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Abstract The work in this paper was motivated by the question that Richard E.
Schwartz posed in 2008: “Are the metric spaces (Z, d2) and (Z, d3), where dg is the
word metric associated with the infinite generating set {±gn∣n = 0,1,2, . . .}, quasi-
isometric?”

In this paper, we recover several known results with novel methods, and derive new
results. First, we show that the associated Cayley graphs, C2 = Cay(Z,{±2n}) and
C3 = Cay(Z,{±3n}), of these metric spaces are not isometric. Then the bi-Lipschitz
equivalence between them is considered. Next, a few properties (hyperbolicity, metric
ends, and asymptotic dimension) are discussed and it is demonstrated why these
properties cannot be used to answer Schwartz’s question. Finally, the main results
prove that particular types of maps (among them polynomial maps with rational
coefficients) are not quasi-isometries between C2 and C3.
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Introduction

One of the unsolved problems in geometric group theory states:

[13, Problem 2] Let a and b be integers greater than 1, and let da and db be
the metrics on Z associated with the generating sets A = {ai}∞i=0 and B = {bj}∞j=0,
respectively. Are the metric spaces (Z, da) and (Z, db) quasi-isometric?

Richard E. Schwartz first posed a particular case of this problem in 2008 [14,
Problem 6]: Are the metric spaces (Z, d2) and (Z, d3) quasi-isometric? This question
is still open and motivated the work in this paper.

Let G be a group with identity e, and let S be a (finite or infinite) set of generators
for G. By convention [5, p. 78], we will assume that S does not contain e and is
symmetric, i.e., s ∈ S if and only if s−1 ∈ S. A word with respect to S is a finite sequence
of elements from S (possibly with repetition). The word length of an element g ∈ G
(g ≠ e) with respect to S, lS(g), is the smallest positive integer n such that there exists
a sequence (s1, s2, . . . , sn) of elements of S, so that g = s1s2⋯sn. Define lS(e) = 0.
The function lS ∶ G→ N0 defined above is called a length function.

The length function induces a metric dS ∶ G × G → N0 on G, called the word
metric, defined by

dS(x, y) = lS(x−1y).

The word metric on G depends on the generating set S. However, the word metric on
finitely generated groups is unique up to quasi-isometry (defined below) [5, Proposi-
tion IV.22(i)]. Since dS obtains just integer values, (G,dS) is a discrete metric space.
Hence, a group G is viewed as a geometric object by looking at the corresponding
Cayley graph of G. The Cayley graph of G, Cay(G,S), is the graph whose vertex set
is G and the set of edges consists of (g1, g2) ∈ S×S such that dS(g1, g2) = 1. Cay(G,S)
can be made into a metric space by first making each edge a metric space isometric
(by the natural identification) to the segment [0,1], then defining the length of a path
between two vertices in a natural way, and finally defining the distance between two
points to be the minimum of the lengths of all paths between these two points of the
graph. Now the word metric on G is defined using its corresponding Cayley graph:
for given g1, g2 ∈ G, dS(g1, g2) is the length of the shortest path in the Cayley graph
between the vertices represented by g1, g2, i.e., the number of edges of the shortest
path between these vertices. This minimal-length edge path joining g1 and g2 is called
a geodesic path. Thus, Cay(G,S) is a geodesic metric space [5, Example IV.18(ii)].
Please refer to P. de la Harpe [5] and J. Meier [12] for more details.

In this paper, the additive group Z with the infinite generating sets {±gn ∣ n ∈ N0},
g ∈ Z+, (in particular, for g = 2,3) is discussed. The corresponding word metric dg on
each of these spaces is described by Melvyn B. Nathanson in [14]. Nathanson showed
that every integer n has a unique representation (called special g-adic representation

of n) in the form n =
∞

∑
i=0
εig

i, such that:

1. [14, Theorem 3] if g is even, then

(a) εi ∈ {0,±1,±2, . . . ,±g/2} for all i ∈ N0,

(b) εi ≠ 0 for only finitely many nonnegative integers i,

(c) if ∣εi∣ = g/2, then ∣εi+1∣ < g/2 and εiεi+1 ≥ 0;

