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Abstract In [2] an invariant of metric spaces under bornologous equivalences
is defined. In [3] this invariant is extended to coarse equivalences. In both
papers the invariant is defined for a class of metric spaces called sigma stable.
This paper extends the invariant to all metric spaces and also gives an example
of a space that is not sigma stable.

Introduction

Large scale geometry is the study of the large scale structure of metric spaces.
Continuity is a small scale property of a function; one only needs to check the
property for small distances. A property dual to continuity (in fact uniform
continuity) is bornology. A function f: X — Y is bornologous if for each N >0
there is an M > 0 such that for every z,y € X, if d(x,y) < N, d(x,y) < M
[4]. Notice the only change from the definition of uniform continuity is the
swapping of the orders of the real numbers N and M in the latter part of the
statement. Bornology is a large scale property of a function; one only needs to
check the property for large distances.

Roe [4] defines the coarse category with metric spaces as objects and close
equivalence classes of coarse functions as morphisms. We say two functions f :
X - Y and g: X - Y are close if there is some constant K with d(f(x),g(x)) <
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K for all z € X. A function is metrically proper if the inverse image of bounded
sets are bounded. A function is coarse if it is bornologous and proper. Two
metric spaces X and Y are coarsely equivalent if there are coarse functions
f: X >Y and ¢g:Y — X such that go f is close to the identity function on X
and fog is close to the identity function on Y.

It is of interest to study the isomorphisms of the coarse category: when
are two metric spaces coarsely equivalent? Typically to show two spaces are
coarsely equivalent we construct the coarse functions f and ¢ that form the
coarse equivalence. The basic example of coarsely equivalent metric spaces is
R and Z under the usual metrics. We take f : Z — R to be the inclusion
function and g : R - Z to be the floor function. It is an easy exercise to check
that these functions form a coarse equivalence.

How do we show that two spaces are not coarsely equivalent? We cannot
check that all possible functions do not form an equivalence. In [2] an invariant
of metric spaces under bornologous equivalences is defined. This invariant
provides a way to detect if two spaces are not bornologously equivalent. The
bornologous category is a more restrictive category than the coarse category;
the compositions are required to be the identity on the nose. Equivalently, a
bornologous bijection f: X — Y whose inverse is bornologous is required. Thus
if two spaces are bornologously equivalent then they are coarsely equivalent.
In [3] the invariant is extended to the coarse category. In both of these papers
the invariant is only defined for a class of spaces called o-stable spaces. In this
paper we simultaneously extend the results from [2] to the coarse category and
to all metric spaces.

We review the construction from [2]. Suppose N > 0. Given a metric space
X and a basepoint xg € X, an N-sequence in X based at zq is an infinite list
Zo,x1,... of points in X such that d(a;,z;41) < N for all i > 0. The following
is a nice interpretation of a bornologous function. A function f: X — Y is
bornologous if and only if for each NV > 0 there is an M > 0 such that f sends
N-sequences in X to M-sequences in Y.

We are only interested in sequences that go to infinity. An N-sequence
X0, X1, T2, ... goes to infinity, (z;) — oo, if lim;_o d(x;, 29) = c0. We want to
consider an equivalence relation between sequences. Given two N-sequences s
and t in X based at xg that go to infinity define s and ¢ to be related, s ~ t,
if s is a subsequence of ¢ or t is a subsequence of s. If ¢ is a subsequence of s
we say that s is a supersequence of t. Define s and ¢ to be equivalent, s ~ ¢, if
there is a finite list of sequences s; such that s ~ s ~ 89 ~ -~ s, ~t. Let [s]n
denote the equivalence class of s and let on(X,z0) be the set of equivalence
classes.

For each integer N > 0 there is a function ¢y : on (X, 20) = one1(X, x0)
that sends an equivalence class [s]x to the equivalence class [s]n+1. A space X
is called o-stable if there is an integer K > 0 such that ¢ is a bijection for each
N > K. If X is o-stable define o(X,z¢) to be the cardinality of ox(X,z0).
The following theorem of [2] says that it is an invariant.

Theorem 1. Suppose f: X =Y is a bornologous equivalence between metric
spaces. Let xo be a basepoint of X and set yo = f(xo). Suppose X and Y are
o-stable. Then (X, 209) =0(Y, o).
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The invariant

We wish to extend the above invariant to all metric spaces. We do so by
considering the direct sequence {on(X,20),dn}. A direct sequence of sets is a
family of sets {X;}, 7 € N, together with a family of functions {¢; : X; — X;41}
called bonding functions [1]. For i < j we write ¢j_1 0+ 0 Pis1 0 P; = ¢y so that
¢ij + X; = X;. We also let ¢;; be the identity on Xj.

Typically a morphism between direct sequences are defined as level mor-
phisms. We find it more convenient to allow more general morphisms. We
define a morphism from a direct sequence {X;, ¢;} to a direct sequence {Y;,1;}
as a sequence of functions f; : X; - Y,;) where u: N — N is a nondecreasing
function such that if i < j, Vyiyu(j) © fi = fj © @iy

We define two direct sequences {X;, ¢;} and {Y;,4;} to be equivalent if there
are morphisms {f; : X; — Y,;)} and {g; : Yi - X, )} such that g, o fi =
Bi v(u(iy) and fu(i) © gi = Vi w(o(i))-

If two direct sequences are equivalent then there is a bijection between the
corresponding direct limits (see the Appendix).

