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There exist various techniques to “scan” an object using x-rays, the most com-
mon of which uses a polar sampling grid, all relying on the diffraction equation
known as Bragg’s Law [1, 6]. During my internship at Oak Ridge National
Laboratory, I investigated the uses and efficiency of application of two specific
types of grids: a hexagonal grid and a spiral grid, details of which are given
below. The hexagonal [2, 3, 4] and spiral [5] methods have been introduced
and used previously, without including the mathematical details necessary to
actually implement these methods. I developed the algorithms necessary to
generate each grid and implemented them (by writing computer code) to test
my results.

Overview

Pole figures provide a graphical representation of the orientation of objects in
space. They represent the distribution of a particular set of atomic planes for
data acquired through diffraction and are used for analyzing crystallographic
texture in materials science.

A four-circle goniometer is usually employed to collect pole figures. Here,
the detector (6-axis) is set at the Bragg angle (the angle between an incident x-

10  B.S. Undergraduate Mathematics Exchange, Vol. 5, No. 1 (Spring 2008)



ray beam and a set of crystal planes for which the secondary radiation displays
maximum intensity as a result of constructive interference) and the sample
(w-axis) is often set at half the Bragg angle.

The desired reflection intensity is measured over a set of sample tilt angles
(x) and azimuthal angles (¢) (see Figure 1). Typically, this data is presented
in a pole figure. The Schulz method collects pole figure data using a 5° x 5°
(x X ¢) grid (see Figure 2). Pole figure data can be viewed in a variety of
ways, including stereographic and equal area projections on a plane. The main
difference between the two is that stereographic projections preserve angle mea-
surements but not area proportions, while equal area projections preserve area
proportions but not angle measure [4]. The spiral grid is a stereographic pro-
jection of the hemisphere, while the hexagonal grid is an equal area projection.
The type of projection to be used depends on whether the goal is to preserve
angle measurements or keep surface areas proportional when projecting from
the hemisphere. While data can be displayed using either type of projection,
the nature of the grid points may not be preserved. Displayed in stereographic
projection, the hexagonal grid will not feature the same layout and equal spac-
ing between data points. Similarly, the spiral grid would be distorted in an
equal area projection since the spiral’s angular nature is no longer preserved
(comparisons with actual data can be seen in Figure 7).

Figure 1: Three-dimensional representation of the measurement angles y and ¢.
The z-axis is normal to the initial mounting surface of the sample.

90

Figure 2: 5°x x 5°¢ grid used in the Schulz method [polar plot].
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The Hexagonal Grid

The hexagonal grid data collection method removes the over- and under-sam-
pling at low and high y values, respectively, using the Schulz method [4]; the
density of sample points (as shown in Figure 2) is greater near the origin. The
first step of the hexagonal grid method is to determine the number of desired
data points. This is done by selecting R, the maximum desired y value and N,
the number of equal line segments along the central/east radius (see Figure 3).
Next, using a grid made up of rows of equilateral triangles (see Figure 4), a
hexagonal grid in Cartesian (x,y) coordinates can be constructed using equa-
tions (1)—(5) below.

CQuadrant 11 Quadrant 1

(0°,0%)

Quadrant 111 Quadrant IV

N Equal Line Segments
(here N==8)

Figure 3: Determination of the constant N.

First and second quadrants:

ly;l < R (1)

V3R

|zij| < \/R? = (y;)? (3)
%i, if j =0 mod 2 (4)
Tij = R .
oN T Wb if j =1 mod 2 (5)
Xij =/ (@ij)? + (y;)? (6)
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Third and fourth quadrants:

omit points where y = 0,
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The values of y; are calculated using the increasing index values j (2),
starting with 7 = 0 and corresponding yo = 0, until the last generated y;
is as close as possible to the radius R without exceeding it, still satisfying
inequality (1). The y; values also depend on the height of equilateral triangles
with the side length % (see Figure 4 below). All the corresponding z;; values
at each j are then calculated using (3)—(5) for specific ¢ values. In Quadrants I
and II, the z values start at either z = 0 (4) or z = #% (5), and the spacing
between each value is a multiple of %, which is calculated by using another
index 4. The x;; values alternate between two distinct patterns, depending
on whether j is even or odd. For each fixed value of y;, the z;; values can
then be determined, up to the boundary of the circle with radius R (3). The
values of x and ¢ are then found by transforming each point (x,y) to polar
coordinates, equations (6)—(9). Each value of x;; is equivalent to the length of
the hypotenuse of the right triangle formed by z;; and y; (6). Each ¢;; is the
arctangent of the ratio £, multiplied by @ to transform radians to degrees,
(7)—-(9). Since the arctangent function’s range is (—90°,90°), the new points
may not lie in the correct quadrant or, in some cases, may be undefined. In such
case, a point can be rotated to the correct position by adding 0° for z;; > 0,
as in (7), or 180° for z;; < 0, as in (9). When z;; = 0 and y;; > 0, ¢ must be
defined as 90° (8) (to avoid division by 0). Due to the symmetry of the graph,
points in Quadrants III and IV can be obtained by 180° rotations (10)—(12) of
all the points in Quadrants I and II, which is equivalent to reflection. Points
with y; = 0, however, must be omitted so they are not duplicated or doubled.
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The x;; values in Quadrants III and IV are the same due to symmetry (6).
Figure 5 shows an example of a hexagonal grid.

