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We define bornologous equivalence between metric spaces, which is a more
restrictive equivalence than coarse equivalence. It requires spaces to have the
same cardinality. We define an invariant of metric spaces under bornologous
equivalences. The invariant is essentially the number of ways that sequences
can go to infinity in a space. This invariant is only for a certain class of spaces
that we call sigma stable.

Introduction

A function f : X → Y between metric spaces is uniformly continuous if for
every ε > 0 there is a δ > 0 such that if d(x, y) < δ, d(f(x), f(y)) < ε. A
dual concept is that of a function being bornologous. A function is (uniformly)
bornologous if for every N > 0 there is an M > 0 such that if d(x, y) ≤ N ,
d(f(x), f(y)) ≤M [1]. While continuity is a small scale property, bornology is
a large scale or coarse property.

Let us define two metric spaces X and Y to be bornologously equivalent
if there are bornologous functions f : X → Y and g : Y → X such that
g ◦ f ≡ idX and f ◦ g ≡ idY . This equivalence defines a bornologous category
of metric spaces.

∗This paper was written under the guidance of Dr. Brendon LaBuz

12 B.S. Undergraduate Mathematics Exchange, Vol. 7, No. 1 (Fall 2010)



The coarse category of metric spaces is defined using coarse maps as mor-
phisms. A map is coarse if it is bornologous and proper. A map is proper if
inverse images of bounded sets are bounded. Two metric spaces X and Y are
coarsely equivalent if there are coarse functions f : X → Y and g : Y → X such
that g◦f is close to idX and f ◦g is close to idY [1] (two functions f, g : X → Y
are close if there is an N > 0 such that d(f(x), g(x)) ≤ N).

The motivation behind the definition of coarse equivalence is that a large
scale property should not depend on local properties of a space, including car-
dinality. The motivating example is the real numbers R and the integers Z.
These two spaces are coarsely equivalent but cannot be bornologously equiva-
lent because they do not have the same cardinality.

It is not hard to see that if X and Y are bornologously equivalent then
they are coarsely equivalent. We find it worthwhile to investigate this more
restrictive category. We also hope that our techniques will generalize to the
coarse category.

We recall three standard metrics on the cartesian product of two metric
spaces. Suppose (X, dX) and (Y, dY ) are metric spaces. For (x1, y1), (x2, y2) ∈
X × Y , set

dL2
((x1, y1), (x2, y2)) =

√
dX(x1, x2)2 + dY (y1, y2)2 (the L2 metric),

dTC((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2) (the taxicab metric), and

dM ((x1, y1), (x2, y2)) = max{dX(x1, x2), dY (y1, y2)} (the max metric).

It is left as an exercise that these metrics on X × Y are all bornologously
equivalent. We will use the taxicab metric on subspaces of R2 and denote it
simply as d.

Given a metric d on X, the associated standard bounded metric min{d, 1}
is uniformly continuous equivalent to d. We define an analog for the large scale.

Definition 1. Suppose (X, d) is a metric space. For each pair x, y ∈ X, set

D(x, y) =

{
0 x = y

max{d(x, y), 1} x 6= y

D is the associated discrete metric on X.

It is easy to see that D is bornologously equivalent to d.
The following example illustrates the difference between the small scale and

the large scale.

Example 2. Let the stairs S be the graph of the step function, S = {(x, bxc) :
x ∈ R}. (See Figure 1). We consider the natural function f : R → S that
sends x to (x, bxc). Let us see that f is bornologous. Suppose N > 0 and
d(x, y) ≤ N . Then d((x, bxc), (y, byc)) = |x− y|+ |bxc − byc| ≤ 2N + 1.

Now consider the function g : S → R that sends (x, bxc) to x. Notice
g ◦ f ≡ idX and f ◦ g ≡ idY . Let us see that g is bornologous. Suppose N > 0
and d((x, bxc), (y, byc)) ≤ N . Then d(x, y) = |x− y| ≤ N since |x− y| +
|bxc − byc| ≤ N .
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Therefore S and R are bornologously equivalent. In contrast these two
spaces are not equivalent under uniform continuity. There are breaks in the
graph of the step function which represent discontinuities. They do not have
the same structure in the small scale.
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Figure 1: The stairs are bornologously equivalent to R.

The following is an example of two spaces that should not be bornologously
equivalent. It is the motivating example for our theory.

