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Abstract Statistical clustering is an exploratory method for finding groups of
unlabeled observations in potentially high dimensional space, where each group
contains observations that are similar to each other in some meaningful way.
There are several methods of clustering, with the most common including hier-
archical clustering, k-means clustering and model-based clustering. Agreement
indices are quantitative metrics that compare two partitions or groupings of
data. In this paper, we introduce three clustering methods and compare their
results using different agreement indices, after being applied to Fisher’s iris
data, a classic clustering benchmark data set.

1 Introduction

The need to summarize data in an effective and efficient way is increasingly
important because of the vast amount of “big data” now available in most dis-
ciplines, including the humanities, social and behavioral sciences, health and
environmental sciences, and, of course, the natural sciences and engineering.
Statistical clustering is an exploratory method which allows data to be sum-
marized meaningfully by a relatively small number of clusters of objects or
observations. Data in each cluster resemble each other and differ from data in
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other clusters according to some criteria. If the data can validly be summa-
rized by a small number of clusters, then the cluster labels may provide a very
concise description of patterns of similarities and differences in the data.

A classification scheme may simply represent a convenient method for orga-
nizing a large data set so that it can be understood more easily and information
can be retrieved more efficiently. A variety of clustering methods have been
developed to accomplish this goal. In this paper, we discuss and compare hi-
erarchical clustering, k-means clustering, and model-based clustering. These
three clustering methods are the most commonly used due to their prominent
advantages in data mining, but since they are different methods, they will of-
ten produce different clustering solutions on the same dataset. We begin the
paper by introducing each method and their advantages and disadvantages.
We then illustrate the clustering solutions produced by these methods for the
benchmarking data set ‘iris’. Finally, in order to compare these solutions, we
utilize (and compare) three of the most commonly used agreement indices for
comparisons of partitions of data. These include the adjusted Rand index,
the Fowlkes-Mallows index, and the Jaccard index. Using these indices and a
known species classification for the iris, we determine the optimal clustering
solutions for the iris data.

2 Fisher’s Iris Data

Fisher’s famous iris data (Becker et al. [1988]) is a classic benchmarking dataset
used in machine learning. The data is made up of sepal and petal measurements
for 150 different iris flowers, 50 from each of three species: iris setosa, versicolor,
and virginica. Specifically, we will try to cluster the iris into their respective
species (true classification) using the sepal length and width and the petal
length and width (all measured in centimeters) of each flower.

Figure 1, shows two pairsplots illustrating the bivariate relationships be-
tween the four quantitative variables, without and with the consideration of
the species labels (colors). For all pairs of variables, two distinct groupings can
be identified. Recall, however, that there are 3 species that we want to recover
in the clustering. In the right pairsplot, the black, red and green observations
represent the observations in the species setosa, versicolor, and virginica, re-
spectively. The species setosa is well separated from the other species and
should be easily distinguished as a cluster. The species versicolor and virginica
have overlapping boundaries. Although in some subplots, these species appear
to form a large mixed cluster, the observations of versicolor and virginica can
still potentially be well discriminated. It can be inferred that the data intrin-
sically form 3 clusters, each representing the data of a species. This species
classification will be used as the true clustering labels, and serve as our com-
parison in the evaluation of the performance of different clustering methods.
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Figure 1: Pairsplots of the sepal length, sepal width, petal length, and petal
width from Fisher’s iris data, without and with consideration of iris species
(measurements in centimeters). Black, red, and green observations are from
species setosa, versicolor, and virginica respectively.

3 Statistical Clustering

Hierarchical clustering is a method that is motivated by finding the optimal
step at each stage in the progressive subdivision or synthesis of the data, where
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each step operates on a proximity matrix of some kind. Hierarchical clustering
techniques may be subdivided into agglomerative methods, which proceed by
a series of successive fusions of the n observations into clusters, and divisive
methods, which separate the n observations successively into finer clusterings
(Everitt et al. [2011]). Agglomerative hierarchical clustering is most commonly
used. In this method, each observation begins as its own singleton cluster and
the clusters are sequentially merged into larger clusters, until all elements are in
one final cluster. Deciding on which observations/clusters to combine requires
a metric space and linkage method. Both of these choices ultimately impact
the final clustering solution.

