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Abstract: Graphical models have been an area of active research since the
beginning of the twentieth century. Graphical models have wide scope of ap-
plicability in various scientific fields. This paper presents applications of graph-
ical models with a focus on Bayesian networks. An exploration on the basics
of graph theory and probability theory which tie together to form graphical
models is outlined. Markov properties, graph decompositions, and their im-
plications to inference are discussed. An algorithmic software for graphical
models, Netica is used to demonstrate an inference problem in medical di-
agnostics. We address instances where parameters in the model are unknown,
through maximum likelihood method if analytically feasible, but numerical and
Markov Chain Monte Carlo methods are warranted otherwise.

Introduction

A graphical model is a probabilistic model with an underlying graph denot-
ing the conditional independence structure among stochastic components. In
other words, a graphical model is a marriage between probability distribu-
tion theory and graph theory providing a natural tool for dealing with a large
class of problems containing uncertainty and complexity. A complex model
is built by combining simpler parts, an idea known as modularity. Graphical
models are used in probability theory, statistics (Bayesian statistics, in par-
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ticular), and machine learning [3]. When used in conjunction with statistical
techniques, graphical models have several advantages for data analysis, since
they encode dependencies among all variables and readily handle situations
where some data entries are missing. A Bayesian network is a graphical model
that encodes probabilistic relationships among variables of interest. Bayesian
networks can be used to learn causal relationships, and hence can be used to
gain understanding about a problem domain and to predict the consequences
of intervention. Since Bayesian networks have both a causal and probabilistic
semantics, these are ideal representations for combining prior knowledge (which
often comes in causal form and expert’s opinion) and data.

Graph Terminologies

Vertices, points or nodes are the interconnected objects in a graph. FEdges,
links, lines or arcs are the links that connect pairs of vertices. A graph is a
pair G = (V, E), where V is a (finite) set of vertices or nodes and E €V xV -A
is a (finite) set of edges, links, or arcs. Here A :={(A4,A): AeV}. G is called
undirected if and only if

VA, BeV:(A,B)e E=— (B,A)¢E.
G is called directed if and only if
VA,BeV:(A,B)e E—> (B,A)¢E.

Let G = (V,E) be an undirected graph. A node B €V is called adjacent to a
node A € V or a neighbor of A if and only if there is an edge between them,
i.e., if and only if (A, B) € E. The set of all neighbors of A is

neighbors(A) ={B eV | (A,B) € E},

and deg(A) = |neighbors(A)| is the degree of the node A (number of incident
edges). The set neighbors(A) is also known as the boundary of A. The bound-
ary of A together with A is called the closure of A. Thus

closure(A) = neighbors(A) u {A}.

Fig. 1is an example of an undirected graph. The edges between the nodes in
Fig. 1 are all undirected.

Let G = (V, E) be an undirected graph. Two distinct nodes A, B € V are
called connected in G, written A ~ B, if and only if there exists a sequence
C1,Cs,...,Cy, k > 2, of distinct nodes, called a path, with C; = A,Cy = B, and
Vi,1<i<k|(C;,Ci1) € E. An undirected graph is called singly connected or
a tree if and only if any pair of distinct nodes is connected by exactly one path.
Let G = (V, E) be an undirected graph. An undirected graph Gx = (X, Fx) is
called a subgraph of G (induced by X) if and only if X € V and Ex = (XxX)nE,
that is, if and only if it contains a subset of the nodes in GG and all corresponding
edges. An undirected graph G = (V, E) is called complete if and only if its set
of edges is complete, that is, if and only if all possible edges are present, or
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Figure 1: An undirected graph

formally if and only if, E=V xV - {(A,A) | A€ V}. A complete subgraph is
called a clique. A clique is called maximal if and only if it is not a subgraph
of a larger clique, that is, a clique having more nodes.

