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Abstract Let G be a set of three natural numbers, G = {a, b, c}, such that
gcd(a, b, c) = 1. The Frobenius number of G is the largest integer that cannot
be written as a non-negative linear combination of elements of G. In this article,
we present some experimental results on the Frobenius number.
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1 Introduction

Let N0 denote the set of non-negative integers. Given a setG = {a1, a2, . . . , ak} ⊂
N such that gcd(a1, a2, . . . , ak) = 1, a natural number m is called representable
if there exist non-negative integers m1,m2, . . . ,mk such that m = ∑k

i=1miai.
If no such coefficients can be found, m is called non-representable. Let R(G)
be the set of all representable numbers and NR(G) = N0 ∖ R(G) be the set
of non-representable numbers. The linear Diophantine problem of Frobenius
requires finding the largest integer in NR(G). This integer is called the Frobe-
nius number and will be denoted by f(G). It is well known and not hard to
show that for all sufficiently large N , the equation ∑k

i=1miai = N has a solution
with non-negative integers m1,m2, . . . ,mk. Thus the Frobenius number f(G)
exists.

Although the origin of the problem is attributed to Sylvester, it seems
Frobenius was instrumental in popularizing the problem in his lectures which
associated the problem to his name. The problem of computing the Frobenius
number dates back to the 19th century and it has a rich and long history. The
interested reader can find a comprehensive survey covering different aspects of
the problem in [1] and [5].

When k = 2, it is well known (most probably at least since Sylvester [6])
that f(a1, a2) = a1a2 − a1 − a2. For k > 2, explicit formulas have not been
established, except in special cases. However, there has been some work in the
literature studying lower and upper bounds for the Frobenius number in some
cases. In particular, when G = {x, y, z}, Davison [3] provided the lower bound

f(G) ≥ L =
√
3xyz − x − y − z. (1)

On the other hand, Beck et al. [2] conjectured the upper bound

f(G) ≤ U = (√xyz) 5
4 − x − y − z. (2)

For this upper bound, it was assumed that: i) one number in {x, y, z} is not
represented by the other two; ii) x ∤ y + z; and iii) {x, y, z} is not of the form
{a,ma + n,ma + 2n} for some a,m,n ∈ N. The authors in [2] also conjectured
that there exists an upper bound proportional to (√xyz)p, where p < 4

3
in these

cases.
In this paper, we further test the bounds given in (1) and (2) for certain

types of sequences of three numbers. To simplify computations in [2], it was
assumed that x, y, z are pairwise relatively prime but this assumption will not
be used in the last two sequences presented in this paper.

Numerical semigroups

A numerical semigroup S is a subset of N0 that is closed under addition, con-
tains 0, and has a finite complement in N0. It is known from [4] that R(G) is
a numerical semigroup iff gcd(G) = 1. We present a proof of this fact when G
has two elements.

Lemma 1. Let G = {a, b}. The set NR(G) is finite if and only if gcd(a, b) = 1.
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Proof. Assume that neither a nor b is 1 since that would imply NR(G) = ∅.
Let gcd(a, b) = 1. By Bezout’s Lemma, there exist integers x, y ∈ Z such that
ax+by = 1. Since a ≠ 1 and b ≠ 1 then x and y cannot be zero, which means one
of them must be negative and the other must be positive. Without any loss of
generality, assume y is negative and write z = −y. Thus, ax = 1 − by = 1 + bz.
Now, letting m = bz implies ax = m + 1. Note that bz and ax are N0-linear
combinations of {a, b} which implies m,m + 1 ∈ R(G). The following is a
sequence of m consecutive representable numbers:

m2 =m ⋅m + 0 ⋅ (m + 1), m2 + 1 = (m − 1) ⋅m + 1 ⋅ (m + 1),

. . . , m2 + (m − 1) = 1 ⋅m + (m − 1)(m + 1).
These numbers are linear combinations of {a, b} since m, m + 1 are. Now, any
natural number t > m2 + (m − 1) is also a linear combination of {a, b} since t
can be obtained by adding multiple(s) of m to one of the elements of the above
sequence. The above shows that any natural number bigger than or equal to
m2 is a linear combination of {a, b} which means that the non-representable
numbers make a finite set.