The choice of an appropriate metric will influence the shape of the clus-
ters, as some elements may be close to one another according to one distance
and farther away according to another. The choice of metric should reflect
how one wants to define similarity between observations or clusters, where
Euclidean and Manhattan distances are most commonly used. Define vectors
p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn). Then the Euclidean distance be-

tween p and q is defined as dE(p,q) = √∑n
i=1(pi − qi)2, and the Manhattan

distance is defined as dT (p,q) = ∑n
i=1 ∣pi − qi∣ (Daepp and Gorkin [2011]). Eu-

clidean distance is our typical notion of distance, described often by “as the
crow flies” distance, and Manhattan distance is often referred to as the “city
block” distance, because a grid-based path must be followed.

The linkage criterion (used with the chosen metric) determines the distance
between (sets of) observations as a function of the pairwise distance between
observations. The differences among linkage methods come from the defini-
tion of the links, namely the distance between observations from two distinct
clusters. In single-linkage, the distance between two clusters is defined as the
shortest distance between observations in each cluster. Single linkage is use-
ful in outlier identification, but it often creates “chaining,” where clusters are
combined in a sequential, chain-like fashion. In complete-linkage, the distance
between two clusters is defined as the longest distance between observations in
each cluster. Clusters found from complete linkage are often compact and of
the same size. In average-linkage, the distance between two clusters is defined
as the average distance between observations in one cluster to every object in
the other cluster. Average linkage is a compromise between single and complete
linkages. It joins clusters with small variances and is robust against outliers.
For all three linkages, two observations/clusters are merged based on the short-
est distance (most similar observations/clusters) calculated at each step, where
distance is defined by the choice of metric.

The biggest drawback of hierarchical clustering is that the method does not
produce a unique partition of data, but rather a hierarchy from which the user
needs to choose an appropriate number of clusters. A great advantage of the
method is that regardless of the dimensionality of the data, the results of a
hierarchical clustering solution are easy to visualize with a tree-like diagram
called a dendrogram (see Figure 2). In a dendrogram, each observation is
represented by a node at the bottom of the tree. In agglomerative fashion, the
most similar observations are linked and this process continues up the tree until
all of the observations are in one large cluster. The vertical distance between
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branches is proportional to the similarity of the merged clusters, where a greater
vertical distance indicates less similarity. Visually, a reasonable “cut point” for
the tree, producing a final clustering solution, can be chosen by looking for a
large vertical distance between branches of the dendrogram.

Hierarchical clustering with the two defined distances and three linkage
methods are applied to the iris data using the hclust function in the statistical
software R. Figure 2 shows an example dendrogram for hierarchical clustering
with complete linkage and Euclidean distance. As with the pairsplot, the node
color indicates the iris species. The dashed line provides a reasonable place to
cut the dendrogram to obtain a final 3-group clustering solution. It can be seen
that setosa species (black) is correctly clustered, but there is a mixture of the
virginica and versicolor species across the other two clusters.

Figure 2: Dendrogram for hierarchical clustering with complete linkage and
Euclidean distance of iris.

K-means clustering is a method of cluster analysis which aims to partition
n observations into k clusters, in which each observation is assigned to the
cluster of the nearest centroid. K-means is a rather straightforward, well known
algorithm for clustering observations. The main disadvantage of this algorithm
is that the user must specify the number of clusters (k) they wish to identify
prior to fitting the model. In practice, a range of values for k (usually 1 to
some maximum number) are used and a final model is chosen based on some
criterion (see Steinley [2006]).

For this method, each observation is thought of as being represented by
some feature vector in a d-dimensional space, d being the number of all fea-
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tures used to describe the objects to cluster. In that vector space the algorithm
randomly chooses k observations as starting values for the “k means”, namely
μ0
1, μ

0
2, . . . , μ

0
k, which serve as the initial centroids of the clusters. Next, typ-

ically using Euclidean distance, observations are assigned to the cluster with
the nearest centroid. A new centroid is computed for each cluster by aver-
aging the feature vectors of all assigned observations. The “k means” then
update to μ1

1, μ
1
2, . . . , μ

1
k. The process of assigning observations and recomput-

ing centroids is repeated until there is a negligible change in cluster centroids.
Specifically, if we let ε > 0, then the convergence of the algorithm is defined

as

√∑
i
(μj+1

i − μj
i)2 < ε, where j = 0,1,2, ... (Bottou and Bengio [1995]). A

k-means clustering solution is obtained by the final cluster assignment at con-
vergence.

