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Abstract This honors capstone project was an analysis of atmospheric carbon diox-
ide levels measured at the Mauna Loa Observatory in Hawaii. The Scripps CO2

Program through the Scripps Institution of Oceanography collects data constantly
and makes the data available to the public in the form of daily, weekly, and monthly
observations. Due to the seasonal variation in the monthly observations, traditional
modeling methods learned at the undergraduate mathematics and statistics level, like
least-squares regression, are not appropriate. An exponential smoother, like the Holt-
Winters model, can be used to fit these types of data as well as be used to forecast
future observations. A brief discussion about atmospheric carbon dioxide levels and
the potential impact on the climate follows the analysis.

Introduction

In late September 2016, a milestone that displeased a lot of climate scientists was
reached [15]. The carbon dioxide levels at Mauna Loa, Hawaii increased above the
400 parts per million threshold. This threshold was first crossed as a global average in
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March 2015 [16]. Why is this figure important? Scientists have warned that crossing
this threshold could result in more global warming and the disasters associated with
it, like sea-level rise and ocean acidification [14].

In 1957, geochemist Charles David Keeling won funding for the International
Geophysical Year which helped him to design and build a carbon dioxide monitoring
station at Mauna Loa [4]. The first measurements from Hawaii started in March
1958. Through these years, the plotting of the CO2 parts per million over time has
been called a Keeling curve. See Figure 1 [10].

Figure 1: Keeling Curve: Mauna Loa Observatory, Hawaii

Due to the fact that the response variable, carbon dioxide levels measured in
parts per million, is measured with respect to time, the given month and year the
observation was measured, time series analysis techniques would be the best way to
fit a model to the data and then use that model to forecast carbon dioxide levels
for future increments of time. The rest of this paper will further describe the data
collected from the Mauna Loa monitoring site and the reasoning behind the selection
of the model used in the analysis. The fitted model and the forecasted carbon dioxide
levels will be discussed in the forecasting results section. Finally, any final thoughts
will be discussed in the summary and conclusions section.

Data & Model

The data for this analysis were collected by [10] from the Mauna Loa CO2 monitoring
site. Monthly observations started in March 1958 and ended with the most recent
recorded month, April 2017. The variables include the monthly CO2 concentrations
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in micromoles, CO2 per mole (ppm), reported on the 2008A SIO manometric mole
fraction scale; the month and year the measurement was recorded; and the month
and year converted to a numeric value adjusted to the 15th of each month, i.e., March
1958 is 1958.203, March 1959 is 1959.203, etc.

Typically in most undergraduate applied statistical methods courses when faced
with data like these, a simple linear regression model can be fit to the data. The
simple linear regression model is most commonly defined as

Yi = β0 + β1Xi + εi, i = 1, . . . , n,

where the Yi’s are the values of the response variable, the Xi’s are the values of the
explanatory variable, β0 and β1 are the true values of the model’s intercept and slope,
and the εi’s are error terms that are independent and identically distributed from a
normal distribution with mean zero and variance σ2. Estimates for β0 and β1 can be
found using the method of least squares.

The least squares regression line is

Ŷi = −2686.912 + 1.529Xi,

where Ŷi is the estimated CO2 concentration and Xi is the numeric value of the date.
An interpretation of the estimated slope coefficient is that each year the CO2 con-
centration is predicted or expected to increase by 1.529 ppm with a standard error
of 0.00874 ppm. The least squares regression line and the CO2 data can be found
in Figure 2. This figure shows the original time series, the estimated trend compo-
nent, the estimated seasonal component, and the estimated irregular component, also
named the random component in the figure.

Figure 2: Least Squares Regression Line with Scatterplot & Lineplot of CO2

Concentrations

To test the assumptions of the error terms in the model, residual plots, both the
residuals versus the explanatory variable and the normal probability plot, are used.
For the simple linear regression model fit to the CO2 concentrations, the residuals
plots are in Figure 3. For the graph on the left, if the error terms are independent
and have constant variance σ2, there should be constant spread above and below zero
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as well as no discernible pattern to the points. For the graph on the right, if the
error terms are normally distributed, the observed residuals should be fairly close in
value to the expected residuals from a normal distribution. This would mean that the
points should fall close to the y = x line. With both plots, what should be expected is
not what is actually happening. This means that the simple linear regression model
is not an appropriate model for these data.