Now, assume NR(G) is a finite set. Then there are two consecutive numbers
m,m+1 that are representable. Write m = ax+by and m+1 = az+bw for some
x, y, z, w ∈ N0. Subtracting these two equations gives 1 = az + bw − ax − by =
a(z−x)+b(w−y), and hence 1 is a Z-linear combination of {a, b}, which implies
that gcd(a, b) = 1.

If S = R(G) for some G ⊂ N, we say S is generated by G and the Frobenius
number of S is defined as before. Hence, it is the largest integer in N0 ∖S and
will be denoted, from now on, by f(S).

2 Numerical Semigroups from Arithmetic Se-
quences

Let a ∈ N and let S be the numerical semigroup generated by the arithmetic
sequence G = {a, a+ 1, a+ 4}. The Frobenius number in this case can be found
in [8, Theorem 1]:

f(S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
4
(a2 + 8a − 4) if a ≡ 0 mod 4;

1
4
(a2 + 7a − 8) if a ≡ 1 mod 4;

1
4
(a2 + 6a − 12) if a ≡ 2 mod 4;

1
4
(a2 + 5a − 4) if a ≡ 3 mod 4.

(3)

This formula is used to test the lower and upper bounds given in equations (1)
and (2). Our collected data include all cases 0 < a ≤ 10,000 that generate a
set of three pairwise relatively prime numbers. Few sample data points are
provided in Table 1, where some small and large values of a are chosen. We
observed that L ≤ f(S) ≤ U for a ≠ 1,3. Additionally, Figure 1 includes the
graphs of the Frobenius number, the lower bound, and the upper bound as
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functions of (xyz) 1
2 , as is done in [2]. The graph shows that the Frobenius

number is closer to the upper bound than the lower bound.

Table 1: Frobenius Number, Upper & Lower Bounds Data for Arithmetic
Sequence

x = a y = a + 1 z = a + 4 L f(S) U (xyz) 1
2

1 2 5 -2.52 DNE -3.78 3.16
3 4 7 1.87 5 1.95 9.17
7 8 11 16.99 20 29.40 24.82
9 10 13 27.25 34 50.72 34.21

2,145 2,146 2,149 165,829.08 1,154,008 1,759,835.29 99,459.60
2,149 2,150 2,153 166,298.81 1,158,309 1,765,999.32 99,737.72
2,151 2,156 2,159 166,533.83 1,159,388 1,769,085.10 99,876.88
9,993 9,994 9,997 1,700,681.31 24,982,498.00 31,561,176.35 999,200.09
9,997 9,998 10,001 1,701,708.37 25,002,495.00 31,584,874.51 999,799.99
9,999 10,000 10,003 1,702,221.98 25,007,498.00 31,596,726.71 1,000,099.98

Figure 1: Comparison between Frobenius number in (3) and the bounds in (2)
and (1).

3 Numerical Semigroups from Geometric Se-
quences

Let a, b ∈ N such that gcd(a, b) = 1. Let S be the numerical semigroup generated
by the geometric sequence Gk = {ak, ak−1b, . . . , bk} for some natural number k.
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Tripathi [7, Theorem 1] provided a formula for the Frobenius number as follows.
If σk denotes the sum of integers in Gk, then f(S) = σk+1 − σk − ak+1 − bk+1.
For k = 2, σ3 = a3 + a2b + ab2 + b3 and σ2 = a2 + ab + b2 and thus

f(S) = a2b + ab2 − a2 − b2 − ab. (4)

This formula is used to test the bounds given in equations (1) and (2). However,
it is worth noting that the elements of the generating set {a2, ab, b2} are not
pairwise relatively prime anymore. Our collected data include all pairs (a, b)
such that 1 < a, b ≤ 10,000 and gcd(a, b) = 1. Few sample data points are
provided in Table 2, which is ordered by the values of b. The Frobenius number
is smaller than the conjectured upper bound except for when a = 2 and b = 3
(or vice versa). Figure 2 shows that the upper bound grows at a much faster
rate than the Frobenius number and the Frobenius number closely hugs the
lower bound.