K-means clustering with 2, 3 and 4 clusters is applied to the iris data using
the kmeans function in R. To visualize a k-means clustering solutions, a 2-
dimensional projection of the data is often required. Using the plot function
on a kmeans object will produce a visualization of the solution using the first two
principal components (see Pearson [1901]). As an example, Figure 3 provides a
3 cluster solution projected from 4 dimensions down to 2. We see that cluster
2 (setosa species) is well separated from the other two clusters, while clusters
1 and 3 have overlap.

Figure 3: Two-dimensional principal component projection of the k-means clustering
solution with k=3.
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Model-based clustering aims to optimize the fit of a mathematical model
to the observed data. Such methods are often based on the assumption that
the data are generated by a finite mixture of underlying probability distribu-
tions (McLachlan and Peel [2000]). This mixture model of subpopulations is
summarized by the following equation

f(x) = K∑
k=1

τkfk(x),
where each 0 < τk ≤ 1 and ∑K

k=1 τk = 1. Here, fk is the kth component den-
sity in the mixture, often assumed to be Gaussian with corresponding mean
and covariance matrix (μk, Σk), and τk is the proportion of the population in
component k, where k = 1, . . . ,K. It is often assumed that each component
or subpopulation in the mixture model maps to a cluster. The most widely
used approach to fit this mixture model is the Expectation Maximization (EM)
algorithm (Dempster et al. [1977]). In statistics, the EM algorithm is an it-
erative method for finding the maximum likelihood estimates of parameters in
statistical models, where the model depends on unobserved latent parameters
(here, τk, μk, and Σk, for k = 1, . . .K). The EM algorithm iterates between
an expectation (E) step and a maximization (M) step. To begin, the unknown
parameters are initialized for each cluster. This is often done by random as-
signment of observations to components, or by using a k-means solution. In the
E-step, the log-likelihood is calculated and every observation is given a prob-
ability of belonging to each cluster, calculated using Bayes’ Theorem. In the
M-step, parameter estimates are updated based on the maximum of the log-
likelihood estimates. The procedure iterates between steps until the mixture
model converges (defined similarly to the convergence of the k-means algo-
rithm).

Unlike k-means or hierarchical clustering, model-based clustering is para-
metric, meaning that a probability distribution must be chosen for model. The
choice of distribution is essential and needs to reflect the structure of the data.
For example, if the data has outliers, then a Gaussian mixture model will pro-
vide a poor fit and a mixture of t-distributions would be more appropriate. It
is also of importance to note that unlike the other clustering methods, model-
based clustering produces a soft assignment or partition of the data. That is,
rather than being assigned to one cluster with complete certainty (hard assign-
ment), an observation is given a vector of probabilities (soft assignment) whose
entries estimate the observation’s probabilities of belonging to each of the k
clusters, respectively. These probability vectors can be made into hard assign-
ments (e.g., for the purpose of applying agreement indices) by assigning an
observation to the cluster with the highest probability of membership (known
as maximum a posteriori estimation).

Estimating the covariance matrix Σk for high dimensional data can be ex-
tremely difficult. In some cases it is impossible. To reduce the number of
parameters that need to be estimated, the mclust package in R fits different
parameterizations of Σk. The 14 possible parameterizations are summarized
in Table 1 (Fraley et al. [2012]), where the name is indexed by three let-
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ters: the first position indicates the volume of the components, the second the
shape, and the third the orientation. The possible options for these positions
include ‘E’ for equal, ‘V’ for variable, or ‘I’ for identity matrix. While these
parameterizations are strictly for estimating the covariance matrix in Gaussian
mixture models, similar reduced parameterizations exist for mixtures of other
distributions.

Name Interpretation

“EII” spherical, equal volume
“VII” spherical, unequal volume
“EEI” diagonal, equal volume and shape
“VEI” diagonal, varying volume, equal shape
“EVI” diagonal, equal volume, varying shape
“VVI” diagonal, varying volume and shape
“EEE” ellipsoidal, equal volume, shape, and orientation
“EVE” ellipsoidal, equal volume and orientation
“VEE” ellipsoidal, equal shape and orientation
“VVE” ellipsoidal, equal orientation
“EEV” ellipsoidal, equal volume and equal shape
“VEV” ellipsoidal, equal shape
“EVV” ellipsoidal, equal volume
“VVV” ellipsoidal, varying volume, shape, and orientation

Table 1: Covariance parameterizations for fitting Gaussian mixture models in
mclust.

