) ∪
(E ○ F −1) ∈ CY . Then (t (i) , t (j)) ∈ G holds for all i, j ∈ N with ∣i − j∣ ≤ n.
Therefore t is bornologous.

Both S (f) (s) and S (g) (s) are subsequences of t, i.e., S (f) (s) ⊑σY,η t ⊒σY,η
S (g) (s), so dS(Y,η) (S (f) (s) , S (g) (s)) ≤ 2. Hence

(S (f) × S (g)) (ΔS(X,ξ)) ⊆ {(u, v) ∈ S (Y, η) × S (Y, η) ∣dS(Y,η) (u, v) ≤ 2}
∈ CS(Y,η).

Therefore S (f) and S (g) are bornotopic.

The next theorem shows that the base point can be replaced with any other
point lying in the same coarsely connected component.

Theorem 7 (Changing the base point). Let X be a coarse space, and ξ1, ξ2 ∈X.
If QX (ξ1) = QX (ξ2), then S (X, ξ1) and S (X, ξ2) are isometric.

Proof. Define maps T21 ∶ S (X, ξ1) → S (X, ξ2) and T12 ∶ S (X, ξ2) → S (X, ξ1)
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by

T21 (s) (i) ∶=
⎧⎪⎪⎨⎪⎪⎩

ξ2, i = 0,

s (i) , i > 0,

T12 (t) (i) ∶=
⎧⎪⎪⎨⎪⎪⎩

ξ1, i = 0,

t (i) , i > 0.

We first verify the well-definedness, i.e. T21 (s) ∈ S (X, ξ2) and T12 (t) ∈
S (X, ξ1). Obviously T21 (s) (0) = ξ2. Let B ∈ BX . Then (T21 (s))−1 (B) ⊆
s−1 (B) ∪ {0}, where s−1 (B) is bounded in N (i.e. finite) by the properness of

s, so (T21 (s))−1 (B) is also bounded in N. Hence T21 (s) is proper. Next, let
E ∈ CN. For each (i, j) ∈ E, there are the following possibilities:

Case 1. i = j = 0.
Then T21 (s) (i) = ξ2 = T21 (s) (j), so (T21 (s) (i) , T21 (s) (j)) ∈ΔX ∈ CX .

Case 2. i = 0 and j ≠ 0.
In this case, T21 (s) (i) = ξ2, s (i) = ξ1 and s (j) = T21 (s) (j).
So (T21 (s) (i) , T21 (s) (j)) ∈ {(ξ2, ξ1)} ○ (s × s) (E) ∈ CX .

Case 3. i ≠ 0 and j = 0.
Similar to the above case, we have (T21 (s) (i) , T21 (s) (j)) ∈ (s × s) (E) ○
{(ξ1, ξ2)} ∈ CX .

Case 4. i ≠ 0 and j ≠ 0.
Then T21 (s) (i) = s (i) and T21 (s) (j) = s (j), whence we have
(T21 (s) (i) , T21 (s) (j)) ∈ (s × s) (E) ∈ CX .

Set F ∶=ΔX∪({(ξ2, ξ1)} ○ (s × s) (E))∪((s × s) (E) ○ {(ξ1, ξ2)})∪(s × s) (E).
Then (T21 (s) , T21 (s)) (E) ⊆ F ∈ CX , so (T21 (s) , T21 (s)) (E) ∈ CX . Hence
T21 (s) is bornologous. Since the definitions are symmetric, the same argument
applies to T12 (t).

Clearly T12 ○ T21 = idS(X,ξ1) and T21 ○ T12 = idS(X,ξ2). It suffices to prove
that T21 is an isometry.

Let s, t ∈ S (X, ξ1) and suppose that s ⊑σX,ξ t, i.e., there is a strictly
monotone function κ ∶ N → N such that s = t ○ κ. Since κ (i) ≥ i, we have
T21 (s) (i) = s (i) = t (κ (i)) = T21 (t) (κ (i)) for all i > 0. Now, define

κ′ (i) ∶=
⎧⎪⎪⎨⎪⎪⎩

0, i = 0,

κ (i) , i > 0.