Figure 3: Residual Plots

Anytime observations are measured with respect to some unit of time, time series
analysis should be used. [2] lays out a roadmap on how to analyze these type of
data. The first thing that should be done is to decompose the time series into its
constituent components, meaning its trend component, its irregular component, and
if it has one, its seasonal component. Referring back to Figures 1 and 2, since the
seasonal and random fluctuations seem to be roughly constant in size over time, an
additive time series model seems appropriate for these data. An additive model is
basically of the form

Data = Trend-cycle + Seasonal + Irregular,

[17]. The estimated seasonal components are in Table 1. The largest seasonal factor
is May (3.064) and the smallest seasonal factor is October (−3.309). This seems to
indicate that CO2 concentrations are at their highest in May and at their lowest in
October.

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.
0.026 0.674 1.377 2.599 3.064 2.351 0.751 −1.393 −3.167 −3.309 −2.073 −0.902

Table 1: Estimated Seasonal Effects: CO2 Concentrations at Mauna Loa

Figure 4 shows the estimated trend, seasonal, and irregular components of the
monthly carbon dioxide concentrations at Mauna Loa.

Since there are seasonal components to the time series that can be described
using an additive model, the time series can be seasonally adjusted by estimating the



18 BSU Undergraduate Mathematics Exchange Vol. 11, No. 1 (Fall 2017)

Figure 4: Decomposition of Monthly CO2 Concentration Time Series

seasonal component and subtracting this component from the original time series.
Figure 5 shows the adjusted time series. This series now just contains the monthly
CO2 concentration’s trend component and irregular component.

Figure 5: Seasonally Adjusted Monthly CO2 Concentration Time Series
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Forecasting Results

Often of the greatest interest when it comes to modeling, whether it is a simple
linear regression model or an additive model for a time series, is making predictions
or forecasts for future observations. When time series have both seasonal and trend
components, Holt-Winters exponential smoothing can be used to make short-term
forecasts [5, 18]. To make a forecast h units of time in the “future” and for a time
series with period of seasonality m, the Holt-Winters additive method for exponential
smoothing is [8]

Ŷt+h∣t = �t + hbt + st−m+h+m ,

where

�t = α (Yt − st−m) + (1 − α) (�t−1 + bt−1) ,
bt = β (�t − �t−1) + (1 − β) bt−1,
st = γ (Yt − �t−1 − bt−1) + (1 − γ) st−m,

and h+m = ⌊(h − 1) mod m + 1⌋. The parameters 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, and 0 ≤ γ ≤ 1 − α
are estimated by optimizing the likelihood function for the data while searching over a
restricted parameter space. This ensures the resulting model is forecastable. However,
what do all of these smoothing equations mean? The estimated values of α, β, and γ
for the CO2 concentrations at Mauna Loa are 0.556, 0.0076, and 0.1152, respectively.
The value of the estimate of α means that the estimate of the CO2 concentrations, the
level �t, at a given time point is based on recent observations and some observations
from the distant past. The value of the estimate of β means that the estimate of the
slope of the trend, bt, is rarely updated over the course of the time series. The value
of the estimate of γ means that the estimates of the seasonal components are more
based off of observations in the more distant past instead of being based upon recent
observations. Figure 6 shows how the forecasted model performs compared to the
actual time series. The forecasted CO2 concentrations are in red and the actual CO2

concentrations are in black.

Figure 6: Time Series (Black) and Forecasted Time Series (Red) of CO2 Con-
centrations
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Suppose it was of interest to forecast the monthly CO2 concentrations from May
2017 to December 2020, a period of 44 months, i.e., h = 44. Figure 7 shows the
forecasts for these months (the solid red line) along with the forecasted time series
for the previous twelve months. The 80% prediction intervals for these forecasts are
the dashed red lines and the 95% prediction intervals for these forecasts are the dashed
blue lines. The forecasted values can be found in Table 2 for 2020. Carbon dioxide
concentrations were at their highest in May and their lowest in September.