One benefit to using model-based clustering is that the method is built on a
mathematical model that can be optimized. Therefore, the number of clusters k
can be chosen by some information criterion. The Bayesian Information Crite-
rion (BIC, Schwarz [1978]) is most commonly used as it balances the maximum
number of parameters needed for the model (a result of the parameterization)
and overfitting the data, i.e., choosing too many clusters (Fraley and Raftery
[2002]). Note that the likelihood of model M can always be increased as the
number of clusters k tends to the number of observations n. Using a criterion
like the BIC to choose the number of clusters helps balance the complexity
of the model with the overall fit. For each parameterization of the covariance
matrix, mclust computes the BIC for the mixture model as follows

BIC(M) = 2 log(maximized likelihood of modelM)− ν log(n),
where ν is the number of independent parameters in model M. Then the
number of components/clusters that maximizes the BIC score is considered
the best clustering solution.

The BIC for model-based clustering solutions of the iris data are visualized
in Figure 4. The horizontal axis provides the number of components fit (k)
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and the vertical axis provides the BIC value. Each line represents a different
parameterization of the covariance matrix. The 2 cluster “VEV” (ellipsoidal
and equal shape) model has the maximum BIC of -561.73, among all models
fit. The 3-cluster solution for this same parameterization has a nearly identical
BIC value of -562.55.
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Figure 4: BIC values for of model-based clustering solutions of ‘iris’.

4 Agreement Indices

As discussed in the introduction, a clustering solution summarizes the data by
assigning class labels or cluster assignments to each observation. This produces
a hard partition of the data, in which each observation is assigned to a single
cluster with complete certainty. To compare clustering solutions to each other,
or to a set of true class assignments (if known), we need a measure for evaluating
the similarity of two partitions of the same data set. Agreement or performance
indices are measures of correspondence between two hard partitions of the
same data. There are numerous different agreement indices that all measure
similarity in different ways; typically, however, the higher the value of the index,
the greater the similarity between the partitions (Hubert and Arabie [1985]).
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We will focus on three of the most commonly used agreement indices: the
adjusted Rand, Fowlkes-Mallows, and Jaccard indices to compare the estimated
clustering solutions to the “true” clustering solution of the iris into their species.

To understand how these three performance indices are defined and calcu-
lated, consider two partitions P and Q of a dataset which contains n obser-
vations. Suppose partition P has r clusters p1, . . . , pr and partition Q has c
clusters q1, . . . , qc. Now let nij be the number of observations that are in both

cluster pi and cluster qj , for i ∈ {1, . . . , r}, j ∈ {1, . . . c}. Then ni. = c∑
j=1

nij

and n.j = r∑
i=1

nij give the number of observations in cluster pi and cluster qj

respectively. This notation is summarized in the contingency table provided in
Table 2.

P / Q q1 q2 ... qc Sums
p1 n11 n12 ... n1c n1.

p2 n21 n22 ... n1c n2.

... ... ... ... ... ...
pr nr1 nr2 ... nrc nr.

Sums n.1 n.2 ... n.c n

Table 2: Notation for the number of common observations in clusters between
two partitions P and Q.

Further, we can define a as the number of pairs of objects in the same
cluster in P and the same cluster in Q, b as the number of pairs of objects
in the same cluster in P but different clusters in Q, c as the number of pairs
of objects in the same cluster in Q but different clusters in P , and d as the
number of pairs of objects that are in different clusters in P and in Q. This
notation is summarized in Table 3. Note that a and d represent agreements
and b and c disagreements.

P /Q Same Cluster Different Clusters Sums
Same Cluster a b a + b

Different Clusters c d c + d
Sums a + c b + d n = a + b + c + d

Table 3: Describing cluster assignment of pairs of observations between two
partitions P and Q.

Relating the notation in Table 2 to that of Table 3, we have the following:

a = ∑
i

∑
j

(nij

2
), b = ∑

i

(ni.

2
) − a, c = ∑

j

(n.j

2
) − a, d = (n

2
) − a − b − c.
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An advantage to counting pairs of observations in the same clusters, rather
than individual observations, is that you can still find some agreement when a
solution splits a cluster into finer clusters, or when a solution combines clusters
into a larger cluster.

The Rand index (RI) is calculated by a+d
(n
2
) and is bounded between 0 and

1. In practice, the RI does not span its range and will only approach 1 as
the number of clusters increases (Steinley [2004]). Furthermore, the RI does
not have a closed form for its expectation. Due to these limitations, several
extensions of the RI have been proposed.