Just as with the 5° x 5° grid for the Schultz method, projecting the hexago-
nal grid points in the plane back onto the hemisphere gives us the set of angles
to be scanned by the goniometer. Both methods collect data by scanning the
different ¢ values for each specific x, beginning at 0 and increasing up to the
maximum value. In each case, the grid points lie in circles (one for each fixed x),
although for the hexagonal method, the number of points on each circle varies.

chi (%)

270

Figure 5: Hexagonal grid with N = 16 and R = 90° (Equal Area Projection).

The Spiral Method

The spiral is a path of constant angular direction on the hemisphere (like a
ship traveling from a pole to the equator with a constant compass direction).
The spiral lends itself well to an efficient means of collecting pole figure data
because its radius increases quicker than the 5° x 5° grid with fewer points
overall. If equipment with such capabilities is available, the angles x, and
¢, can be continuously adjusted along the path of the spiral. Since this is
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not always possible, discrete points of the spiral can be generated using the
following equations:

5 max
R (13)
5°, if ¢ = 0° (14)
Xn = e i 0° < ¢ < Pmax (omit if x < 5°) (15)
Xmax if ¢ = ¢max (16)

where we must add (0°,0°) and where

b= ln(Xmax)
¢max

The points of a spiral can be calculated using polar equations, making
computation much less complicated. A spiral is an exponential curve in polar
form, and most of the x,, values are directly calculated by evaluating e®® (15),
where n represents the term number of the recursively defined sequence (13)
not exceeding ¢max. A logarithmic spiral is infinite in nature, and since e’?
can never be 0, the point (0°,0°) must be defined separately. In order to
avoid over-sampling at low x values, all points with x,, less than 5° should be
omitted (15). The points (5°,0°) and (Xmax, Pmax) are added by (14) and (16)
for consistent starting and ending positions that correspond to the 5° x 5° grid.
The constant b is determined by (17) so that the maximum value of ¢,, allows
the spiral to end very close to Xmax- In order to maintain an approximately
equal distance between points on the spiral, the increment by which ¢,, changes
is a function of x,, (13). At points with low x values the spacing is about Xax,
and at points with high y values near Ymax, the spacing is small (about 5°
here, as determined with the inclusion of 5 in the numerator in (13)).

Like the hexagonal grid, the actual angles to be scanned by the goniometer
have not yet been determined, since this spiral has been generated as a stere-
ographic projection. Similarly, each y value is first scaled down by a factor of
1/45°. This scales values between 0° and 90° to values in the range between 0
and 2, appropriate for radii in a stereographic projection. The y values for the
sphere are then determined by taking 2 arctan (x/2), with these newly scaled
values. Beginning at x = 0 and increasing x until the maximum is reached
allows for an efficient scan of the spiral grid.

(17)

Experimental Comparison

A sample of 13 pm thick aluminum foil was mounted with rubber cement, and
data was collected for pole figures using the Schulz, hexagonal grid, and spiral
methods as described above. Data points for the hexagonal grid and spiral
method were programmed into the equipment. The results can be seen below
in Figure 6, represented graphically with Mathematica software. All three show
the same features.
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Figure 6: Spiral Grid with a maximum y of 90° and a maximum ¢ of 6480°
(Stereographic Projection).

Figure 7: (111) Pole figures of aluminum foil: Schulz (top row), hexagonal
grid (middle row), and spiral (bottom row) methods displayed as polar plots
(left column), equal area (middle column) and stereographic projections (right
column).

Summary

The mathematics for constructing and implementing the hexagonal grid and
spiral method for pole figure data collection has been elaborated. Experimental
measurements of aluminum foil resulted in typical rolling textures that compare
favorably among the three methods [2]. The hexagonal grid eliminates the over-
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and under-sampling of the Schulz method and uses approximately 40% less
points with N = 16 and R = 90°. The spiral method has been shown to use over
75% less data points than the Schulz method but does not adequately collect a
representative pole figure. In the future, implementation of the hexagonal grid
and spiral method will be done using LabVIEW code.
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