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Introduction

Quadratic equations are studied extensively within mathematics throughout a
student’s high school and college careers. The standard form for these equations
(in the variable x) is given by

az® +bx+c=0,

where a, b, and c are real, and a # 0. Their solutions are given by the quadratic

formula
. —b+ vb? — 4ac
N 2a ’

which is introduced in algebra. FEllipses, parabolas, and hyperbolas are studied
in geometry, and surfaces such as hyperboloids and paraboloids, given by

(5 (3" () = ()" (3

respectively, are studied in multivariable calculus. All of these are quadratic
equations. What is beyond quadratics? For example, there are elliptic curves,
which are curves of the form

y? =23+ az® + bz +c.
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The study of elliptic curves can be traced back to the ancient Greeks and
Alexandrians, from which a deep theory has emerged. The name “elliptic
curve” comes from the work of G.C. Fagnano (1682-1766) who showed that
computing the arc length of an ellipse leads to an integral of the form

| yr=mam ¢
u
V(= u2)(1 — k2u?)
By making the changes of variables,
v? = (1 =) (1= ku?) = (u—a)(u—B)(u—7)(u-10)

followed by
v

dy=—2_
u—a Y (u—a)?’

one is led to the integral

1
Va3 +ax? +br+c

dx,

which is why a curve of the form 3% = 3 + az? + bx + ¢ is called an elliptic
curve [1].

Elliptic curves have been used to study or solve many famous problems, such
as the Congruent Number Problem and Fermat’s Last Theorem. A rational
number n is said to be congruent if there exists a right triangle with rational
sides whose area is n. For example, 6 is a congruent number, since the right
triangle with sides 3, 4, and 5 has area 6. Mathematicians such as Pierre
de Fermat (1601-1665) and Leonhard Euler (1707-1783) studied the problem of
which numbers are congruent. This problem can be turned into an investigation
of points on certain elliptic curves. Fermat’s Last Theorem, which states that
there are no non-zero integer solutions z, y, z to the equation z" + y™ = 2™ for
integers n > 2, was proved in 1993 by Andrew Wiles. A key to Wiles’ proof
was to show that if Fermat’s Last Theorem were false, a certain type of elliptic
curve would exist that leads to a contradiction [1].

Elliptic curves can also be used as schemes to transmit information securely.
In 1985, Neal Koblitz, from the University of Washington, and Victor Miller,
who worked at IBM, first proposed the application of elliptic curve systems to
cryptography, which is the science of concealing the meaning of a message [3, 8].
To encrypt a message, one conceals the meaning of the message using a code
or cipher, and to decrypt the message, one turns the encrypted message back
into the original message.

Many cryptosystems necessitate the use of an algebraic structure known as
a group, and elliptic curves can be used to form such a structure, referred to
as an elliptic curve group. To understand elliptic curve groups, a good starting
point is to look at elliptic curves over the real numbers. The next step is to
consider elliptic curves over finite fields such as the integers modulo p, where p
is a prime number.
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Properties of elliptic curves and elliptic curve groups can then be applied to
cryptographic schemes, known as elliptic curve cryptography (ECC) schemes.
We will look at one such ECC scheme, known as the Elliptic Curve ElGa-
mal Method. Elliptic curve cryptography, used in many applications today,
maintains the three objectives of information security: confidentiality, the con-
cealment of data from unauthorized parties; integrity, the assurance that data
is genuine; and availability, the fact that the system still functions efficiently
after security provisions are in place [2]. Elliptic curve cryptography has ex-
panded the use of public-key cryptosystems, providing systems of encryption
that are easier to implement and harder to crack [6].

Elliptic curves over R

An elliptic curve over the real numbers is the set of points (z,y) that satisfy
an equation of the form
yv? =2+ ax +0, (1)

where z, y, a, and b are real numbers. There are other elliptic curves of the
more general “Weierstrass” form:

Y + a1y + azy = azax® + asx® + asx + ag,

but through a change of variable, one can put any elliptic curve over the reals
into the form of Equation (1) [5, 6]. Figure 1 shows some examples of elliptic
curves.