The adjusted Rand index (ARI), proposed by Hubert and Arabie corrects
the Rand index for chance by subtracting off the expected value of the index
and dividing by the maximum value minus the expectation (Hubert and Ara-
bie [1985]). The the maximum value of the ARI is still 1, indicating perfect
similarity between the 2 partitions, and the expected value under random par-
titioning is 0 (Steinley [2004]). In instances of extreme dissimilarity between
two partitions, the ARI will be negative. The ARI is defined as

ARI = Index −Expected[Index]
Max[Index] −Expected[Index]

= ∑i∑j (nij

2
) −∑i (ni.

2
)∑j (n.j

2
)/(n

2
)

1
2
[∑i (ni.

2
) +∑j (n.j

2
)] −∑i (ni.

2
)∑j (n.j

2
)/(n

2
)

= (n
2
)(a + d) − [(a + b)(a + c) + (c + d)(b + d)](n

2
)2 − [(a + b)(a + c) + (c + d)(b + d)]

= a + d −C
a + b + c + d −C ,

where C = (a + b)(a + c) + (c + d)(b + d)(n
2
) .

The Jaccard index is defined for any two sets (or partitions) as the size of
the intersection divided by the size of the union, and is defined as

Jaccard = ∣P ∩Q∣∣P ∪Q∣ = a

a + b + c .
It is easy to see that the Jaccard Index is bounded between 0 (no similarity)

and 1 (perfect similarity).

The Fowlkes-Mallows index is another index (Fowles and Mallows [1983])
bounded between 0 and 1 that measures the agreement between two partitions
as follows

FM =√ a

a + b ⋅ a

a + c .
To get a better understanding of the above indices, consider the example

shown in Table 4.
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P / Q q1 q2 q3 Sums
p1 1 1 0 2
p2 1 2 1 4
p3 0 0 4 4

Sums 2 3 5 10

Table 4: Illustrative example for calculating agreement indices.

Counting the pairs of common observations in the same clusters in two
clustering solutions P and Q according to Table 3, we have a = (2

2
) + (4

2
) = 7,

b = (2
2
) + (4

2
) + (4

2
) − 7 = 6, c = (2

2
) + (3

2
) + (5

2
) − 7 = 7, and d = (10

2
) − 7 − 6 − 7 = 25.

Then we can calculate the performance indices to evaluate the similarity of
partitions P and Q:

ARI = 7 − 14 ⋅ 13/45
1
2
(14 + 13)/45 = 0.313, Jaccard = 7

7 + 6 + 7 = 0.350,
and FM =√ 7

7 + 6 ⋅ 7

7 + 7 = 0.519.
Typically, the values of these indices are not compared, because they are

measuring similarity of partitions in different ways. It is worth noting, however,
that the Fowlkes-Mallows index will always be greater than or equal to the
Jaccard index:

FM =√ a

a + b ⋅ a

a + c ≥√ a

a + b + c ⋅ a

a + c + b = a

a + b + c = Jaccard.
Through our application of these indices to data, we believe that the Fowlkes-

Mallows index will also be greater than or equal to the ARI, while there will
not be a particular relationship between the ARI and the Jaccard index.

5 Evaluating Clustering Solutions

Now we can measure the agreement between each clustering solution and the
true classification of species using each agreement index. Tables 5 and 6 sum-
marize the values of the agreement indices for hierarchical clustering solutions
with Euclidean and Manhattan distance respectively. In both of these tables,
as expected, the Fowlkes-Mallows index is larger than the ARI and Jaccard in-
dices for all linkage methods and number of clusters, while the ARI and Jaccard
indices are not significantly different. For single linkage, the number of clusters
in the solution does not have an impact on any of the agreement indices. This
is likely because single linkage is often characterized by “chaining” and so the
addition of a new cluster, often means a single observation is added to a clus-
ter. For complete linkage, the 3-cluster solution has greater similarity with the
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species classification (regardless of agreement index used) than the 2-cluster or
4-cluster solutions. For average linkage, the 3-cluster solution has a slightly
larger value for all three performance indices than the 4-cluster solution. In
comparing the indices across distance metrics (Tables 5 and 6), there are small
differences for single and average linkages. Complete linkage, however, offers
the largest differences, where the 2-cluster solution using Euclidean distance is
better at recovering the true classifications than Manhattan distance, but the
opposite is true for the 3-cluster and 4-cluster solutions.