Figure 7: Forecast (solid red), 80% Prediction Intervals (dashed red), and 95%
Prediction Intervals (dashed blue): Forecasts May 2017 to December 2020

Month Point Estimate 80% Lower PI 80% Upper PI 95% Lower PI 95% Upper PI
January 412.551 410.930 414.172 410.072 415.030
February 413.335 411.682 414.988 410.807 415.863
March 414.129 412.444 415.814 411.552 416.706
April 415.828 414.102 417.554 413.189 418.468
May 416.357 414.599 418.115 413.669 419.045
June 415.566 413.777 417.355 412.830 418.303
July 413.929 412.108 415.750 411.144 416.714
August 411.903 410.050 413.756 409.070 414.736
September 410.465 408.580 412.349 407.583 413.347
October 410.712 408.796 412.628 407.782 413.643
November 412.326 410.378 414.274 409.347 415.305
December 413.668 411.689 415.648 410.641 416.696

Table 2: Forecasted CO2 Concentrations, 2020

There remains the question on whether or not this model can be improved. This
can be checked by looking at the residuals from the Holt-Winters forecasts. A correl-
ogram can be constructed to investigate the autocorrelations of the sample forecast
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errors. See Figure 8. Lag 1 is just touching the significance bounds and lag 3 is
slightly above the significance bounds. A Box-Ljung test [11] can be used to test the
null hypothesis that there is independence in a given time series. In this situation,
the question is whether or not it is safe to assume that the forecast error terms are
independent over time. The p-value for this test is 0.05233. That means there is sug-
gestive but inconclusive evidence that the forecast error terms are not independent
over time; however, if one was comparing this p-value to the most commonly used sig-
nificance level of 0.05, the decision would be to fail to reject the null hypothesis, i.e.,
there is not enough evidence to say that the forecast error terms are not independent.
Figure 9 is a plot of the sample forecast errors with respect to the time of the forecast
and a histogram of the sample forecast errors with a normal probability density func-
tion. For the first plot, the sample forecast errors all seem to have roughly the same
spread and no discernible pattern. For the histogram, it seems safe to assume that
the error terms are normally distributed. This means that the assumptions used to
construct the prediction intervals, independent and normally distributed error terms
with a common variance, are more than likely valid.

Figure 8: Correlogram of Autocorrelation of Sample Forecast Errors

Summary & Conclusions

The safe atmospheric carbon dioxide concentration level is 350 ppm [3]. At this level,
Hansen et al. (2013) argue that the global temperature would stabilize at 1°C above
pre-industrial levels. Unfortunately this threshold was first crossed at the Mauna Loa
site in April 1987 and it has been above this threshold every month since November
1989. In fact, as stated in the introduction, the levels at Mauna Loa have surpassed
the 400 ppm threshold and based on the forecasts, there are no signs that they will
dip below that level.
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Figure 9: Sample Forecast Errors versus Time & Histogram of Sample Forecast
Errors

There are a myriad reasons why these levels have been increasing since scientists
began monitoring them. Be it manmade (i.e., burning of fossil fuels or the deforesta-
tion of the rain forests) or more biological in nature (i.e., ocean-atmosphere exchange,
plant and animal respiration, plant decay and decomposition, or volcanic eruptions),
the planet faces increasing levels of carbon dioxide concentrations in the atmosphere.
The Paris Climate Pact adopted in December 2015 and eventually signed by 195 coun-
tries was an attempt to minimize the human impact on atmospheric carbon dioxide
concentrations with the goal of holding the increase in the global average temperature
to below 2°C above pre-industrial levels [1]. Recently, the United States has decided
to opt out of this agreement, possibly putting the entire climate pact in jeopardy. Is
all hope lost? A report from the Organisation for Economic Co-operation and Devel-
opment [12] stated that if carbon dioxide concentrations are kept under the 450 ppm
threshold, there is a 50% chance of stabilizing the average global temperature at an
increase of 2°C above pre-industrial levels. A report from PricewaterhouseCoopers
(PwC) [9] stated that if the global fossil fuel usage stays at its current levels, the 450
ppm threshold will be surpassed by 2034. There is still time to act, but the global
leaders would have to do it sooner rather than later.
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Appendix: R Code

The following are the lines of R code [13] used in the analysis of the CO2 concentration
analysis. The forecast package [7, 6] was used in the Forecasting Results section of
the paper. The function plotForecastErrors is from [2].