Figure 1: Elliptic curves y* = 2® — 7z + 6 (left) and y* = 2® — 2z + 4 (right)

Elliptic curves in the form of Equation (1) can be divided into two groups,
non-singular and singular elliptic curves. A continuously differentiable curve
written in the form F(z,y) = 0 is said to be singular if there is a point on
the curve at which both partial derivatives of F' are zero. Otherwise the curve
is called non-singular. It follows from the Implicit Function Theorem that at
every point of a non-singular curve, there is a tangent line [7]. We leave it
as an exercise to the reader to show that the elliptic curve of Equation (1) is
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non-singular if and only if 4a®+27b% # 0. We hasten to add that 4a3+27b% # 0
is a necessary and sufficient condition for the cubic polynomial z3 + az + b to
have three distinct roots [5]. We will only use non-singular elliptic curves, as
we will need to have curves at which each point has a tangent line. The two
curves pictured in Figure 1 are both non-singular, as 4(—7)3 + 27(6)? = —400
and 4(—2)3 + 27(4)? = 400.

Adding points on elliptic curves over R

A binary operation, usually denoted by addition, defined over a non-singular
elliptic curve E in form of Equation (1) can be used to transform the curve
into an abelian group. An elliptic curve group over the real numbers consists
of the points on the curve, along with a special point oo, called the point at
infinity, which will be the identity element under this addition operation.

The adding of points on elliptic curves can be done using two different
methods, graphical and algebraic. The key to each approach is to find the
third point of intersection of the elliptic curve with the line through two given
points on the curve. Any vertical line will contain the point at infinity and
tangent lines contain the point of tangency twice [5].

Define the negative of the point at infinity to be —oo = oo and the negative
of any other point P = (xzp,yp) on elliptic curve E to be its reflection over
the x-axis, that is —P = (zp, —yp). Note that if P = (zp,yp) is on the curve,
then so is —P. The definition of addition is broken into three cases:

1. Adding two distinct points P and @ with P # —Q);
2. Adding the points P and —P;
3. Doubling the point P (i.e. adding the point P to itself).

-4 5 6 4 3 4 5 6
P =(-2,3.162) and Q = (1,-1) P+ (—P) =00 at P = (—1,3.464)
yield P+ Q = R = (2.925,3.671) ony’=a3—Tr+6

ony? =z —6x+6

Figure 2: Adding two distinct points
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Adding distinct points P and Q when P is not equal to -Q

Suppose that P and @ are distinct points on an elliptic curve with P # —Q.
To add P to @, a line is drawn between the two points and extended until it
crosses the elliptic curve at the third point, —R. We recall that if either P or
Q is a point of tangency to the curve, then —R is that point of tangency. This
point —R is then reflected over the z-axis to its negative R. The addition of
points P and @ is defined to be: P+ @ = R. Figure 2 (left) gives an example
of this case.

Algebraically, the coordinates of R can be calculated as g = s2 —xp — zQ
and yr = —yp + s(zp — xr) where s = (yp — yg)/(xp — x¢) is the slope of
the line through P = (zp,yp) and Q = (g, y0).

Adding the points P and —P

The addition of the points P and — P poses a unique situation. The line through
the two points is a vertical line, which will not intersect the elliptic curve at
any third point, so we define P + (—P) = oo, the point at infinity. Figure 2
(right) gives an example of this case.

Doubling the point P

The doubling of a point P poses yet another unique situation. Instead of
drawing a line between two different points, the tangent line to the curve at
the point P is drawn and extended until it crosses the elliptic curve at one
other point, called —R. If the y-coordinate of P is zero, this tangent line will
be vertical and —R = oo so that we define 2P = P+ P = P+ (—P) = oo as
in the second case. Otherwise, as in the first case, point —R is reflected over
the z-axis to its negative, R. Thus, the doubling of the point P is defined to
be 2P = P 4+ P = R. Figure 3 illustrates both scenarios.