2. [14, Theorem 6] if g is odd (g ≥ 3), then

(a) εi ∈ {0,±1,±2, . . . ,±(g − 1)/2} for all i ∈ N0,

(b) εi ≠ 0 for only finitely many nonnegative integers i.
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In addition, Nathanson proved that dg(n,0) = lg(n) = ∑∞

i=0 ∣εi∣ in the metric space
(Z, dg), where dg is the word metric associated with the generating set {±gi ∣ i ∈ N0}.§

We will call this distance formula Nathanson’s length formula. Specifically, Nathanson
showed that every integer has a unique 2-adic representation (of shortest length) as a
finite sum and differences of distinct powers of 2 in which no two consecutive powers
of 2 occur [14, Theorem 4]. In addition, he proved that every integer has a unique
3-adic representation (of shortest length) as a finite sum and differences of distinct
powers of 3 [14, Theorem 7].

Next we describe several levels of similarities between metric spaces [11]: Let
(X,dX) and (Y, dY ) be given metric spaces.

A map f ∶X → Y is an isometry if it is onto and an isometric embedding, i.e.,

dY (f(x), f(x′)) = dX(x,x′) for all x,x′ ∈X.

The metric spaces X and Y are isometric if there exists an isometry between them.

Isometry is the strongest type of similarity between metric spaces that preserves
the local information of the spaces. The more general notion is the bi-Lipshitz equiv-
alence.

The map f ∶X Ð→ Y is a bi-Lipschitz embedding if there is a constant k ≥ 1 such
that for all x,x′ ∈X,

1

k
dX(x,x′) ≤ dY (f(x), f(x′)) ≤ k dX(x,x′).

If, in addition, f is a bijection, then the map f is called a bi-Lipschitz equivalence.
The metric spaces X and Y are bi-Lipschitz equivalent if there exists a bi-Lipschitz
equivalence between them.

Note that bi-Lipschitz equivalence also preserves local information of the spaces.

The concept of quasi-isometry we are interested in compares metric spaces based
on the large scale shape (coarse structure) of the spaces (without preserving the local
information of the spaces in question).

A map f ∶ X Ð→ Y is a quasi-isometry if it is a quasi-isometric embedding, i.e.,
there are constants k ≥ 1, c ≥ 0 such that for all x,x′ ∈X,

1

k
dX(x,x′) − c ≤ dY (f(x), f(x′)) ≤ kdX(x,x′) + c,

and it has a quasi-dense image, i.e., there is a constant L ∈ R+ such that

(∀y ∈ Y ) (∃x ∈X) dY (f(x), y) ≤ L.

The metric spaces X and Y are quasi-isometric if there exists a quasi-isometry be-
tween them.

Note that for uniformly discrete metric spaces, a quasi-isometry is a bi-Lipschitz
equivalence if and only if it is a bijection.

As noted above, the notion of distance on a group is independent of a given finite
generating set up to quasi-isometry, i.e., if G is a group and S and S′ are two finite
generating sets, then (G,dS) and (G,dS′) are quasi-isometric. Note that in this
case, the corresponding Cayley graphs are locally finite, i.e., every vertex has a finite
number of edges to which it is incident.

§Note that the generating sets in Nathanson’s paper include the additive identity 0, but
that does not affect Nathanson’s results used in this paper (namely, the zero was not used
in computing the distance with Nathanson’s length formula).
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But the generating sets of the additive group of integers discussed in this paper are
infinite generating sets, which means this result does not apply to them. Moreover,
the corresponding Cayley graphs are not locally finite graphs.

