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Abstract: Motivated by the fact that cubic maps have found potential appli-
cations to modeling of biological and physical processes, we examine a family of
discrete, non-linear dynamical systems comprising one-parameter real variable
cubic polynomials of a certain form. We examine and classify their fixed points
and 2-cycles over various parametric domains. We also study their bifurcation
diagrams and use a variety of techniques to analyze their chaotic behavior.

Introduction

The theory of discrete non-linear dynamical systems has been used to model
many processes in economics, biology, and physics, among other fields. First-
order difference equations, in particular, are often used to model the evolution
of systems in which an assumption can be made that the state of the system
at a given point in time can be derived from its state in the point immediately
preceding. These situations may arise in such diverse fields as genetics (as a de-
scription of change in gene frequency), economics (toward describing temporal
trends such as business cycles), and the social sciences (to study transmission
of information) [6].

The logistic map, a simple system with one critical point described by the
equation

fx)=ax(l-2), 0<a<4

has undergone exhaustive analysis, as have other quadratic maps described
by first-order difference equations. Guckenheimer, May, and others have ana-
lyzed the behavior of this map as one approach to modeling density-dependent
population dynamics with non-overlapping generations [6].

While the dynamics of the family of first-order difference equations with
quadratic maps has been thoroughly studied, the family of equations with
cubic maps has not been studied as well 7], despite their possible utility in
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modeling scenarios in biology and physics. In part, this is because such equa-
tions are qualitatively more difficult to analyze. While quadratic maps appear
quite simple, they show quite complicated dynamics [6]. In their most general
form, cubics are much harder to analyze [7], as the general form of the roots of
a cubic equation contains nested radicals and other complicated expressions.
Nevertheless, the abundance of situations in which cubic maps may have rele-
vance necessitates the study of the dynamics of these maps. Therefore, in this
paper, we investigate several special cases of the general cubic map that are
much simpler to analyze, and could lead to interesting insights in the study of
more general cubic maps.

For a general background to the analysis of discrete, non-linear dynamical
systems, see Devaney [3]. In addition to the principles in Devaney, we also used
Bair and Haesbrock [1] to evaluate behavior near neutral fixed points.

In the present work, we consider the fixed points and 2-cycles of dynam-
ical systems associated with seven related cubic functions f : R — R. These
functions are:

[£-1] f(z) =23 + 2% +cx
[f-2] f(z) =23 +ca?+x
[£-3] f(z)=ca®+a2? +x
[f-4] f(z) =23 +cz
[£:5] f(2) = ca® + a
[£-6] f(z) = 2% + ca?

[£-7] f(z) = cad + 22

where ¢ € R. Together, these functions encompass all cubic polynomials in
one parameter that have a fixed point at x = 0, and where the non-parametric
coefficients are all 1. Future references to these functions will be made using
their assigned numbers.

While the properties of cubic maps have not been as well-analyzed as those
of quadratic maps such as the simple quadratic map f(x) = 2%+c and the logistic
map, some studies have been conducted to analyze the properties of particular
cubic maps. Mukhamedov studied chaotic behavior in p-adic cubic dynamical
systems of the form f(z) = 23+ax? over Qp, classifying fixed points according to
behavior and finding basins of attraction for attracting fixed points [9]. It was
found that the structure of attractors in this cubic map is more complicated
than that in quadratic dynamical systems, and that cubic p-adic dynamical
systems have, in general, a more chaotic structure than quadratic ones [Mul].
in addition, the geometric structure of Siegel disks and basins of attraction was
thoroughly investigated. The same function analyzed by Mukhamedov over Q,
is also analyzed in this paper over R.

Skjolding et al. investigated the presence of various varieties of special
bifurcations in cubic maps with fixed points at x =1 and x = -1, as described
by the equation

f(x)=az®+ba*+(1-a)x-b.
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The different varieties of forward and reverse bifurcations were classified, and
their appearance in dynamical systems of this form was analyzed in depth. It is
claimed that dynamical systems with two critical points may model the effects
on the ignition phenomenon in neural networks of inhibitory connections in the
network combined with refractory mechanisms [10].