P =(1,1.732) on y* = 2® — 2z 44, P = (2.646,0) on 3> = 2® — Ta,
P+ P=R=(-1917,—-.890) P+P=c

Figure 3: Doubling a point P
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Algebraically, the coordinates of R can be calculated as g = s2 — 2zp and
yr = —yp + s(xp — xr) where s = (32% +a)/(2yp) is the slope of the tangent
line through P = (xzp,yp).

With our definition for addition on non-singular elliptic curves, it should
be clear that the group properties of closure, and commutativity are upheld.
The set has an identity element, which is the point at infinity, and every point
P has an inverse, as P 4+ (—P) = co. The axiom of associativity is not as clear
and is difficult to prove, but is sustained under this operation nonetheless [4].
Thus, an abelian group is formed.

Adding points on elliptic curves over 7,

The addition of points on elliptic curves over the real numbers is a good ap-
proach to see the underlying steps in performing the operation. However,
calculations prove to be slow and inaccurate due to rounding errors, and the
implementation of these calculations into cryptographic schemes requires fast
and precise arithmetic. Therefore elliptic curve groups over finite fields such as
Z,, when p > 3 is prime, are used in practice.

An elliptic curve with Z,, as its underlying field can be formed by choosing
a and b within the field Z,. Similar to the real case, the curve includes all
points (z,y) in Z, x Z, that satisfy the elliptic curve equation

v? =2+ ax +b mod p,

where x and y are numbers in Z,. Note that there are only finitely many points
on this type of curve.

As in the real case, if 4a® 4+ 27b? # 0 mod p, then the corresponding elliptic
curve forms a group [5]. This group consists of the points on the curve, along
with oo, the point at infinity. Again, we define the negative of the point
at infinity to be —oo = oo and the negative of a point P = (xp,yp) to be
—P = (zp, —yp mod p).

The arithmetic in an elliptic curve group over Z, is very similar to that
done algebraically with elliptic curve groups over the real numbers—the only
difference is that all calculations are performed modulo p (see [3]).

Adding distinct points P and (Q when P # —(Q

Suppose P = (zp,yp) and Q = (zg, yg) and that P # —Q. Let s be given by
s=(yp —yo)(@p — o)~ ! mod p. Then P+ Q = R, where

zp = (s> —2p —1x0) mod p and

yr = —yp + s(xp —xr) mod p.
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Adding the points P and —P
As before, we define P 4+ (—P) = oo.

Doubling the point P

If the y-coordinate of P is zero, modulo p, then P = —P. To double the point
P = (xp,yp) with yp # 0 mod p, let s be given by s = (32% + a)(2yp) !
mod p. We define 2P = P + P = R where

Tp = s> — 2zp mod p and

yr = —yp + s(xp — xr) mod p.

Example. Addition table for the points on 3% = 2% 4 5x + 4 over Z1;.

L+ 10,2109 [ (20 [ 40 [ (5,0 [(10,3)](10,8) ] oo |
((), 2) (5, 0) 00 (10, 8) (1(), 3) (O, 9) (2, 0) (4, O) (0, 2)
(0,9) 00 (5,0) | (10,3) | (10,8) | (0,2) | (4,0) | (2,0) | (0,9)
(2,0) (10,8) (10,3) 00 (5,0) (4,0) (0,9) (0,2) (2,0)
(4, O) (10, 3) (10, 8) (5, O) 00 (2, 0) (0, 2) (O, 9) (4, 0)
(570) (079) (072) (470) (270) o0 (1078) (1073) (570)
(10,3) (2,0) (4,0) (0,9) (0,2) (10,8) (5,0) 00 (10,3)
(10,8) (4,0) (2,0) (0,2) (0,9) (1(),3) 00 (5,0) (10,8)

0 (0, 2) (0, 9) (2, 0) (4, 0) (5, 0) (10,3) | (10,8) [e'e)

Elliptic curve cryptography

Having defined the addition of points on elliptic curves over Z,, we now look
at how to apply these ideas to the ElGamal scheme.