Let G = (V, E) be a directed graph. A node B €V is called a parent of a
node A € V and, conversely, A is called the child of B if and only if there is
a directed edge from B to A, that is, if and only if (B, A) € E. The set of all
parents of a node A is denoted by

parents(A) ={B eV |(B,A) ¢ E},
and the set of its children is denoted

children(A) ={B eV | (A, B) € E}.
B is called adjacent to A if and only if it is either a parent or a child of A.
A directed acyclic graph (commonly abbreviated to DAG), is a directed graph

with no directed cycles. Notice in Fig. 2 that the direction of the edges does
not follow a cycle, hence Fig. 2 is an example of a DAG.

Figure 2: A directed acyclic graph
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Let G = (V,E) be a directed acyclic graph. A node A € V is called an
ancestor of another node B € V' and, conversely, B is called a descendant of A
if and only if there is a directed path from A to B. The set of all ancestors of
a node A is denoted by

ancestors(A) ={B eV | B ~ A},
the set of its descendants is denoted by
descendants(A) ={B eV | A~ B}.

B is called a non-descendant of A if and only if it is distinct from A and not a
descendant of A. The set of its non-descendants is denoted by

nondescs(A) =V - {A} — descendants(A).

A directed acyclic graph is called singly connected or a polytree if and only if
each pair of distinct nodes is connected by exactly one path. A directed acyclic
graph is called a (directed) tree if and only if it is a polytree and exactly one
node (the so-called root node) has no parents.

Let G = (V,E) be a directed acyclic graph. A numbering of the nodes of
G, that is, a function 0: V — {1,...,|V|} satisfying

VA,BeV (A,B)e E = 0(A) < o(B)

is called a topological order of the nodes of G. Let G = (V, E) be a directed
acyclic graph and X,Y, and Z three disjoint subsets of nodes. Z d-separates
X and Y in G, if and only if there is no path from a node in X to a node in Y
along which the following two conditions hold: (1) every node with converging
edges (from its predecessor and its successor on the path) either is in Z or
has a descendant in Z, (2) every other node is not in Z. A path satisfying the
conditions above is said to be active, otherwise it is said to be blocked (by Z); so
separation means that all paths are blocked. Let G = (V, E) be an undirected
graph and X,Y, and Z three disjoint subsets of nodes (vertices). Z u-separates
X and Y in G, written (X | Z | Y), iff all paths from a node in X to a node in
Y contain a node in Z. A path that contains a node in Z is called blocked (by
Z), otherwise it is called active; so separation means that all paths are blocked

[1]-

Markov Properties of Graphical Models

Markov properties of undirected graphs

Let (- 15 -|-) be a three-place relation representing the set of conditional
independence statements that hold in a given joint distribution ¢ over a set U
of attributes. An undirected graph G = (U, E) is said to have (with respect to
the distribution 4) the:
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(i)

(i)

(iii)

pairwise Markov property if and only if in § any pair of attributes, which
are nonadjacent in the graph, are conditionally independent given all
remaining attributes, that is, if and only if

VA,BeU A+ B:(A,B)¢{ E= A 15 B|U-{A,B};

local Markov property if and only if in 0 any attribute is conditionally
independent of all remaining attributes given its neighbors, that is, if and
only if

VAeU: A 15 U - closure(A) | neighbors(A);

global Markov property if and only if in § any two sets of attributes which
are u-separated by a third are conditionally independent given the at-
tributes in the third set, that is, if and only if

VX,Y,ZcU:(X|Z|Y)=X u;Y|Z

Markov properties of directed graphs

We define the Markov properties of a directed graph along the same line.
Let (- 1Ls - | -) be a three-place relation representing the set of conditional in-
dependence statements that hold in a given joint distribution & over a set U of
attributes. A directed acyclic graph G = (U, F) is said to have (with respect to
the distribution ¢) the:

(i)

(i)

(iii)

pairwise Markov property if and only if in ¢ any attribute is condition-
ally independent of any non-descendant not among its parents given all
remaining non-descendants, that is, if and only if

VA,BeU: B enondescs(A)-parents(A) = A 115 B |nondescs(A)-{B};

local Markov property if and only if in § any attribute is conditionally
independent of all remaining non-descendants given its parents, that is,
if and only if