May describes the biological applications of dynamical systems such as the
antisymmetric cubic map

f(z)=az®+(1-a)z  over the interval [-1,1],

in modeling problems in genetics and evolution in which selective forces are
“frequency dependent," or affected by gene frequencies, so that a particular
allele has a selective disadvantage when common, and an advantage when it
is rare [7, 8]. While the results of this application were not conclusive, it
was stated that the purely mathematical properties of this function and others
with two critical points are of intrinsic interest, and merit further study as a
natural progression from maps with one critical point. In particular, they are
the least complicated among the first order difference equations to exhibit the
phenomenon of alternative stable states.

Iriso and Peggs present the cubic map
Pl = AP + bpry + cpl,

as a possible candidate to model the evolution of electron clouds, which are
undesirable phenomena that appear in accelerators when accelerated charged
particles cause disturbances to stray electrons already present in the accelera-
tor. Electron clouds can impede the path of accelerated particles, which reduces
the effectiveness of the accelerator [4].

In this representation, p,, represents the average electron cloud density at
a point after the m-th passage of the bunch. The quadratic coefficient b must
be negative to ensure a positive saturation value of electron cloud density and
give concavity to the curve (pm,pm+1). As the bunch intensity N exceeds a
threshold N ~ 7+ 10'° protons, a becomes greater than 1. For N > 1019
protons, the cubic term ¢, which accounts for perturbations, is positive and
about one order of magnitude smaller than a. Fixed points of this map can be
interpreted physically as the saturated electron cloud density.

This model and others were tested using computer simulations, and it was
found that the cubic map optimally modeled bunch-to-bunch evolution under
the parameters of the Relativistic Heavy Ion Collider and the Large Hadron
Collider dipoles [4, 2]. Thus, an understanding of the dynamics of this map
would be useful in minimizing the electron cloud effect in the operation of accel-
erators. As the functions studied in this paper are special cases of the function
used in this model, albeit over different parameter spaces, understanding the
dynamics of these seven cubic maps may help to better characterize the evolu-
tion of electron clouds.
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Characterization of Fixed Points

For any of the the cubic polynomials f(x) studied here, the nth iterate f™(x)
is a polynomial of degree 3", and there can be a maximum of 3" cycle points
of period n (although not necessarily least period n), because the function
f™(x) =2 =0is of degree 3™ and can have no more than 3" distinct solutions.
Therefore, there are three fixed points, not necessarily distinct, of each of the
seven functions. (Indistinct fixed points will be treated as the same.)

In this section, we describe the fixed points of each of the seven functions
[f-1], -, [f-7] listed above and characterize their behavior over different intervals
of the parameter c. We do not present proofs for the following statements, but
they are simple to verify using techniques found in [3].

Solving the equation f(z) -z =0, [{-]) yields three fixed points:

1 1
D =0, 202 = 5(\/5 —4c¢-1) and 2% = 5(—\/5—40— 1).

The stability of these fixed points is tested through evaluation of |f'(z)| at
each fixed point; |f’| < 1 implies attracting behavior, while |f’| > 1 implies
repelling behavior. The point z(!!) is stable (attracting) on the parameter
space (-1,1) and repels on (—o0,-1) U (1,00). At ¢ = -1, "'V repels from
the left and attracts from the right, whereas at ¢ =1, 2D = 2(12) and both
attract from the left and repel from the right. The point z(''?) and 2(*3) are
both undefined when ¢ > 2. At ¢ =2, 212 = (13 and both repel from the
left and attract from the right. When c € (1,2), 2(1:?) attracts, while on the
interval (—oc0,1)u(5/4,00), it repels. The point z(13) repels everywhere except
at c= 2.

1
There are two distinct fixed points for [{-2]:

2@V =0 and 2?=-c

It is worth noting that at ¢ = 0, 2D = 222 and here they both repel. At
all ¢ <0, 2V repels from the left and attracts from the right; for ¢ > 0, this
behavior is reversed. The point z(>?) is repelling for all values of c.