Elliptic curve cryptography scheme, using Alice and Bob

An ECC scheme is a form of public-key cryptosystem. Public-key cryptosys-
tems are a relatively new technology, developed in 1976 by Whitfield Diffie
and Martin Helman, both Stanford researchers. These cryptosystems involve
separate encryption and decryption operations. The encryption rule uses a
public key, while the decryption rule employs a private key. Knowledge of the
public key allows encryption of a message but does not permit decryption of
the encrypted message. The private key is kept secret so that only the intended
individual can decrypt the message [2].

ECC schemes use an elliptic curve E over a finite field such as Z,,, where p
is a very large prime, and involve both an encryption and decryption operation.
There are several public key schemes that can be used to encrypt and decrypt
messages, such as the Diffie-Hellman scheme, the Vanstone-Menezes scheme,
and the ElGamal scheme. We will look at the ElIGamal encryption and decryp-
tion scheme. For more on the ElGamal or other schemes, see [5, 6, 9].

The ElGamal public-key cryptosystem is based on the Discrete Logarithm
problem in Z7, the set of integers 1,2,...,p—1, under multiplication modulo p.
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The utility of the Discrete Logarithm problem in a cryptographic setting is that
finding discrete logarithms is difficult, but the inverse operation of exponenti-
ation can be computed efficiently [9]. In other words, if a person is given «, 3,
and a® = 8 mod p, then it is very difficult to figure out the exponent z. We
will use this idea in an ECC cryptosystem and perform the operations on an
elliptic curve over Z,. Note that in an elliptic curve group, o is interpreted as
adding « to itself z times.

This scheme will be demonstrated using Alice and Bob as sender and re-
ceiver of a secret message, respectively. Typically, the message consists of some
large secret number, which is subsequently used by the two parties to open a
conventional secure communication channel. The coordinates of the points on
the elliptic curve itself serve as a pool of numbers to choose from.

The encryption operation

Step 1: Bob chooses a point o on an elliptic curve E over some Z, and an
integer z between 1 and the order of the abelian group F.

Step 2: Bob computes 8 = za on the curve and publishes «, 3, E, and p.
He keeps his private key z secret.

Step 3: Suppose Alice wants to send a message to Bob. Alice picks an integer k
between 1 and the order of E, which will be her private key.

Step 4: To encrypt a message, Alice looks up Bob’s public key. As the message,
she selects a point x on the elliptic curve E. Next, Alice performs the
following encryption operation to encrypt the message:

ex(z, k) = (ka,z + kB) = (y1,y2)-

The encrypted message is y = (y1,y2); it includes Alice’s public key ;.

The decryption operation
Step 5: Alice sends Bob the encrypted message. To decrypt the message, Bob
uses the decryption operation:
d-(y1,y2) = y2 — zyh = (z + kB) — 2(ka) = z + k(za) — 2(ka) = =,
where z is Bob’s private key.

Note the interlocking of public and private keys here: Bob’s private key z will
decrypt this message correctly, because it matches his public key 8 = za, and
he can be sure that it was Alice who transmitted this message, since nobody
else is in possession of the private key k that matches her public key y; = ka.
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An example of the encryption and decryption operations

Step 1: E is the elliptic curve y? = 23 + 5z + 4 over Z;; (see table above),

a = (10,3), z = 3. Bob’s private key: z = 3.

Step 2: 0 = 3(10,3) = (10, 8).

Bob’s public key: a = (10,3), 3 = (10,8), y?> = 23 + 5z + 4 over Z1;.

Step 3: Alice chooses k = 2.

Step 4: Alice’s message is = (2,0), which is a point on the elliptic curve E.

y1 = 2(10,3) = (5,0).
The encrypted message is y = ((5,0), (4,0)).

Step 5: Beginning with y = ((5,0), (4,0)), Bob computes

The decrypted message is x = (2,0).
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