For these two spaces, C2 = Cay(Z,{±2n}) and C3 = Cay(Z,{±3n}), it was already
known that they are not isometric, that neither one is hyperbolic, that both are one
ended [10], that both have infinite asymptotic dimension, and that the identity map
is not a quasi-isometry of the graphs [3, 13]. In the next section, we give a new
proof that C2 = Cay(Z,{±2n}) and C3 = Cay(Z,{±3n}) are not isometric using
Nathanson’s length formula. In addition, what is known and unknown about these
two spaces in terms of being bi-Lipschitcz equivalent is discussed. In the following
section, properties such as hyperbolicity, metric ends, and the asymptotic dimension
are considered. We give novel proofs that both metric spaces are not hyperbolic and
have infinite asymptotic dimension, and in addition, we survey what is known about
C2 and C3 in terms of the other property. As a result of these discussions, these
properties cannot be used to distinguish between the two metric spaces C2 and C3 in
terms of quasi-isometry.

Our final section contains the main results. We consider two kinds of maps that
are natural candidates for a quasi-isometry between (Z, d2) and (Z, d3). The first
is a map in terms of the coefficients in the special 2- and 3-adic representations,
and the second is an arbitrary polynomial with rational coefficients. We prove that
neither can provide the needed quasi-isometry, because both fail to be quasi-isometric
embeddings.

C2 and C3 are not isometric

In this section, we first explore these two spaces by looking at their properties more
locally. Namely, before we look at the more general notion of quasi-isometry, we start
our investigation of these spaces by proving that they are not isometric.

Remark 1. Note that by definition, isometry implies quasi-isometry.

Remark 2. The metric d3 is translation invariant, since by definition

d3(a + c, b + c) = l3(a + c − (b + c)) = l3(a − b) = d3(a, b).

Thus, given a map f ∶ (Z, d2) → (Z, d3), for any map g ∶ (Z, d2) → (Z, d3) defined
with g(x) = f(x) +M , M ∈ Z, it follows that d3(f(x), f(y)) = d3(g(x), g(y)), for any
x, y ∈ Z. Hence, f is a (quasi-)isometry if and only if g is a (quasi-)isometry.

Theorem 3. The spaces C2 and C3 are not isometric.

Proof. ¶ Suppose there exists an isometry f ∶ (Z, d2) → (Z, d3). Without loss of
generality by Remark 2, assume that f(0) = 0. Let k ∈ N0. Then

d2(2k+1,0) = d3(f(2k+1),0) = 1 and d2(2k,0) = d3(f(2k),0) = 1

Hence, f(2k+1) = ±3s and f(2k) = ±3r, for some r, s ∈ N0. Since f is injective,
f(2k+1) ≠ f(2k).

¶M. Duchin alerted us that it could be seen why C2 and C3 are not isometric, by looking
at particular triangles: C2 has triangles such as (0, 1, 2), but C3 does not have any such
triangles (since the sum of two powers of three can’t be a power of three). This can be
fully demonstrated by the interested reader. The proof presented here is a new proof as an
application of Nathanson’s length formula.
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Consider the following two cases:

Case 1: Let r = s. Then, f(2k+1) = −f(2k). Therefore ∣f(2k+1) − f(2k)∣ = 2 ⋅ 3s =
−3s + 3s+1. Hence, by [14, Theorem 7] d3(f(2k+1), f(2k)) = 2.

Case 2: Let r ≠ s. Then f(2k+1) − f(2k) = ±3r ± 3s. Thus, by [14, Theorem 7]
d3(f(2k+1), f(2k)) = 2.

In either case, a contradiction is reached since by definition of isometry

d3(f(2k+1), f(2k)) = d2(2k+1,2k) = 1.

Hence, f cannot be an isometry between (Z, d2) and (Z, d3).

By Remark 1 and Theorem 3 it follows that C2 and C3 are not isometric, but
they may still be quasi-isometric.

Next, we discuss the more general notion of isometry: the bi-Lipschitz equivalence.

As was mentioned before, for some discrete metric spaces (such as the ones dis-
cussed in this paper), bi-Lipschitz equivalence is the same as quasi-isometry.