Table 2: Frobenius Number, Upper & Lower Bounds Data for Geometric
Sequence

x = a2 y = ab z = b2 L f(S) U (xyz) 1
2

4 6 9 6.46 11 9.78 14.70
9 12 16 35 47 68.55 41.57
25 30 36 193.60 239 497.30 164.32
16 28 49 163.62 215 423.92 148.16
81 549 3,721 17,929.20 34,079 132,641.93 12,863.48
49 448 4,096 11,830.95 27,215 88,979.08 9,482.37
36 462 5,929 10,772.81 31,919 92,702.68 7,554.25

10,000 9,300 8,649 1,525,457.26 1,766,951 27,571,825.17 896,859.52
10,000 9,700 9,409 1625587.04 1,881,791 29,838,262.35 955,339.21
10,000 9,900 9,801 1676434.11 1940399 31002743.68 985,037.56

4 Numerical Semigroups from Compound Se-
quences

Let (a1, a2, . . . , ak), (b1, b2, . . . , bk) ∈ Nk, for some k ∈ N, such that gcd(ai, bj) = 1

for i ≥ j. Let g0 = ∏k
i=1 ai and gi = gi−1bi/ai = b1⋯biai+1⋯ak for 1 ≤ i ≤ k. Then

the sequence G = (gi)ki=0 is called a compound sequence. If S is the numerical
semigroup generated by a compound sequence G, the authors in [9] gave the
following formula for the Frobenius number

f(S) = −g0 +
k

∑
i=1

gi(ai − 1). (5)

However, this formula is not an explicit formula. When k = 2, a compound
sequence will be of the form G = {a1a2, a2b1, b1b2} such that gcd(a1, b1) =
gcd(a2, b1) = 1. Note that the definition of a compound sequence does not
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Figure 2: Comparison between Frobenius number in (4) and the bounds in (2)
and (1).

necessitate that gcd(a2, b2) = 1. Additionally, the elements of the generating
set G are not pairwise relatively prime anymore. In the case k = 2, the above
formula can be expressed explicitly as

f(S) = a1a2b1 + a2b1b2 − (a1a2 + a2b1 + b1b2).

The software GAP is used to calculate the Frobenius number in this case
for 1 < a1, a2, b1, b2 ≤ 10. Except for when a1a2 = 4, a2b1 = 6, b1b2 = 9, the
conjectured upper bound was larger than the Frobenius number. Few sample
data points are provided in Table 3. Additionally, Figure 3 shows that the
Frobenius number closely hugs the lower bound more than the upper bound.

Table 3: Frobenius Number, Upper & Lower Bounds Data for Compound
Sequence

(a1, a2, b1, b2) x = a1a2 y = a2b1 z = b1b2 L f(S) U (xyz) 1
2

(2,2,3,3) 4 6 9 6.46 11 9.78 14.70
(3,2,5,3) 6 10 15 20.96 29 39.21 30
(2,4,5,5) 8 20 25 56.54 87 125.36 63.25
(6,2,7,3) 12 14 21 55.88 79 117.89 59.40
(8,5,9,6) 40 45 54 401 491 1171.06 311.77
(5,9,7,10) 45 63 70 593.59 767 1868.60 445.48
(9,9,10,10) 81 90 100 1207.85 1439 4344.35 853.81
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Figure 3: Comparison between Frobenius number in (5) and the bounds in (2)
and (1).

5 Conclusion

As noticed, the Frobenius number in the case of arithmetic sequences was closer
to the upper bound than the lower bound. For geometric sequences, the upper
bound grew at a much faster rate than the Frobenius number, which closely
hugged the lower bound. In the case of compound sequences, the Frobenius
number also closely hugged the lower bound more than the upper bound. We
do not have a good intuition on whether the Frobenius number will be closer to
the upper bound or lower bound for most generating sets with three elements.
We hope to investigate this further in future research.
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