To summarize, solutions using Manhattan distance have greater similarity
with true species assignment than those using Euclidean distance for single
and complete linkages. Average linkage overall tends to produce more accu-
rate clustering solutions, which are not significantly impacted by the choice of
distance metric. Overall the 3-cluster hierarchical clustering solution produced
using Euclidean distance and average linkage is most similar to the true species
classification of the iris. It is also worth noting that the number of clusters
producing the optimal solution is consistent across all three agreement indices,
for any combination of linkage and distance metric.

Method Number of Clusters ARI Fowlkes-Mallows Jaccard

2 0.568 0.771 0.595
Single 3 0.564 0.764 0.589

4 0.562 0.760 0.586

2 0.422 0.665 0.482
Complete 3 0.642 0.769 0.622

4 0.589 0.720 0.562

2 0.568 0.771 0.595
Average 3 0.759 0.841 0.725

4 0.729 0.818 0.692

Table 5: Agreement indices comparing hierarchical clustering solutions with
Euclidean distance to the iris species.

Table 7 shows the values of the agreement indices for k-means clustering
solutions. For this clustering method, the choice of agreement index impacts
which k produces the optimal clustering solution, and the 3-cluster solution is
never optimal. The ARI indicate the most similarity in the 2-cluster solution,
whereas the Fowlkes-Mallows index is greatest for the 4-cluster solution. The
Jaccard index finds equivalent similarity among the 2-cluster and 4-cluster so-
lutions. Recall that a 2-cluster solution is reasonable given the overlap between
the versicolor and virginica species. The 4-cluster k-means solution separates
the distinct setosa species into two smaller clusters.
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Method Number of Clusters ARI Fowlkes-Mallows Jaccard

2 0.568 0.771 0.595
Single 3 0.566 0.767 0.592

4 0.564 0.763 0.589

2 0.245 0.607 0.403
Complete 3 0.732 0.824 0.700

4 0.656 0.761 0.608

2 0.568 0.771 0.595
Average 3 0.745 0.831 0.710

4 0.715 0.808 0.678

Table 6: Agreement indices comparing hierarchical clustering solutions with
Manhattan distance to the iris species.

k ARI Fowlkes-Mallows Jaccard

2 0.616 0.733 0.573
3 0.433 0.664 0.485
4 0.540 0.750 0.572

Table 7: Agreement indices comparing k-means clustering solutions to the iris
species.

Finally, Table 8 shows the agreement indices for model-based clustering so-
lutions of the “VEV” parameterization of the iris data. Though the BIC selects
the 2-cluster “VEV” model as the optimal clustering solution, all three perfor-
mance indices show the most similarity with the true species classifications for
“VEV” with three clusters. The values of the agreement indices are very close
to 1, indicating that these are the most similar partitions.

Number of Clusters ARI Fowlkes-Mallows Jaccard

2 0.568 0.771 0.595
3 0.904 0.936 0.879
4 0.805 0.867 0.763

Table 8: Agreement indices comparing the “VEV” model-based clustering so-
lutions to the iris species.

The most accurate clustering solutions for recovering species for Fisher’s
famous iris data are for hierarchical clustering, the 3-cluster solution with av-
erage linkage and Euclidean distance; for k-means clustering, the solution with
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2 or 4 clusters; and for model-based clustering, the 3-cluster, “VEV” param-
eterization. Among these three, model-based clustering produced the solution
the highest overall agreement with the true iris species classification.

6 Summary

This paper introduced three of the most commonly used clustering methods:
hierarchical clustering, k-means clustering, and model-based clustering; as well
as three performance indices: the adjusted Rand index, the Jaccard index and
the Fowlkes-Mallows index. The three clustering methods were used to cluster
the iris dataset and their performances were measured with all three indices.
After comparing the performance indices of the various clustering solutions, it is
concluded that model-based clustering with 3 clusters (model ‘VEV’) produces
a clustering solution that best recovers the true classification of iris into species.

A comparison of this nature is only possible because we can compare our
clustering solution with “true” known labels. Clustering is an exploratory
technique and when performing these methods on data without a true classi-
fication, it is not always clear which method will be best. A simulation that
closely resembles the real data can help a researcher choose the most appro-
priate method. Additionally, the type of data can help dictate the method -
for example, if there is a nested structure, then one would naturally choose
hierarchical clustering.

Agreement indices can also be used to compare the similarity of clustering
solutions produced for different numbers of clusters, using the same method
or across methods as an additional way to understand the relationships of the
methods and indices. While we have presented work on the most common
clustering methods and agreement indices, there are many others left to be
explored.
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