Nathanson proved that the identity map id ∶ (Z, da) → (Z, db) (where a, b ∈
Z, a, b > 1 and da and db are the metrics associated with the generating sets {±ai}∞

i=0

and {±bi}∞
i=0

respectively) is a bi-Lipschitz equivalence if and only if an = bm, for

some m,n ∈ Z+ [13, Theorems 3.1, 3.2]. Hence, the identity map between C2 and
C3 is not a bi-Lipschitz equivalence, i.e., quasi-isometry, since 2n ≠ 3m, for n,m ∈ Z+.
However, it is still an open question whether C2 and C3 are bi-Lipschitz equivalent
(i.e., quasi-isometric).

The natural question to ask next was: Can a quasi-isometric invariant be found
that can be used to distinguish between C2 and C3? This is the subject of the next
section.

Properties of C2 and C3

This section discusses a few properties that are known to be quasi-isometric invariants
(properties of metric spaces that are preserved under quasi-isometry).

The first property discussed is the hyperbolicity (which is a quasi-isometric in-
variant for all geodesic metric spaces [1, Corollary 2.26]).

Gromov [7] introduced hyperbolicity of a metric space in the late 1980s. The
definition of hyperbolicity used here is equivalent to the one given in [7] (see page 2
of [4]).

Let Γ = {V (Γ),E(Γ)} be a graph with vertex set V (Γ) and edge set E(Γ). For
any a, b ∈ V (Γ), let d(a, b) denote the distance given by the minimal-length edge path
from a to b.

The metric space Γ is δ-hyperbolic for some non-negative real number δ if it
satisfies Gromov’s four point condition [2].

Let a, b, c, d ∈ V (Γ). Define M1, M2, and M3 as

M1 = d(a, b) + d(c, d)
M2 = d(a, c) + d(b, d)
M3 = d(a, d) + d(b, c).

Let M and N be the two largest values among M1, M2, M3 with M ≥ N .
Define

hyp(a, b, c, d) =M −N.
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Note that hyp(a, b, c, d) = 0 whenever two elements among a, b, c, d are equal.
The graph Γ is δ-hyperbolic for δ ≥ 0 if

δ ≥ 1

2
hyp(a, b, c, d), for any a, b, c, d ∈ V (Γ),

i.e., δ ≥ 1

2
maxa,b,c,d∈V (Γ){hyp(a, b, c, d)}.

Γ is hyperbolic if it is a δ-hyperbolic for some δ ≥ 0.

Theorem 4. The Cayley graph Cg = Cay(Z, dg) (where g ∈ N and g ≥ 2) is not
hyperbolic.

Proof. Assume that Cg is δ-hyperbolic. Take n ∈ N such that n > δ. Let

a =
2n+1

∑
i=0

g2i, b =
2n+1

∑
i=n+1

g2i, c =
n

∑
i=0

g2i, and d = 0.

By Nathanson’s length formula we have

dg(a, b) = dg(a, c) = dg(b, d) = dg(c, d) = n + 1,

and dg(a, d) = dg(b, c) = 2n + 2.

Thus,

M1 = dg(a, b) + dg(c, d) = 2n + 2

M2 = dg(a, c) + dg(b, d) = 2n + 2

M3 = dg(a, d) + dg(b, c) = 4n + 4.

Then M =M3 and N =M1 =M2. Hence,

1

2
hyp(a, b, c, d) = 1

2
(M −N) = 1

2
[4n + 4 − (2n + 2)]

= n + 1

> δ.

This contradicts the assumption and proves the theorem.

Thus, by Theorem 4 it follows that neither graph C2 nor C3 is hyperbolic.
Another property discussed involves the metric ends (which is also a quasi-isometric

invariant [9, Theorem 6]).
Let Γ be a graph. A ray in Γ is a sequence (x0, x1, . . .) of distinct vertices xi of

Γ, such that xi and xi+1 are adjacent for i ≥ 0. A set of vertices F separates vertices
x and y in Γ if every path from x to y contains a vertex of F . The set F separates
sets of vertices A and B if it separates any vertex in A from any vertex in B.

