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How would you go about finding, say, the billionth digit of π? There are
many algorithms, that can calculate the billionth digit of π in various bases
within a reasonable amount of time on a powerful computer system. However,
they usually rely on calculating all the digits of π less than and including
one billion. This necessarily involves arithmetic of huge numbers, which is
typically implemented by means of Fast Fourier Transforms. There are also
very elegant new algorithms that allow us to compute many digits of π on a
personal computer. The software package Mathematica, for example, uses a fast
converging series technique, developed by the Chudnovsky brothers in 1987, to
compute all the decimal digits of π less than a given number [3]. However, it
is not feasible to go beyond 10 million decimal digits with this method on a
personal computer, because of speed and storage limitations.

In 1997, David Baily, Peter Borwein and Simon Plouffe discovered a formula
for π, which allows us to extract any given hexadecimal digit of π by means
of a strikingly simple method, without ever computing the digits leading up to
it, in essentially linear time and logarithmic storage space [1]. Indeed, it could
be programmed on a hand-held calculator. While 16 is a very natural base for
computers, its occurrence in this context is rather coincidental, as we shall see
below. Recall that, in base 16, the familiar decimal expansion

π = 3.141592 . . .

= 3 · 100 + 1 · 10−1 + 4 · 10−2 + 1 · 10−3 + 5 · 10−4 + 9 · 10−5 + 2 · 10−6 . . .

becomes

π = 3.243F6A . . .

= 3 · 160 + 2 · 16−1 + 4 · 16−2 + 3 · 16−3 + 15 · 16−4 + 6 · 16−5 + 10 · 16−6 . . .

Although this so-called hexadecimal expansion is slightly more compact, if we
printed the first one billion hexadecimal digits of π on one strip of paper, it
would still be over 1,000 miles long.
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In this note, we will describe the method of Baily-Borwein-Plouffe and use
it to to compute a short consecutive sequence of hexadecimal digits of π well
beyond the one billion hexadecimal digit mark. The algorithm is based on the
following series representation of π:

Theorem (Baily-Borwein-Plouffe).

π =
∞
∑

k=0

1

16k

(

4

8k + 1
−

2

8k + 4
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1

8k + 5
−

1

8k + 6

)

Proof. We begin with an integral whose value will be shown to equal π. Con-
sider

∫ 1
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2

0

4
√
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√

2x4 − 8x5

1 − x8
dx.

Upon substituting y =
√

2x we obtain

∫ 1
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(
√
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√
2y4

(
√

2)4
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√
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√
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√
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which in factored form reads

∫ 1

0

16(y − 1)(y2 + 4)(y2 + 2y + 2)

(y2 + 2y + 2)(y2 − 2y + 2)(y −
√

2)(y +
√

2)(y2 + 2)
dy.

Reducing the fraction we can simplify this to

∫ 1

0

16y − 16

(y −
√

2)(y +
√

2)(y2 − 2y + 2)
dy.

Finally, we use the method of partial fractions:

∫ 1

0

16y − 16

(y −
√

2)(y +
√

2)(y2 − 2y + 2)
dy =

∫ 1

0

2

y −
√

2
+

2

y +
√

2
−

4(y − 2)

y2 − 2y + 2
dy

(Integration of the first two terms is straightforward and for the third term we
use the trigonometric substitution y − 1 = tan θ.)

=
[

2 ln(
√

2 − y)
]y=1

y=0
+
[

2 ln(
√

2 + y)
]y=1

y=0
− 4

∫ 0

−π
4

(tan θ − 1)

tan2 θ + 1
sec2 θ dθ

= 2 ln(
√

2 − 1) − 2 ln(
√

2) + 2 ln(
√
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√

2) − 4

∫ 0

−π
4
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= 2 ln((
√

2 − 1)(
√

2 + 1)) − 4 ln(
√

2) − 4
[

− ln(cos θ) − θ
]θ=0

θ=−π
4

= 2 ln(2 − 1) − 4 ln(
√

2) − 4
(

− ln 1 − 0 + ln
1
√

2
−

π

4

)

= π.
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It remains to show that this integral equals the sum as claimed. Notice that

1

1 − x8
=

∞
∑

k=0

x8k (for 0 6 x 6
1√
2
),

so that

∫ 1
√

2

0

xp−1

1 − x8
dx =

∫ 1
√

2

0

∞
∑

k=0

xp−1x8k dx (for any p > 1).