Then T21 (s) (i) = T21 (t) (κ′ (i)) holds for all i ∈ N (including the case i = 0).
Hence T21 (s) ⊑σX,ξ2

T21 (t). Note that, by symmetry, the same applies to
T12. Conversely, let s, t ∈ S (X, ξ1) and suppose T21 (s) ⊑σX,ξ2

T21 (t). Then
s = T12 ○ T21 (s) ⊑σX,ξ1

T12 ○ T21 (t) = t.
Now, let s, t ∈ S (X, ξ1) and suppose dS(X,ξ1) (s, t) ≤ n, i.e., there is a
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sequence {ui}ni=0 in S (X, ξ) of length n+1 such that u0 = s, un = t, and ui ⊑σX,ξ

ui+1 or ui+1 ⊑σX,ξ ui for all i < n. By the previous paragraph, T21 (ui) ⊑σX,ξ

T21 (ui+1) or T21 (ui+1) ⊑σX,ξ T21 (ui) for all i < n. So dS(X,ξ2) (T21 (s) , T21 (t)) ≤
n. The same applies to T12 by symmetry. Conversely, let s, t ∈ S (X, ξ1) and
suppose dS(X,ξ2) (T21 (s) , T21 (t)) ≤ n. Then it follows that dS(X,ξ1) (s, t) =
dS(X,ξ1) (T12 ○ T21 (s) , T12 ○ T21 (t)) ≤ n. Consequently, both T21 and T12 are
isometries.

In fact, the metric function dS(X,ξ) only takes the values 0, 1, 2 and ∞. To
show this fact, we need the “confluence” property of ⊑σX,ξ.

Lemma 8 (DeLyser, LaBuz and Tobash [2, Lemma 3.1]). Let s, t, u ∈ S (X, ξ)
and suppose s ⊑σX,ξ t, u. Then there is a v ∈ S (X, ξ) such that t, u ⊑σX,ξ v.

s
⊑σX,ξ

��

⊑σX,ξ

��
t

⊑σX,ξ ��

u

⊑σX,ξ��
v

Proof. By the definition of “subsequence”, there are strictly monotone func-
tions κ,λ ∶ N → N such that s = t ○ κ = u ○ λ. The desired sequence v ∈ S (X, ξ)
is given by

s (0) , t (1) , . . . , t (κ (1) − 1) , s (1)
45555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555556555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557

t(0),...,t(κ(1))

, s (0) , u (1) , . . . , u (λ (1) − 1) , s (1)
455555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555565555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557

u(0),...,u(λ(1))

,

s (1) , t (κ (1) + 1) , . . . , t (κ (2) − 1) , s (2)
4555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555565555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557

t(κ(1)),...,t(κ(2))

, s (1) , u (λ (1) + 1) , . . . , u (λ (2) − 1) , s (2)
455555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555655555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555557

u(λ(1)),...,u(λ(2))

,

⋮

Obviously v has t and u as subsequences. Let E = {(i, j) ∣ ∣i − j∣ ≤ 1}.
(Note that CN is generated by {En∣n ∈ N}.) Since s, t and u are bornologous,
(s × s) (E) , (t × t) (E) , (u × u) (E) ∈ CX . Note that any two adjacent points
(v (i) , v (i ± 1)) are one of the following forms:

(t (j) , t (j ± 1)) , (s (j) , s (j ± 1)) , (u (j) , u (j ± 1)) , (s (j) , s (j)) ,

so (v × v) (E) ⊆ (t × t) (E) ∪ (s × s) (E) ∪ (u × u) (E) ∪ΔX ∈ CX . Hence v is
bornologous. Similarly, one can easily prove that v is proper (i.e. diverges to
infinity).
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Lemma 9 (DeLyser, LaBuz and Tobash [2, Proposition 3.2]). Let s, t ∈ S (X, ξ)
and suppose s ≡σX,ξ t. Then there is a u ∈ S (X, ξ) such that s, t ⊑σX,ξ u.

s

⊑σX,ξ ��

≡σX,ξ

t

⊑σX,ξ��
u

Proof. Choose a sequence {ui}ni=0 in S (X, ξ) such that u0 = s, un = t, and
ui ⊑σX,ξ ui+1 or ui+1 ⊑σX,ξ ui for all i < n. We show that there is a v ∈ S (X, ξ)
such that u0, un ⊑σX,ξ v by induction on the length n. The base case n = 0 is
trivial. Suppose n > 0. Since u0 ≡σX,ξ un−1, there is a v ∈ S (X, ξ) such that
u0, un−1 ⊑σX,ξ v by the induction hypothesis.

