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There are many phenomena in the world that, upon close observation, are
clearly related. For example, when profits decline, unemployment rises. When
weather conditions worsen, drivers have more accidents. The goal of an actuary
is to model such relationships. Perhaps the most well-known and accepted
method for modeling relationships is linear regression. The simplest version of
this method is known as the standard linear model. It relates two variables X

and Y by Y = α + βX. The variable X is taken as the independent variable,
and Y is a variable assumed to depend on X. Here, α and β are constants
whose values depend on the relationship between X and Y . While such a
model may be useful for predicting the outcome of Y , given a value for X, the
prediction will not be exact. Instead, each observation will satisfy the equation
yi = α + βxi + εi, where α + βxi = ŷi represents the fitted (predicted) value,
and εi is the error term that measures the difference between the fitted value
and the actual outcome. In other words εi = yi − ŷi for i = 1, 2, . . . , N, where
N is the number of observations.

In the classical linear regression model, four important assumptions are
made about the error term:

1. E[εi] = 0 for all i.
2. εi has constant variance σ2 for all i (i.e. E[ε2

i
] = σ2 for all i).

3. All error terms are independent for different observations.
4. Each error term is normally distributed.
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While these assumptions are useful for building a solid statistical foundation
for testing the validity of the linear model, they are also quite restrictive. For
example, the assumption that the error terms are normally distributed implies
that Y is also normally distributed. Unfortunately, many of the random vari-
ables in the real world that we would like to model are clearly not normally
distributed. Claim counts, for instance, typically follow a Poisson distribution,
or even a negative binomial distribution. For random variables such as these,
a more accurate modeling tool is the generalized linear model.

Generalized Linear Models

The generalized linear model is an extension of multiple linear regression, which
is an extension of the standard linear model. In multiple linear regression, Y

is assumed to be dependent on several factors such as

Y = β0 + β1X1 + . . . + βkXk.

This is commonly expressed in matrix form as

Y = Xβ + ε.

Here, Y is an N × 1 matrix of N observations, β is a (k + 1) × 1 matrix of
the beta coefficients, X is an N × (k +1) matrix containing N observations for
k independent variables and a column of 1’s corresponding to β0, and ε is an
N × 1 matrix of the error terms. We refer to Xβ as the linear predictor.

The key to the generalized linear model lies in how Xβ is related to the
mean of Y (i.e. µ). In multiple linear regression, Xβ is taken to be the mean
itself. In other words,

Xβ = µ.

In the case of the generalized linear model, however, each component of Xβ is
taken to be a (common) function of the corresponding mean. That is,

Xβ = g(µ).

The function g is called the link function and is determined by the probability
distribution of Y. This link function models the nonlinear relationship between
Y and X.

If a random variable Y is a member of the exponential family and is de-
pendent on a parameter µ, then the probability density function of Y can be
written in the following form

f(y;µ) = exp[a(y)b(µ) + c(µ) + d(y)].

Common properties of distributions in the exponential family allow a coherent
theory for generalized linear models for those distributions. The exponential
family includes many widely used distributions including the binomial, Poisson,
normal, and gamma distributions. For a matrix Y of random variables, each
component is assumed to be a member of the exponential family.
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If a(y) = y, then the function is said to be in canonical form for the variable
Y . Likewise, if b(µ) = µ, then it is in canonical form for the parameter µ. If it
is not in canonical form, a transformation can be made to force it into canonical
form. For example, let θ represent a component of the linear predictor Xβ. If
the substitutions θ = b(µ) and y = a(y) are made, the above equation becomes

f(y; θ) = exp[yθ + c(θ) + d(θ)].

Note that the functions c( . ) and d( . ) will now be different from those in the
previous equation depending on what transformations are made. Putting the
distribution into canonical form makes the computations easier and allows the
use of general formulas that will work for many distributions For example,
using the canonical form, it can easily be shown that the general formula for
the inverse of the link function is µ = −c′(θ), where µ is any component of
the matrix µ. This can be inverted to produce the original link function g(µ),
but the inverse of the link function is where the value truly lies. It shows what
transformation must be made to the linear predictor Xβ in order to produce µ,
the mean of Y. For example, if Y is Poisson, then the link function turns out
to be the natural logarithm. Applying the inverse of this function to the linear
predictor Xβ will produce the desired mean of Y. That is, µ = exp[Xβ]. Thus,
it is a rather simple task to find the proper link function for any distribution one
would want to use. Being able to specify the link function gives one the freedom
to model Y as having any probability distribution that seems fit to assume.
This relaxes many of the assumptions made by the standard linear model. The
error terms no longer have to be assumed to be normally distributed, and their
variance does not have to be assumed as constant. Because of this, generalized
linear models are a more appropriate tool for modeling real world data.

This result is particularly important to actuaries. Actuaries constantly work
with real world data and model real world phenomena that are known not to be
normally distributed. An example is aggregate claims for automobile insurance.
A common method for modeling aggregate claims is to separate it into two
factors: frequency and severity. Frequency, the number of claims that occur in
a period, is often most appropriately modeled using a Poisson distribution or
even a negative binomial distribution. Likewise, severity, the average claim size,
is commonly modeled using a gamma distribution or something very similar.
These distributions all have important properties that differ from the normal
distribution. Most notably, in each case the variance is not independent of
the mean. Generalized linear models offer the flexibility needed to incorporate
important properties such as this into a model.

The benefits of generalized linear models are already being realized in many
areas of actuarial practice. Such areas include marine liability insurance pric-
ing, loss reserving, estimating claim settlement values, territorial rating, and
others. Yet, this is only the tip of the iceberg. As actuaries continue to become
familiar with generalized linear models, more areas of actuarial practice will
incorporate generalized linear models into their work. The generalized linear
model is a powerful tool whose full benefit is yet to be realized.
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