A ray is metrically transient if every infinite subset of vertices has an infinite
diameter. Two metrically transient rays are equivalent if they cannot be separated
by a bounded set of vertices. The metric ends of a graph are equivalence classes of
metrically transient rays. (For more details on metric ends refer to [10]).

Krön showed that Cg, g ∈ N, g > 1 has one metric end [10, Example 3.16]. There-
fore, C2 and C3 have one metric end, thus sharing the same quasi-isometric invariant.

The third property that we discuss in this section is the asymptotic dimension
of a metric space X, defined by Gromov [6]. The asymptotic dimension is a coarse
invariant [15], i.e., this property is preserved under coarse equivalence (a more general
equivalence than the quasi-isometry).
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A metric space X has asymptotic dimension ≤ n if, for every d > 0, there is an
R > 0 and n + 1 d-disjoint, R-bounded families U0, U1, . . . , Un of subsets of X such
that ⋃ni=0 Ui is a cover of X.

A family U of subsets of X is R-bounded if sup{diamU ∣ U ∈ U} ≤ R.
Also, U is said to be d-disjoint if d(x, y) > d whenever x ∈ U, y ∈ V , U ∈ U , V ∈ U ,

and U ≠ V .
It is known that metric spaces containing an isometrically embedded copy of Zn

for every n cannot have a finite asymptotic dimension [15, Remark 9.20]. We use this
fact to provide a novel proof that the asymptotic dimension of C2 and C3 is infinite.

Theorem 5. Cg, g = 2,3, contains an isometrically embedded copy of Zn for every
n.

Proof. � Consider C2 and the set S = {22k ∣ k = 0,1,2, . . .}. Partition S into n disjoint
subsets of form

Si = {. . . , si−2, s
i
−1, s

i
1, s

i
2, . . .},

where for every j ∈ Z, sij ∈ S. Define a map f ∶ Zn → C2 as follows:

f(m1,m2, . . . ,mn) = ∑
i

mi>0

(si1 + si2 + ⋅ ⋅ ⋅ + simi
) + ∑

j
mj<0

(sj
−1 + s

j
−2 + ⋅ ⋅ ⋅ + s

j
mj

).

The 1-1 property of this map follows from the definition of the set S and the way it
was partitioned, as well as the uniqueness of the special 2-adic representations of the
integers. It can easily be seen that the map is distance preserving:

d((0,0, . . . ,0), (m1,m2, . . . ,mn)) =
n

∑
i=1

∣mi∣ = d2(0, f(m1,m2, . . . ,mn)),

where d is the usual word metric on Zn with the usual set of generators. Hence, Zn
is isometrically embedded in C2.

Similarly, it can be shown that C3 contains an isometrically embedded copy of Zn
for every n, by partitioning the set S = {3k ∣ k = 0,1,2, . . .}.

Hence, C2 and C3 here have the same asymptotic dimension as well.
The discussion in this section shows that the most common quasi-isometry invari-

ants fail to distinguish between C2 and C3.

Maps that fail to be quasi-isometries between C2

and C3

This section contains the main results of this paper. Namely, a few maps between
the spaces C2 and C3 will be considered. It will be proved that they are not quasi-
isometries.

Note that Nathanson [13] proved that the identity map between C2 and C3 is not
a quasi-isometry. Here, other maps will be considered and it will be shown they fail
to be quasi-isometries since they fail to be quasi-isometric embeddings.

Theorem 6. Let f ∶ (Z, d2) → (Z, d3) be a map defined with

f(a) =
∞

∑
i=0

εi3
i,

�The idea used here was provided by Z. Šunić.
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where a =
∞

∑
i=0
εi2

i ∈ Z, satisfying the conditions of [14, Theorem 3].

Then f is not a quasi-isometry.

Proof. Assume that f , as defined above, is a quasi-isometry.
Then there exist constants k ≥ 1 and c ≥ 0, such that

1

k
d2(a, b) − c ≤ d3(f(a), f(b)) ≤ kd2(a, b) + c.