Because the sum is a geometric series and hence uniformly convergent, we can
pull the summation outside the integral and evaluate it as follows:

∞
∑

k=0

∫ 1
√
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0

xp−1x8k dx =
∞
∑

k=0

[ x8k+p
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√

2
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1
√

2
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∞
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1

16k(8k + p)
.

Doing this for each of the four terms, we obtain

∫ 1
√

2

0

4
√
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√

2x4 − 8x5

1 − x8
dx

=
∞
∑
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1
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4
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)

.

The Algorithm. Let n be a fixed (large) positive integer. By the above
Theorem,

16n π =
∞
∑

k=0

16n−k

(

4

8k + 1
−

2

8k + 4
−

1

8k + 5
−

1

8k + 6

)

.

If we look at the fractional part of the left hand side, it yields the hexadecimal
expansion of π starting at position n + 1. So, the same is true of the sum on
the right:

(16n π) mod 1 =

(

∞
∑

k=0

16n−k

(

4

8k + 1
−

2

8k + 4
−

1

8k + 5
−

1

8k + 6

)

)

mod 1

We can break this sum apart into terms where 16 is raised to a non-negative
power and terms where 16 is raised to a negative power. In the second sum, we
need to compute only the first twenty, or so, terms because it converges very
rapidly and we are interested only in a small window of hexadecimal digits:

(16n π) mod 1 ≈

(

n
∑

k=0

16n−k

(

4

8k + 1
−

2

8k + 4
−

1

8k + 5
−

1
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)

)
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+

(
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k=n+1
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4
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−
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)

)

mod 1.
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The point of the algorithm is that we can drastically simplify computations in
the first sum by using modular arithmetic. Since all we are interested in is the
fractional part of this expression, we get away with replacing each numerator
by its residue modulo the denominator. For example,

n
∑

k=0

16n−k 4

8k + 1
mod 1 = 4

n
∑

k=0

16n−k mod (8k + 1)

8k + 1
mod 1.

This allows us to calculate 16m by modular exponentiation, accounting for the
impressive time savings. Here is how: first express m in binary. Next, compute
the least positive residues (remainders) of 162, 164, 168, ..., 162j

, where (j +1) is
the number of digits in the binary expansion of m. Do this sequentially, always
squaring the previous result, and reducing mod 8k + 1 in every step. Then
multiply the relevant powers, one at a time, always reducing mod 8k + 1, to
obtain 16m mod 8k + 1. This procedure cuts back on the number of necessary
arithmetic steps on a logarithmic scale [2, pp. 147–149].

For example, if we wanted to compute 1616461 mod 46534, we would express
16461 in binary and get 16461 = 214 + 26 + 23 + 22 + 20. Hence,

1616461 mod 46534 = 16214

· 1626

· 1623

· 1622

· 16 mod (46534)

This modular exponentiation is implemented in Mathematica by the standard
command PowerMod[16,16461,46534].

An Example. On November 23, 2004, we programmed the above algorithm
for n = 1011232004. Here is our Mathematica code:

In[1]:=

FirstSum =

Function[{n,p},s=0;k=0;

While[k<n+1,s=s+N[PowerMod[16,(n-k),8k+p]/(8k+p),20];k++];s];

SecondSum =

Function[{n,p},s=0;k=n+1;

While[k<n+21,s=s+N[16^(n-k)/(8k+p),20];k++];s];

n=1011232004;

N[Mod[4*FirstSum[n,1]+4*SecondSum[n,1]

-2*FirstSum[n,4]-2*SecondSum[n,4]-FirstSum[n,5]-SecondSum[n,5]

-FirstSum[n,6]-SecondSum[n,6],1]]

Out[1]= 0.2047

In[2]:= RealDigits[Out[1],16]

Out[2]= {{3, 4, 6, 7, 3, 6, 12, 4, 1, 8, 1, 13, 1}, 0}
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Converting the fractional output .2047... to hexadecimal, we obtain

346736C4181D1

which is the consecutive sequence of hexadecimal digits of π starting with
position n + 1 = 1011232005, accurate to more than 10 places. It took a little
over 2 days to run this program.
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