Case 1. un−1 ⊑σX,ξ un.
Since un−1 ⊑σX,ξ un, v, there is a v′ ∈ S (X, ξ) such that un, v ⊑σX,ξ v

′ by Lemma
8. Then u0 ⊑σX,ξ v ⊑σX,ξ v

′, so u0 ⊑σX,ξ v
′.

u0

��

un−1

�� 		
v





un

��
v′

Case 2. un−1 ⊒σX,ξ un.
Then un ⊑σX,ξ un−1 ⊑σX,ξ v, so un ⊑σX,ξ v.

un

��
u0

��

un−1

��
v

Theorem 10. dS(X,ξ) ∶X ×X → {0,1,2,∞}.

Proof. Let s, t ∈ S (X, ξ) and suppose s ≡σX,ξ t. There is a u ∈ S (X, ξ) such
that s, t ⊑σX,ξ u by Lemma 9. Hence dS(X,ξ) (s, t) ≤ 2.

A similar argument in Lemma 9 is often used in the context of rewriting
systems (such as lambda calculus). See also [1, Chapter 6].
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4 Alternative definition of σ

Our main theorem is the following. This gives an alternative definition of
σ (X, ξ) in terms of the coarse structure of S (X, ξ).

Theorem 11. Let (X, ξ) be a pointed coarse space. Then [s]σX,ξ = QS(X,ξ) (s)
for all s ∈ S (X, ξ). Hence σ (X, ξ) = Q(S (X, ξ)).

Proof. Let s ∈ S (X, ξ). Then, by Lemma 4-(1), [s]σX,ξ is coarsely connected
(in fact, 1-chain-connected) as a subset of S (X, ξ), and contains s. Hence
[s]σX,ξ ⊆ QS(X,ξ) (s) by the maximality of QS(X,ξ) (s). Conversely, let t ∈
QS(X,ξ) (s). By Lemma 4-(2), s ≡σX,ξ t must hold, and therefore t ∈ [s]σX,ξ.

Hence QS(X,ξ) (s) ⊆ [s]σX,ξ.

This theorem yields quite simple and systematic proofs of some existing
results on σ (X, ξ).

Theorem 12. Each coarse map f ∶ (X, ξ) → (Y, η) functorially induces a map
σ (f) ∶ σ (X, ξ) → σ (Y, η) by σ (f) ([s]σX,ξ) ∶= [f ○ s]σY,η.

Proof. Immediate from Theorem 2, Theorem 5 and Theorem 11.

Corollary 13 (Miller, Stibich and Moore [6, Theorem 10]). If pointed coarse
spaces (X, ξ) and (Y, η) are asymorphic, then σ (X, ξ) ≅ σ (Y, η).

Proof. Obvious from the fact that every functor preserves isomorphisms.

Theorem 14. If coarse maps f, g ∶ (X, ξ) → (Y, η) are bornotopic, then σ (f) =
σ (g).

Proof. Immediate from Theorem 6, Theorem 3 and Theorem 11.

Corollary 15 (DeLyser, LaBuz and Wetsell [3, Theorem 4]). If pointed coarse
spaces (X, ξ) and (Y, η) are coarsely equivalent, then σ (X, ξ) ≅ σ (Y, η).

Proof. Let f ∶ (X, ξ) → (Y, η) be a coarse equivalence with a coarse inverse
g ∶ (Y, η) → (X, ξ). Then f ○ g and g ○ f are bornotopic to id(Y,η) and id(X,ξ),
respectively. By Theorem 12 and Theorem 14,

idσ(Y,η) = σ (id(Y,η))
= σ (f ○ g)
= σ (f) ○ σ (g) ,

idσ(X,ξ) = σ (id(X,ξ))
= σ (g ○ f)
= σ (g) ○ σ (f) ,

so σ (f) and σ (g) are inverse to each other. Hence σ (X, ξ) ≅ σ (Y, η).

Corollary 16 (DeLyser, LaBuz and Wetsell [3, Proposition 3]). Let X be a
coarse space, and ξ1, ξ2 ∈X. If QX (ξ1) = QX (ξ2), then σ (X, ξ1) and σ (X, ξ2)
are equipotent (i.e. have the same cardinality).
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Proof. By Theorem 7, S (X, ξ1) and S (X, ξ2) are isometric and hence asymor-
phic. So σ (X, ξ1) = Q(S (X, ξ1)) ≅ Q(S (X, ξ2)) = σ (X, ξ2) by Theorem 2
and Theorem 11.
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