Choose n ∈ N such that n > 2k + c. Then take a = 1 + 2 + 22 + ⋅ ⋅ ⋅ + 2n−1 and
b = 0. By Nathanson’s length formula for C2, d2(a,0) = l2(2n − 1) = 2. In addition,
by Nathanson’s length formula for C3,

d3(f(a), f(0)) = l3(1 + 3 + 32 + ⋅ ⋅ ⋅ + 3n−1) = n.

Thus,
n = d3(f(a), f(b)) ≤ kd2(a, b) + c = 2k + c,

which contradicts the way n was chosen (n > 2k+ c). Thus, f is not a quasi-isometry.

Next, we adopt the idea of Duchin and White [3] to use the fact that 2 is a
primitive root mod 3n to compare d2 and d3.

Lemma 7. [8, Lemma 3.5] Let f(x) be a polynomial in Z[x]. If a, b ∈ Z such that
a ≡ b mod m for some m ∈ N, then f(a) ≡ f(b) mod m.

Recall that Un is the multiplicative group of units of Zn.

Theorem 8. [8, Theorem 6.7 (Part c of the proof)] Let q ∈ N be an odd prime. If g
is a generator of the group Uq2 , then g is a generator of the group Uqe for all e ≥ 2.

Corollary 9. The element 2 is a generator of the group U3e for all e ≥ 2.

Proof. It follows immediately from Theorem 8, since 2 is a generator of U9.

Lemma 10. Let f(x) ∈ Z[x]. If the set A = {d3(f(a),0) ∣ a ∈ N} is unbounded above,
then f fails the upper bound of the quasi-isometric embedding condition. Namely,
there do not exist constants k ≥ 1 and c ≥ 0 such that,

d3(f(a), f(b)) ≤ kd2(a, b) + c,

for all a, b ∈ Z.

Proof. Let k ≥ 1 and c ≥ 0 be given. Since the metric d3 is translation invariant by
Remark 2, take f(0) = 0.

Since A is unbounded above, we can choose a ∈ N such that d3(f(a),0) > 3k + c.
Take m ∈ N so that 3m > max{a, ∣f(a)∣}. There are two cases for a:

Case 1. a ∈ U3m . By Corollary 9, choose l ∈ N such that 2l ≡ a mod 3m. Then by
Lemma 7,

f(2l) ≡ f(a) mod 3m. (1)

Note that the condition 3m > ∣f(a)∣ implies that in Nathanson’s special representation
of f(a) the largest power of 3 has an exponent that is less or equal to m. The equation
(1) implies that f(2l) = f(a) + n3m, for some n ∈ Z. Using Nathanson’s algorithm
[14, p. 2011] for obtaining the special 3-adic representation of f(2l), we see that
adding n3m to the special 3-adic representation of f(a) adds/subtracts powers of
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form 3j , for j ≥ m. Hence, the addition of n3m can remove only the 3m term from
the representation of f(a) and

d3(f(2l),0) ≥ d3(f(a),0) − 1

> 3k + c − 1

≥ k + c

= kd2(2l,0) + c.

Hence, the upper bound of the quasi-embedding condition fails.

Case 2. a ∉ U3m . Then 3∣a, i.e., a = 3s for some s ∈ Z+, hence (a−1) is an element
of U3m . Therefore, we can choose j ∈ N such that 2j ≡ (a−1) mod 3m. By arguments
similar to those in Case 1, we obtain

d3(f(2j + 1),0) ≥ d3(f(a),0) − 1

> 3k + c − 1

≥ 2k + c

= kd2(2j + 1,0) + c.

Again, the upper bound of the quasi-embedding condition fails.

In either case, we found integers for which the upper bound of the quasi-embedding
condition for the constants k and c fails.

Lemma 11. Let a, b ∈ Z. Then for any positive integer m, d3(ma,mb) ≤md3(a, b).

Proof. Since the metric d3 is translation invariant by Remark 2, take b = 0.

Let a ∈ Z have the special 3-adic representation,

a = ε0 + ε13 + ⋅ ⋅ ⋅ + εn3n,

where εi ∈ {0,±1} and n is some nonnegative integer. Let

n

∑
i=0

∣εi∣ = k.