Definition 2. Let X be a metric space with basepoint xo. Consider the direct
sequence {on(X,x0), N} where ¢ sends an equivalence class [s]n to [s]n+1-
We denote this sequence as ind-o(X,xo) and its direct limit h_H)lO’N(X, xo) as
o(X,x9). The ind stands for inductive sequence, another term for direct se-
quence.

Notice that in the case of a o-stable space X, we have that the cardinality
of 0(X,x0) is equal to the value o (X, zg) defined in |2] and [3] so this definition
can be thought of as a generalization of that concept that applies to all metric
spaces.

First we show that the choice of basepoint does not matter. Thus we can
suppress the notation for basepoint and just write ind-o(X).

Proposition 3. Let X be a metric space with basepoint xo. Given yg € X,
ind-0(X,x0) is equivalent to ind-0(X,yo).

Proof. Choose an integer M > d(xg,y0). For each N < M, define fx : on (X, x0)
- op(X,yo) to send [s]y € on(X,x0), § = X0, 21, ..., to the equivalence class
of the sequence yo,xo,x1,22,.... For N > M, we define fy : on(X,z9) —
on(X,yo) in a similar fashion, attaching the point yo to the beginning of a
sequence. We define functions gy : on(X,y0) = o (X,20) for N < M and
gy on(X,yo) = on(X,zq) for N > M analogously.

Let us see that the composition gps o fy is equal to ¢nps for N < M.
The composition sends the equivalence class of a sequence xg, 1, Z2,... to the
equivalence class of a sequence xq, Yo, o, *1, T3, ... which is clearly the same as
the equivalence class of xg,x1,.... Similarly we have that the composition gy o
fn is equal to the identity on oy (X, z¢) for N > M. The opposite compositions
are similar as well. O

Theorem 4. Suppose X and Y are coarsely equivalent metric spaces. Then
ind-o(X) is equivalent to ind-o(Y").
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Proof. Suppose f: X - Y and g : Y - X make up the coarse equivalence.
Given N €N, since f is bornologous there is a u(N) > 0 so that if d(x,y) < N,
d(f(z), f(y)) <u(N). We can assume u : N - N is nondecreasing. Set f(z¢) =
yo- Thus we have a well defined function fx : on(X,20) = ou(n)(Y,%0) that
sends the equivalence class of a sequence xg, x1, ... to that of f(xo), f(z1),....

For the opposite morphism, let K be an integer so that d(g(f(x)),z) < K
for all z € X. Given N € N since g is bornologous there is an v(N) > 0 so that if
d(z,y) < N, d(g(z),g(y)) <v(M). We can assume that v(N +1) >v(N) > K.
We define a function gy : on(Y,yo) = o (X, z0) that sends the equivalence
class of a sequence yo,y1,--- to 2o0,9(Y0),9(y1),- - .-

Fix N e N and put M =u(N) and L =v(M). We check that the following

diagram commutes.

UL(Xv xO)

‘%

ONL UM(K yO)

A

JN(X, (E(])

Let [s]n € on (X, z0), say s = xo,21,.... Then gy (fn([s]n)) is the equiva-
lence class of the sequence xg, g(f(x0)),9(f(x1)),.... This sequence is equiva-
lent to xg,x1,...1in o (X, o) since the sequence xq, g(f(x0)),xo, 21, 9(f(x1)),
T1,...1s a supersequence of both.

9(f(z0)) 9(f(z1)) 9(F(w2)) 9(f(ws)) 9(f(za))
T—T

SCQ €T3 Tq
° °

L

Figure 1: The two sequences are equivalent.

If we fix N e N and put M =v(N) and L = «(M) then the proof that the

diagram below commutes is similar.

or(Y,y0)
.f]\/f

UM(X7 l’o) UYNL

BN

UN(Y7 yO)
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A space that is not o-stable

As motivation for the generalization of the construction of [2] to all metric
spaces we give an example of a space that is not o-stable. This example will
also serve as an illustration of the invariant and the fact that the direct limit
may contain less information than the direct sequence.
Given a family of pointed metric spaces (X,,z,) we define their met-
ric wedge V(Xa,zo) as the wedge with the following metric. Given z,y €
d(z,y) if z,y € X,, for some «

X, To), d(x,y) =

v ), d(@y) {d(a:,xa) +d(zg,y) ifzxeX, and yeXg with a /.
Let the open book B be the metric wedge of rays B; = [0,00), i € N, based

at the points 0. Denote the wedge point as xg.

Lemma 5. Suppose s is an N-sequence in B based at the wedge point x¢ that
goes to infinity. Then there is an M >0 and k € N so that for each n > M, s,
lies on the ray By. Further, if t is an N-sequence in B based at the xo that
goes to infinity with t ~ s, then there is an R >0 such that for all n > R, t,, lies
on By.