The distinct fixed points of [f-3] are

2BY =0 and 2P =-Z
c
The point (> attracts from the left and repels from the right for all ¢. The
point 232 is attracting on (—oo, —%] (¢ = —% makes it neutral), and repelling
on (-3,0)u(0,00). At ¢ =0, it is clearly not defined, and the function collapses
to a quadratic equation.
Three fixed points exist for [f-4]:

2 = 0, 3D =y1-¢ and 2*3=-V1-c.

The point 2(*1) has behavior similar to 2(*?) with the exception of the values
of ¢ that make it non-hyperbolic, ¢ = 1. At ¢ = -1, z(*1) becomes an attracting
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fixed point from both sides. It is clear that 2(*2) and 2(*+3) only exist and are
distinct for ¢ < 1; at ¢ = 1, they are equal to each other and to z(*1), and all
three repel. Both z(*2) and 2(*%) are repelling over the entire domain of ¢ over
which they are defined.

Only one distinct fixed point exists for ¢ # 0 for [f-5], at =(>!) = 0. This
fixed point is always neutral, and shows similar behavior to z(*1) except at
c =0. For ¢ =0, the function reduces to the linear equation y = x, for which
f(z) =z, Yz € R, so 1) neither repels not attracts.

The function [f-6] has three fixed points:

_ 2 /2
1'(6'2): c+Vet+4 and x(6'3)= c C +4’

261 = 0,
2 2

The point z(®1 is attracting for all ¢ € R, while 202 and 263 are repelling
over all ce R.

[f-7] also has three distinct fixed points:

2D g, g o ZEEVIFde sy Lo viEade

2c 2c
The point (" is an attracting fixed point over all ¢ € R. The point z(72)
and (7% only emerge for ¢ > —i and are undefined at ¢ = 0. At ¢ = —%7
(72 = x(7'3), and both are neutral; further testing showed they repel from
the left and attract from the right. The point (72 repels on the rest of
the parameter space over which it is defined. The point z("3) attracts on

(—%, —% ], and repels on the rest of the parameter space over which it is defined.

Characterization of 2-Cycles

As finding the 2-cycles of a cubic function f requires finding the roots of the
degree nine polynomial f2(z) - = 0, 2-cycles for all functions studied except
the odd functions [f-4] and [f-5] could not be found analytically. (No 2-cycles
could be found for [f-2] or [f-6].) As in the previous section, proofs are not
shown, but they are not difficult to verify using the provided and derived rules
for determining and classifying 2-cycles.

Since for any degree three polynomial f, f2 is a degree nine polynomial, the
equation f2(x) -z = 0 has nine solutions (including complex solutions). Three
of these nine are fixed points, leaving six 2-cycle points. For our case, we focus
only on the real cycle points.

We evaluated the attracting or repelling behavior of 2-cycles using the chain
rule for dynamical systems. In this case, this entails evaluating a cycle denoted
{a,b} by [(f>)'(a)| = |f'(a)f (b)|. A cycle is repelling when this quantity is
greater than one, and attracting when it is less than one.
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Analytic solutions

Function [f-4] has six 2-cycle points, forming three cycles between conjugates.
Each pair denoted {a, b} below represents a cycle:

(269 - VT, 29 - _yTT=e),

gj(4'6) _ —C+V c2-4 [17(4'7) __ —C+ V c2-4
N2 N2

—c—Vc? -4 —c—Vc?2 -4

L2(48) _ \ . PCRN _\ .

Points 2(**) and 2(*) are both defined at all ¢ < -1. At ¢ = -1, they are both
equal and the cycle comprising them is neutral. This cycle is again neutral at
¢=-2. On ce (-2,-1), it attracts, and for all ¢ € (—o0,-2), it repels. Both
the other cycles are defined for ¢ < —2. The cycle comprising (46 and 247
repels at all ¢ for which it is defined except at ¢ = -2, where it is neutral. The
cycle formed by 2*®) and 2(*9 is also neutral for ¢ = -2 as well as ¢ = —%,
and is attracting on the interval (—g, -2). On the interval (—oo, —%), it repels.
For [f-5], two distinct solutions were found for the equation f?(z)-z = 0. These

solutions are:
2 2
{x(5'2) _ /_77 23 = 4 /_},
c C

This 2-cycle is both defined over all negative real numbers and, by the chain
rule for dynamical systems, also repelling over their entire parametric domain.