Hence d3(a,0) = k. Then,

ma = =m(ε0 + ε13 + ⋅ ⋅ ⋅ + εn3n)
=mε0 +mε13 + ⋅ ⋅ ⋅ +mεn3n. (2)

Notice that equation (2) shows one representation of ma using

n

∑
i=0

m∣εi∣ =m
n

∑
i=0

∣εi∣ =mk

elements of the generating set S3. Thus, d3(ma,0) ≤mk =md3(a,0).

Lemma 12. Let f ∶ Z → Z be a nonconstant polynomial with integer coefficients.
Then the set A = {d3(f(a),0) ∣ a ∈ N} is unbounded above.
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Proof. Assume the set A is bounded above and m = maxA. Then there exists a ∈ N,
such that d3(f(a),0) =m, i.e.,

f(a) = ε13e1 + ⋅ ⋅ ⋅ + εm3em ,

where εi ∈ {±1}. Let k be the exponent of the largest power of 3 that appears in the
special 3-adic representation of a.

Consider the real polynomial function g ∶ R→ R, such that g∣Z = f .
First, suppose limx→∞ g(x) = ∞.
Consider the set B = {a+3k+em+i ∣ i ∈ N}. Note that b ≡ a mod 3k+em , for all b ∈ B,

hence Lemma 7 implies that f(b) ≡ f(a) mod 3k+em . Since B is unbounded above
and g is strictly monotone increasing for large x, choose b ∈ B such that f(b) > f(a).
Therefore, f(b) must have the form

f(b) = ε13e1 +⋯ + εm3em + εm+13em+1 + εm+23em+2 + ⋅ ⋅ ⋅ + εM3eM ,

for some M > m and εi ∈ {0,±1} for i > m. Note that not all of εi, i > m are zeros.
But then d3(f(b),0) >m, which is a contradiction.

If limx→∞ g(x) = −∞, in a similar way, we can find b ∈ B such that d3 (f(b),0) >
d3 (f(a),0) =m, which is a contradiction.

Thus, the set A is unbounded above.

Theorem 13. Let f ∶ Z → Z be a nonconstant polynomial with rational coefficients.
Then f fails to be a quasi-isometry from C2 to C3.

Proof. Suppose f(x) ∈ Q[x] is a quasi-isometry from C2 to C3. Then f(x) has the
form

f(x) = cm
dm

xm + . . . + c1
d1
x + c0

d0
, m ∈ N, ci, di ∈ Z, i = 0, . . . ,m,

where ci and di are relatively prime.
Since f is a quasi-isometry there exist constants k ≥ 1 and c ≥ 0 such that for all

a, b ∈ Z,
1

k
d2(a, b) − c ≤ d3(f(a), f(b)) ≤ kd2(a, b) + c.

Let D = lcm(d0, d1, . . . , dm) and define g(x) = Df(x). Note that g is a nonconstant
polynomial with integer coefficients. For a, b ∈ Z, Lemma 11 implies that

d3(g(a), g(b)) = d3(Df(a),Df(b)) ≤Dd3(f(a), f(b)).

It follows that

d3(g(a), g(b)) ≤Dkd2(a, b) +Dc.

Thus g(x) satisfies the upper bound of the quasi-isometric embedding condition with
constants Dk and Dc. Therefore, by the contrapositive of Lemma 10, the set Ag =
{d3(g(a),0) ∣ a ∈ N} is bounded above. But by Lemma 12, the set Ag is unbounded
above. Hence, f cannot be a quasi-isometry from C2 to C3.

The results in this paper provide insight into Schwartz’s question, but the question
still remains open. In light of the discussion in the previous section, if the two spaces
are not quasi-isometric, a natural way to proceed is to find a new quasi-isometric
invariant that would distinguish between the two spaces. On the other hand, if those
two spaces are quasi-isometric, finding a map that is a quasi-isometry would be one
way to proceed. We are looking forward to seeing further investigations into answering
this question.
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