Proof. Since s goes to infinity there is a M > 0 such that d(s,,z¢) > N + 1 for
all n > M. Say sp; € B. Since the distance from sp; to any other ray is at
least N +1, sp/+1 must also lie on Bjy. By induction, we can see that s, lies on
By, for all n > M.

Since t goes to infinity, there is P > 0 such that d(¢,,xz¢) > N + 1 for all
n > P. Choose R > P so that tg = s, for some n > M. Thus tr is on B. We
have t,, lying on By, for all n > R as above. OJ

Theorem 6. Let s; be the sequence in B based at xg and lying on B; where
each term s;, =n, n e Nu{0}. Let N > 1. Then on(B,xzo) = {[s1],[s2],-- .}

Proof. First we show that if i # j, [s;] # [s;]. Suppose to the contrary that
[si] = [sj]- Then there is a list ¢1,...,t, of N-sequences going to infinity with
8 ~ty ~tg ~ -~ ~ 550 By Lemma 5 ¢ must eventually lie on B;. Likewise
ta, t3, and finally s; must eventually lie on B;. But s; lies entirely on B;, a
contradiction.

Now suppose [¢] € on(B,2z0). By Lemma 5 there is an M >0 and k € N so
that for all m > M, t,, lies on By. We show that [t] = [sx]. We create a new
sequence 7 equivalent to ¢ whose terms all lie on Bj. We can then see that r is
equivalent to sy as in the proof of [2, Theorem 14]. We know that ¢, lies on By,
for m > M. Let t; be the first term of the sequence that is not the basepoint
or a point on Bj. If no such point exists we are done. Let t, be the first point
of the sequence after ¢, that is the basepoint or a point on Bj. Define r; to
be the sequence to,...,t4-1,¢p,tp+1,.... Now t,—1 and ¢, both lie on By and
are distance at most N from the basepoint. Thus d(t4-1,%,) < N so r1 is an
N-sequence and t ~ r;. We continue by induction, finally defining a sequence
r whose terms all lie on Bj. O

We define a subspace of B that we call the discrete open book D. Let
D; ={in:neNu{0}}. Thus D; has points that are distance i apart. Define
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D =V D; based at the points 0. Again, denote the wedge point as zg. The
following theorem implies that D is not o-stable.

Theorem 7. Let s; be the sequence in D based at xo and lying on D; where each
term sip =in, n € Nu{0}. Let N >1. Then on(D,z0) ={[s1],[s2],---,[sn]}.

Proof. The proof is similar to that of Theorem 6. Given [t] € on(D,xq), by
Lemma 5 there is an M > 0 and k € N so that for all m > M, t,, lies on By.
The difference here is that we must have k < N since the distance between
successive points on Dy, is k and ¢ is an N-sequence that goes to infinity. [

Corollary 8. The open book B and the discrete open book D are not coarsely
equivalent.

Proof. According to Theorem 7 ind-o(D) is the set {[s1], [s2],...,[sn]} with
the bonding function ¢n : {[s1],[s2],---,[sn]} = {[s1],[s2],---,[Sn+1]} being
inclusion. According to Theorem 6, ind-o(B) is the set {[s1],[s2],...} with
the bonding function ¥y : {[s1],[s2],..-} = {[s1],[s2],...} being the identity.
These direct sequences are not equivalent since the identity function oy (B) —
or(B) cannot factor as on(B) — o (D) — o (B) since oy (D) is finite. O

The previous corollary illustrates the power of studying the direct sequence
rather than merely the direct limit. We have that o(D) 2 o(B) 2 N.

Direct limits

Given a direct sequence {X;,;}, its direct limit lim X; is defined as follows.
Consider the disjoint union || X;. We define an equivalence relation on | | X; as
follows. Given z; € X; and z; € X;, x; is related to x; if there is some k > 1, j
such that ¢, (z;) = ¢;x(x;). The set of equivalence classes is the direct limit.
A morphism {f; : X; - Yy,(;) } between direct sequences { X, ¢; } and {Y;,1;}
induces a function f : limX; — limY;. Given [z;] € limX;, x; € X;, set
— — —
f([z:]) = [fi(z;)]. This function is well defined since if ¢;i(x;) = djr(z;),
Te(bir (i) = fi(djr(75)) 50 Yuiyuer) (fi(2i)) = Yuiiyum) (filzi))-

Proposition 9. Suppose two direct sequences {X;, ¢;} and {Y;,0;} are equiv-
alent. Then h_r)nXi and h_n)le are equivalent as sets.

Proof. Let {fi: X; = Y,;y} and {g; : Y; = X,,;)} be morphisms that make up
the equivalence. We show that the compositions of the induced functions f and
g are the identities. First consider go f. Suppose [x;] € H_H)lXi, z; € X;. Then

g(f([z:])) = g([fi(2:)]) = [guq (fi(zi)]- But guey(fi(2:)) = di v(u(i) (i) so
[9uiy(fi(z:))] = [2:]. A similar argument shows that f o g is the identity on
Y. O
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