Numerical solutions

For the other functions, the number of 2-cycles was inferred for the number of
points of intersection of f2(x) with the line y = = for a wide range of values of
¢, then subtracting the number of fixed points of f defined at each c.

In [f-1], two 2-cycle points (forming one complete cycle) emerge for ¢ < —1.
Four more 2-cycle points emerge below ¢ ~ —4.6107186, for a total of six 2-
cycle points. Although the behavior of cycle points could also not be inferred
analytically for all ¢ over which 2-cycles exists, 2-cycle points corresponding
to a wide range of values of ¢ were tested for attracting or repelling behavior
using the chain rule for dynamical systems. These tests lead us to believe that
two attracting 2-cycle points exist only on (k,-1), where k ~ —1.451948.

For [f-3], extensive testing of a range of values of ¢ lead us to conjecture
that two 2-cycle points exist for ¢ € (—c><>,—%]7 and four 2-cycle points exist
for c € (—%,0). Two attracting 2-cycle points could be found only on (—%, k),
where k ~ —.403660. For ¢ > 0, no 2-cycle points could be found.

[f-7] had behavior similar to [f-4] with regard to the stability of cycle points
and their relation to the stability of fixed points. Through extensive testing of ¢
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values, we formed the conjecture that exactly two 2-cycles exist on (—;11, —%),
and that exactly four exist for all c € (—%,0). When the behavior of these
2-cycles was tested, two attracting 2-cycles were only found on the interval

(71%, k), where k » —.173501; all other 2-cycles were repelling.

Bifurcation Diagrams

Three bifurcation diagrams gave clear indication of the emergence of chaotic
behavior. The diagrams that show evidence for chaos are those for [f-1], [{-3],
and [f-4], which can be found in Figures 1, 2, and 3, respectively.

1.5

-1.0

Figure 1: Bifurcation diagram for f(x) =2+ 2% +cz, [f-1].

In the bifurcation diagram of [f-1], one stable fixed point exists for ¢ > -1,
at x = 0. This corroborates the fixed-point analysis of the function. Period-
doubling occurs at ¢ < -1, as predicted through analysis of 2-cycles. At ¢ =~
—1.58, chaotic behavior begins. At ¢~ —1.825, a 3-cycle emerges, which serves
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as proof of chaotic behavior [5]. Chaotic behavior continues until about ¢ ~
-1.93.

The bifurcation diagram of [f-3] showed one stable fixed point at ¢ < —%7
which, as predicted earlier in fixed-point analysis, was x = —%. Period-doubling
begins at ¢ > —%, and chaotic behavior emerges at ¢ » —0.37. An island of
stability containing a stable 3-cycle can be found at ¢ » —0.34; period-doubling
then occurs again, followed by another descent into chaos. A few other islands
of stability can be found throughout. Chaotic behavior ends at ¢~ —.30.

The bifurcation diagram of [f-4] shows odd period-doubling activity that
begins below ¢ = -1, when a stable 2-cycle emerges, confirming the 2-cycle
analysis. At ¢ = -2, it appears that period-doubling should occur again; how-
ever, no stable four-cycle develops, as one branch of each bifurcation does not
appear in the diagram. However, the branch that does appear in each bifurca-
tion “jumps" to a different value of = at some value of c¢. Period doubling then
continues until chaos begins at about ¢ = -2.33. The region of chaos ends at
c~ —3.0, where all attracting periodic points disappear.

To understand the nature of the second period-doubling bifurcation of this
function, orbit diagrams showing the iterates of f(z) = x> -2.22 were produced
with varying initial seeds z. These diagrams plot the iterates of the function
against the iteration number. Based on these diagrams, it appears, contrary
to both the bifurcation diagram and the results of the 2-cycle analysis, that
there are two stable 2-cycles here, as shown in Figures 4 and 5. These 2-
cycles correspond to the values of x that would characterize the complete cycles
that would have existed had both branches in each of the second bifurcations
remained visible.