Example 3. Let the vase V be the union of the sets A = {(1, y) : y ≥ 1}, B =
{(x, 1) : −1 ≤ x ≤ 1}, and C = {(−1, y) : y ≥ 1}. We will consider a natural,
bijective function f : V → R that flattens out the vase onto the real line and
see that it is not bornologous. (See Figure 2). Define

f(x, y) =


y if (x, y) ∈ A
x if (x, y) ∈ B
−y if (x, y) ∈ C

.

SupposeM > 0. We want to show that there is ((x1, y1), (x2, y2)) ∈ V such that
d((x1, y1), (x2, y2)) ≤ 2 but d((f(x1, y1), f(x2, y2)) > M . Consider the points
(−1,M), (1,M) ∈ V . Then d((−1,M), (1,M)) = | − 1 + (−1)|+ |M −M | = 2
but d(f(−1,M), f(1,M)) = d(−M,M) = 2M .

Even though the function in the previous example is not bornologous, in
order to show that the two spaces are not bornologously equivalent we would
need to show that every function is not a bornologous equivalence. This task
is not feasible. We define an invariant that will be able to distinguish between
these two spaces in the bornologous category. An invariant is a property of
a space that is not changed under bornologous equivalence. Therefore if two
spaces have a different invariant property, then they cannot be bornologously
equivalent.
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Figure 2: The vase should not be bornologously equivalent to R.

Sequences

We try to distinguish between spaces in the bornologous category using se-
quences that go to infinity. We try to see how many different ways there are to
go to infinity. In Example 3, R has two ways of going to infinity (to the right
and to the left) but V really has only one since the two sides are of bounded
distance from one another.

Definition 4. Given a metric space (X, d) and an N > 0, an N -chain in X is
a finite list x0, . . . , xn of points in X such that d(xi, xi+1) ≤ N for all i < n.
An N -sequence in X is an infinite list x0, x1, . . . such that d(xi, xi+1) ≤ N for
all i ≥ 0.

The following is a nice interpretation of a bornologous function. Given a
bornologous function f : X → Y where if d(x, y) ≤ N then d(f(x), f(y)) ≤M ,
f sends N -chains in X to M -chains in Y and N -sequences in X to M -sequences
in Y .

We are only interested in sequences that go to infinity.

Definition 5. Let X be a metric space with basepoint x0 and N > 0. We
consider an N -sequence to be based at x0 if its first element is x0. An N -
sequence x0, x1, x2, . . . goes to infinity, (xi)→∞, if limi→∞ d(xi, x0) =∞. Let
SN (X,x0) be the set of all N -sequences in X based at x0 that go to infinity.

We want to consider an equivalence between sequences. A motivating ex-
ample is that all sequences s in R with lim s =∞ should be equivalent.
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Definition 6. Given s, t ∈ SN (X,x0), define s and t to be related, s ∼ t, if s
is a subsequence of t or t is a subsequence of s. If t is a subsequence of s we say
that s is a supersequence of t. Define s and t to be equivalent, s ≈ t, if there
is a finite list of elements si ∈ SN (X,x0) such that s ∼ s1 ∼ s2 ∼ · · · ∼ sn ∼ t.
Let [s]N denote the equivalence class of s in SN (X,x0) and σN (X,x0) be the
set of equivalence classes.

Let us illustrate this definition by comparing it to the standard definition
of a limit of a sequence in R equaling infinity.

Lemma 7. Suppose N > 0 and (xi) is an N -sequence in R based at 0. Then
(xi)→∞ if and only if limxi =∞ or limxi = −∞.

Proof.
(⇐) Suppose M > 0.
Case 1: limxi = ∞. Then there is an n > 0 such that xi > M for all i ≥ n.
Then d(x0, xi) = |xi| = xi > M for all i ≥ n since xi is positive. Therefore
(xi)→∞.
Case 2: limxi = −∞. Then there is an n > 0 such that xi < −M for all i ≥ n.
Then d(x0, xi) = |xi| = −xi > M for all i ≥ n since xi is negative. Therefore
(xi)→∞.

(⇒) Suppose M > N and (xi)→∞. Then there is n > 0 such that |xi| > M
for all i ≥ n.
Case 1: xn ≥ 0. Then xn > M . Since |xn − xn+1| ≤ N ≤ M , xn+1 > 0. So,
xn+1 > M . Similarly xn+2 > M . We continue to get xi > M for all i ≥ n.
Then limxi =∞.
Case 2: xn < 0. Then −xn > M and xn < −M . Since |xn − xn+1| ≤ N ≤M ,
xn+1 < 0. So, −xn+1 > M . Similarly −xn+2 > M . We continue to get
xi < −M for all i ≥ n. Then limxi = −∞.