Simple Linear Regression

Fitting the simple linear regression model.

> lm1 <- lm(CO2~Date.Num)

> summary(lm1)

Call:

lm(formula = CO2 ~ Date.Num)

Residuals:

Min 1Q Median 3Q Max

-7.7151 -2.8513 -0.4161 2.4514 11.6365

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.687e+03 1.738e+01 -154.6 <2e-16 ***

Date.Num 1.529e+00 8.744e-03 174.9 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 3.979 on 708 degrees of freedom

Multiple R-squared: 0.9774,Adjusted R-squared: 0.9773

F-statistic: 3.058e+04 on 1 and 708 DF, p-value: < 2.2e-16

Plotting the time series as a scatterplot and a line plot (Figure 2).

> plot(Date.Num,CO2,xlab="Date",

+ ylab=expression(paste(CO[2]," Concentration in ppm")))

> abline(lm1,col="red")

> plot(Date.Num,CO2,xlab="Date",

+ ylab=expression(paste(CO[2]," Concentration in ppm")),type="l")

Plotting the residuals versus year and the normal probability plot of the residuals
(Figure 3).

> abline(lm1,col="red")

> e <- residuals(lm1)

> plot(Date.Num,e,xlab="Year",ylab="Residuals")

> abline(h=0,col="red")

> MSE <- sum(e^2)/708

> expected <- NULL

> n <- length(e)

> for(i in 1:n){

+ expected[i] <- qnorm(i/(n+1),0,sqrt(MSE))

+ }

> plot(sort(e),expected,xlab="Observed Residuals",ylab="Expected Residuals")

> abline(0,1,col="red")
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Time Series Analysis

Reading the data as a time series and decomposing the time series (Figure 4).

> CO2.ts <- ts(CO2,start=c(1958,3),end=c(2017,4),frequency=12)

> CO2.decompose <- decompose(CO2.ts)

> CO2.decompose$seasonal

Jan Feb Mar Apr May

1959 0.02607684 0.67399350 1.37734120 2.59908689 3.06437425

1960 0.02607684 0.67399350 1.37734120 2.59908689 3.06437425

Jun Jul Aug Sep Oct

1959 2.35130672 0.75138574 -1.39287431 -3.16683691 -3.30868719

1960 2.35130672 0.75138574 -1.39287431 -3.16683691 -3.30868719

Nov Dec

1959 -2.07269472 -0.90247202

1960 -2.07269472 -0.90247202

> plot(CO2.decompose,xlab="Year")

Plotting the seasonally adjusted time series. (Figure 5).

> CO2.adjust <- CO2.ts-CO2.decompose$seasonal

> plot(CO2.adjust,xlab="Year",ylab=expression(paste(CO[2]," Concentration in ppm")))

Fitting the Holt-Winters exponential smoother using the ets function in the
forecast library.

> library(forecast)

> CO2forecasts <- ets(CO2.ts,model="AAA")

> CO2forecasts

ETS(A,A,A)

Call:

ets(y = CO2.ts, model = "AAA")

Smoothing parameters:

alpha = 0.556

beta = 0.0076

gamma = 0.1152

Initial states:

l = 314.5802

b = 0.0738

s=0.6799 0.0594 -0.8278 -1.8735 -3.0033 -2.7398

-1.1856 0.6469 2.1334 2.6649 2.2746 1.1709

sigma: 0.3096

AIC AICc BIC

3030.371 3031.255 3107.981

Plot the time series and forecasted time series (Figure 6).