Generating bifurcation diagrams using different initial seeds caused the
“jumps" to occur at different values of ¢, and could even cause the visible
parts of these two two-cycles on the bifurcation diagram to reverse, compared
to the diagram shown. It seems likely that the diagram is simply failing to
detect all attracting cycles for all values of ¢, which is known to be possible for
maps with multiple critical points.

The bifurcation diagrams of [f-1] and [f-3] both clearly show an island of
stability containing a stable 3-cycle,

which implies that these dynamical systems must undergo chaotic behavior
[5]. They have periodic orbits of all periods in addition to bounded aperiodic
orbits. The same is not true for [f-4]; there is no 3-cycle that is clearly visible,
and although it seems based on the qualitative properties of the bifurcation
diagram that the system does exhibit chaotic behavior, it is not immediately
clear that this is the case. As a result, numerical analysis were conducted in
the form of Lyapunov exponents. Table 1 shows the Lyapunov exponents of
the function at various values of the parameter ¢ for the initial seed x = —0.25.
Outside of the range shown in Table 1, the normed summation in the calculation
of the Lyapunov exponent diverges.

It is clear from Table 1 that for many values of ¢ in the region that appears
to show chaotic behavior in Figure 3, there are positive Lyapunov exponents,
implying the presence of chaotic behavior. It is worth noting that Lyapunov
exponents for -2 < ¢ < -1 exhibit almost perfect symmetry, in that for 0 < k£ < 1,
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Figure 2: Bifurcation diagram for f(x)=cx®+ 2%+, [f-3].

the Lyapunov exponent for ¢ = -2 + k appears to be approximately equal to
that of c=-1-k.

One may also notice that the Lyapunov exponent of [f-4] at ¢ = -2.7 is
negative, even though it appears in the bifurcation diagram that this is in the
region of ¢ values in which chaos is exhibited. An orbit diagram plotting the
iterates of the seed, shown in Figure 6, was produced, and from this diagram
it is clear that we have found the elusive 3-cycle that proves chaotic behavior

in this system.
c |l 1<e<1 -1 -1.1 -1.2 -1.3 -1.4
A <0 —-0.00002 | -0.22314 | —-0.51082 | —0.91629 | -1.60943
c -1.5 -1.6 -1.7 -1.8 -1.9 -2.0
A || -35.3503 | —-1.60943 | -0.91629 | -0.51071 | -0.22315 | —0.00002
¢ -2.1 -2.2 -2.3 -2.4 -2.5 -2.6
A || —0.85739 | -0.19283 | —0.05882 0.34223 | 0.49117 | 0.68189
c -2.7 -2.8 -.2.9 -3.0
A || —0.43498 0.80685 | 0.87815 1.09861

Table 1: Lyapunov exponents of f(x) =23+ cx at x = —0.25 far varying c.

The bifurcation diagrams of [f-2] and [f-5] showed no evidence of chaos, as can
also be inferred from the observation that neither has a stable 2-cycle. Bifur-
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Figure 3: Bifurcation diagram for f(x) = 2>+ cz, [f-4].
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Figure 4: Orbit diagram showing last 100 of 10000 iterates of f(z) = 2% - 2.2z,
with a seed of g = 1.
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Figure 5: Orbit diagram showing last 100 of 10000 iterates of f(z) = 2% - 2.2,

with a seed of zg=1.7.
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Figure 6: Orbit diagram showing first 150 iterates of f(x) = 2® - 2.7z, with a

seed of xg = 1.
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cation diagrams could not be generated for functions [f-6] and [f-7]. As the
functions [f-1], [£-3], and [f-4] all exhibit the period-doubling route to chaos
over some region of the parameter ¢, they are qualitatively similar to many
maps with one critical point, such as the simple quadratic map and the logistic
map. On the other hand, [f-2] and [f-5] clearly showed no chaotic behavior,
demonstrating that cubic maps that appear trivially different can have vastly
different dynamics. This observation may be of use in characterizing the be-
havior of cubic maps such as those that may be useful in population genetics
and physics. We hope that future research will be conducted to investigate the
dynamics of first-order difference equations with two critical points, such as
those studied in this paper, to help gain a better understanding of these maps
and their relation to the already well-studied quadratic family.
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