We can also see that a sequence whose limit is infinity cannot be equivalent
to a sequence whose limit is negative infinity.

Lemma 8. Suppose (xi), (yi) ∈ SN (R, 0).

1. If limxi =∞ and (xi) ∼ (yi) then lim yi =∞.

2. If limxi = −∞ and (xi) ∼ (yi) then lim yi = −∞.

Proof.

1. Suppose limxi =∞ and (xi) ∼ (yi). Suppose M > 0. Since limxi =∞,
there is an n > 0 such that xi > M for all i ≥ n.

Case 1: Suppose yi is a subsequence of xi i.e., yi = xmi where (mi) is an
increasing sequence of natural numbers. Choose k so that mk ≥ n. Then
for all i ≥ k, yi = xmi

> M since mi > mk ≥ n. Therefore lim yi =∞.

Case 2: Suppose yi is a supersequence of xi. Suppose to the contrary that
lim yi 6= ∞. Then by Lemma 7, lim yi = −∞. Then by Part (2) Case 1
of this lemma, limxi = −∞, a contradiction. Therefore lim yi =∞.
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2. Suppose limxi = −∞ and (xi) ∼ (yi). Suppose M < 0. Since limxi =
−∞, there is an n > 0 such that xi < M for all i ≥ n.

Case 1: Suppose yi is a subsequence of xi i.e., yi = xmi
where (mi) is an

increasing sequence of natural numbers. Choose k so that mk ≥ n. Then
for all i ≥ k, yi = xmi < M since mi > mk ≥ n. Therefore lim yi = −∞.

Case 2: Case 2 is similar to Part (1) Case 2.

The invariant

Given a metric space X we wish to determine the cardinality of σN (X,x0) and
use it as an invariant. Now this cardinality obviously depends on the number
N . To deal with this complication we have the following definition.

Definition 9. Let X be a metric space with basepoint x0. For each integer
N > 0 there is a function φN : σN (X,x0) → σN+1(X,x0) that sends an
equivalence class [s]N to the equivalence class [s]N+1. Define X to be σ-stable
if there is an integer K > 0 such that φN is a bijection for each N ≥ K. If X
is σ-stable define σ(X,x0) to be the cardinality (size) of σK(X,x0).

If M ≥ N ≥ 0 are integers, let φNM be the composition φM ◦ φM−1 ◦
φM−2 ◦ · · · ◦ φN . It is identical to the function that sends an equivalence class
[s]N ∈ SN (X,x0) to [s]M . We can now prove our main theorem.

Theorem 10. Suppose f : X → Y is a bornologous equivalence between metric
spaces. Let x0 be a basepoint of X and set y0 = f(x0). Suppose X and Y are
σ-stable. Then σ(X,x0) = σ(Y, y0).

Proof. Let K be the integer provided by the fact that X is σ-stable and K1

be the integer provided by Y being σ-stable. Since f is bornologous there is
an integer M ≥ K1 such that if d(x, y) ≤ K, d(f(x), f(y)) ≤ M . Since f−1

is bornologous there is an integer L ≥ K such that if d(f(x), f(y)) ≤ M then
d(x, y) ≤ L. Let fK : σK(X,x0) → σM (Y, y0) be the function that sends an
element [s]K to [f(s)]M and f−1

M : σM (Y, y0)→ σL(X,x0) be the function that
sends [f(s)]M to [s]L. We wish to show that fK is a bijection.

Consider diagram (a) in Figure 3 below. This diagram commutes, i.e.,
φKL = f−1

M ◦ fK . Since φKL is one-to-one, fK is one-to-one.

Now there is an integer P ≥M such that if d(x, y) ≤ L then d(f(x), f(y)) ≤
P . Let fL : σL(X,x0) → σP (Y, y0) be the function that sends an equivalence
class [s]L ∈ σL(X,x0) to [f(s)]P . Then we have the commutative diagram
(b) in Figure 3, where ϕMP sends an equivalence class [f(s)]M ∈ σM (Y, y0) to
[f(s)]P .

Since ϕMP is one-to-one, f−1
M is one-to-one. Therefore, referring to the first

diagram, fK is onto since φKL is onto.
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σL(X, x0)

σP (Y, y0)

σM (Y, y0)
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f−1
M

(b)

1

Figure 3: Commutative diagrams

We now see that in most cases σN (X,x0) is independent of choice of base-
point.