> plot(CO2.ts,xlab="Year",ylab=expression(paste(CO[2]," Concentration in ppm")))

> lines(Date.Num,fitted(CO2forecasts),col="red")

Plot the forecasts for future months (Figure 7).
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> CO2forecasts2 <- forecast(CO2forecasts,h=44)

> plot(CO2forecasts2,xlab="Year",

+ ylab=expression(paste(CO[2]," Concentrations in ppm")),main="")

> CO2forecasts2

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

May 2017 409.4661 409.0693 409.8628 408.8593 410.0729

Jun 2017 408.6753 408.2184 409.1322 407.9765 409.3741

Jul 2017 407.0383 406.5269 407.5497 406.2562 407.8204

Aug 2017 405.0121 404.4503 405.5739 404.1529 405.8713

Sep 2017 403.5739 402.9647 404.1832 402.6422 404.5057

Oct 2017 403.8215 403.1672 404.4758 402.8208 404.8222

Nov 2017 405.4350 404.7375 406.1326 404.3682 406.5018

Dec 2017 406.7776 406.0383 407.5168 405.6470 407.9081

Jan 2018 407.9567 407.1771 408.7364 406.7644 409.1491

Feb 2018 408.7408 407.9218 409.5597 407.4883 409.9933

Mar 2018 409.5351 408.6777 410.3924 408.2238 410.8463

Apr 2018 411.2343 410.3251 412.1435 409.8438 412.6248

May 2018 411.7630 410.8175 412.7086 410.3169 413.2092

Jun 2018 410.9722 409.9908 411.9536 409.4713 412.4732

Jul 2018 409.3352 408.3185 410.3520 407.7802 410.8902

Aug 2018 407.3090 406.2573 408.3607 405.7006 408.9175

Sep 2018 405.8709 404.7846 406.9571 404.2096 407.5322

Oct 2018 406.1185 404.9979 407.2390 404.4048 407.8321

Nov 2018 407.7320 406.5775 408.8864 405.9664 409.4975

Dec 2018 409.0745 407.8864 410.2626 407.2574 410.8916

Jan 2019 410.2537 409.0321 411.4753 408.3854 412.1219

Feb 2019 411.0377 409.7829 412.2925 409.1186 412.9568

Mar 2019 411.8320 410.5441 413.1199 409.8624 413.8017

Apr 2019 413.5312 412.1996 414.8629 411.4946 415.5678

May 2019 414.0600 412.6958 415.4241 411.9737 416.1463

Jun 2019 413.2692 411.8726 414.6657 411.1334 415.4050

Jul 2019 411.6322 410.2034 413.0610 409.4470 413.8173

Aug 2019 409.6060 408.1450 411.0670 407.3716 411.8404

Sep 2019 408.1678 406.6747 409.6609 405.8843 410.4513

Oct 2019 408.4154 406.8902 409.9406 406.0828 410.7480

Nov 2019 410.0289 408.4718 411.5861 407.6474 412.4104

Dec 2019 411.3715 409.7823 412.9606 408.9411 413.8018

Jan 2020 412.5506 410.9296 414.1717 410.0715 415.0298

Feb 2020 413.3347 411.6818 414.9876 410.8067 415.8626

Mar 2020 414.1290 412.4442 415.8137 411.5523 416.7056

Apr 2020 415.8282 414.1022 417.5542 413.1885 418.4678

May 2020 416.3569 414.5993 418.1146 413.6689 419.0450

Jun 2020 415.5661 413.7768 417.3554 412.8296 418.3026

Jul 2020 413.9291 412.1081 415.7501 411.1441 416.7141

Aug 2020 411.9029 410.0503 413.7556 409.0695 414.7363

Sep 2020 410.4648 408.5804 412.3491 407.5829 413.3467

Oct 2020 410.7123 408.7962 412.6284 407.7819 413.6428

Nov 2020 412.3259 410.3780 414.2737 409.3469 415.3048

Dec 2020 413.6684 411.6888 415.6480 410.6408 416.6960

Plot the correlogram of the autocorrelations (Figure 8) and run the Box-Ljung test.
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> acf(CO2forecasts2$residuals,lag.max=20,main="")

> Box.test(CO2forecasts2$residuals,lag=20,type="Ljung-Box")

Box-Ljung test

data: CO2forecasts2$residuals

X-squared = 31.222, df = 20, p-value = 0.05233

Plot the sample forecast errors versus time and the histogram of the sample forecast
errors (Figure 9).

> plot.ts(CO2forecasts2$residuals,xlab="Year",ylab="Residuals")

> abline(h=0,col="red")

> plotForecastErrors(CO2.forecasts$residuals)