Definition 11. Let X be a metric space. Suppose N > 0 and x, y ∈ X. An
N -chain from x to y is an N -chain c1, . . . , cn in X such that c1 = x and cn = y.
Let c denote the N -chain c1, . . . , cn. If s is an N -sequence in X starting at y, we
can define a new N -sequence c∗s starting at x by concatenating c and s. That
is, if s is the sequence s1, s2, . . . then c∗s is the sequence c1, . . . , cn−1, s1, s2 . . ..

Proposition 12. Suppose N > 0 and x0 is a basepoint of a metric space X.
Suppose x1 ∈ X and there is an N -chain c from x1 to x0. Then σN (X,x0) and
σN (X,x1) have the same cardinality.

Proof. Let f : σN (X,x0) → σN (X,x1) be the function that sends an element
[s] ∈ σN (X,x0) to [c ∗ s]. To see that f is well defined, first notice that if
s ∈ SN (X,x0) then c ∗ s → ∞. Next, notice if s, t ∈ SN (X,x0) and s is a
subsequence of t, then c∗s is a subsequence of c∗ t. Therefore f is well defined.

We can see that f is a bijection by noting that the inverse of f is given
by g : σN (X,x1)→ σN (X,x0) sending [s] in σN (X,x1) to [c−1 ∗ s], where c−1

denotes the N -sequence from x0 to x1 that is the reverse of c.

We now see that R and V are σ-stable and use the invariant to show that
they are not bornologously equivalent.

Lemma 13. Suppose s ∈ SN (R, 0) with lim s =∞. Then there is t ∈ SN (R, 0)
with s ∼ t and t increasing.

Proof. We will define an increasing sequence mi of natural numbers and set
ti = smi

. Choose m1 = 1. Since lim si = ∞, there is an m2 > 1 such that
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sm2 > 0. Then t2 = sm2 > 0 = t1. There is an m3 > m2 such that sm3 > t2.
Then t3 = sm3 > t2. By using this technique, we continue to get an increasing
subsequence t of s.

Theorem 14. Suppose N ≥ 1. Then σN (R, 0) = {[(i)], [(−i)]}.

Proof. We know that lim i = ∞. By Lemma 7, (i) → ∞. Similarly, we know
that lim−i = −∞. By Lemma 7, (−i)→∞. So [(i)], [(−i)] ∈ σN (R, 0). Let us
show (i) 6≈ (−i). By Lemma 8, if (i) ≈ (−i), then lim−i =∞, a contradiction.
Therefore (i) 6≈ (−i).

Suppose [s] ∈ σN (R, 0). We need to show [s] = [(i)] or [s] = [(−i)]. By
Lemma 7, we have two cases.

Case 1: lim s =∞. We will to show [s] = [(i)]. We can assume s is increasing,
by Lemma 13. We put s and (i) together to get a new N -sequence t, where
t → ∞. Since s and (i) are both increasing, we can use the order on the real
line to arrange t so that it is an increasing supersequence of both s and (i).
Since both s and (i) are subsequences of t, s ≈ (i).

Case 2: lim s = −∞. Similarly to Case 1, we can show that s ≈ (−i).

Corollary 15. The pointed metric space (R, 0) is σ-stable and σ(R, 0) = 2.

Proof. We know that σN (R, 0) = {[(i)], [(−i)]} for all N ≥ 1. By definition,
φN ([(i)]N ) = [(i)]N+1. Also by definition, φN ([(−i)]N ) = [(−i)]N+1. There-
fore, φN is a 1-1 correspondence.

Theorem 16. Suppose N ≥ 2. Then σN (V, (1, 1)) = {[((1, i))]}.

Proof. We know ((1, i)) → ∞ so [((1, i))] ∈ σN (V, (1, 1)). Suppose [s] ∈
σN (V, (1, 1)) and N ≥ 2. We want to show s ≈ ((1, i)).

Let us create a supersequence of s. Every time a term (x, y) of s is not
on A, add the following terms after it: (1, y) and (x, y). Thus, we have a
supersequence t of s that is an N -sequence that goes to infinity, so s ∼ t.

Now create a subsequence u of t by eliminating all terms that are not on
A. Then u is an N -sequence that goes to infinity so t ∼ u. Thus we have a
sequence that is equivalent to s that lies entirely on A. In a similar way to the
proof of Theorem 14, we can show that u ≈ ((1, i)). Therefore, s ≈ ((1, i)).

Corollary 17. The pointed space (V, (1, 1)) is σ-stable and σ(V, (1, 1)) = 1.

Since any two points in V can be joined by an N -chain, we can now conclude
that V and R are not bornologously equivalent. We end by posing the problem
of generalizing our theory to non σ-stable spaces and to the coarse category.
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