VAeU: A 15 nondescs(A) — parents(A) | parents(A);

global Markov property if and only if in § any two sets of attributes which
are d-separated by a third are conditionally independent given the at-
tributes in the third set, that is, if and only if

VXY, ZcU:(X|Z|Y)=>X U, Y |Z

Graphs and Decompositions A probability distribution py over a set U
of attributes is called decomposable or factorizable with respect to a directed
acyclic graph G = (U, F) if and only if it can be written as a product of the
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Figure 3: Graph decomposition

conditional probabilities of the attributes given their parents in G [1]. For ex-
ample, the graph

corresponds to the factorization
Pr(A,B,C,D) = Pr(A) = Pr(B|A) » Pr(C|A) = Pr(D|B,C).

Decomposability of a graph has important implications in computational sta-
tistical inference since the joint probability distribution of attributes can be
factored into simpler conditional and marginal probability distributions and
optimization can be carried out.

Bayesian networks

A Bayesian network is a directed conditional independence graph of a prob-
ability distribution together with the family of conditional probabilities from
factorization induced by a directed acyclic graph. Bayesian networks explicitly
depict uncertainty as probabilities, which can fit well in a risk analysis and risk
management framework. Bayesian networks can be used to help identify key
factors that influence some outcome of interest, to help prioritize monitoring or
research. A Bayesian network characterizes the joint probability distribution of
a set of random variables using conditional independence relationships among
them [5]. Bayesian networks are based on directed acyclic graphs along with
a set of conditional probability tables representing conditional independence
relationships for each node in these graphs. The conditional probabilities for
each child is computed based on Markov condition or the local Markov prop-
erty for directed graphs discussed in section 2. Computation of probabilities
using a Bayesian network can be referred to as inference. In general, inference
involves queries of the form: Pr(X | E) where X is the query variable and F
is the evidence variable.
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Estimating Parameters in a Bayesian network

The aim of learning is to predict the nature of future data based on past expe-
rience. One can construct a probabilistic model for a situation where the model
contains unknown parameters. The ‘classical’ approach of parameter estima-
tion regards a parameter as fixed. In this case, a parameter is unknown and has
to be estimated, so it is not considered to be a random variable. One therefore
computes approximations to the unknown parameters, and uses these to com-
pute an approximation to the probability density. The parameter is considered
to be fixed and unknown, because there is usually a basic assumption that in
ideal circumstances, the experiment could be repeated infinitely many times
and the estimating procedure would return a precise value for the parameter.
That is, if one increases the number of replications indefinitely, the estimate
of the unknown parameter converges, with probability one, to the true value.
This is known as the ‘frequentist’ interpretation of probability.

The Bayesian approach takes the view that since the parameter is unknown,
it is a random variable. A probability distribution, known as the prior distri-
bution, is put over the parameter space, based on a prior assessment of where
the parameter may lie. One then carries out an experiment and using the avail-
able data, one applies Bayes rule to compute posterior distribution, which is
the updated probability distribution over the parameter space. The posterior
distribution is obtained as: posterior o« Likelihood x prior and is then
used to compute the probability distribution for future events, based on past
experience. Unlike the classical approach, this is an exact distribution, but
it contains a subjective element which is described by the prior distribution
[1]. Characteristics of a posterior distribution such as posterior mode and me-
dian are used as parameter estimates with credible sets as frequentist version
of confidence limits. Analytical methods based on conjugate priors in sim-
pler case, and sampling based iterative Markov Chain Monte Carlo methods in
non-tractable cases are used to carry out such computation.

In Bayesian statistics, computation of posterior distribution usually requires
iterative numerical methods and Markov chain Monte Carlo methods. These
are similar to ‘frequentist’ approach in the sense that they rely upon an arbitrar-
ily large supply of independent random numbers to obtain the desired precision.
From an engineering point of view, there are efficient pseudo-random number
generators that supply arbitrarily large sequences of ‘random’ numbers of very
good quality. That is, there are tests available to show whether a sequence
‘behaves’ like an observation of a sequence of suitable independent random
numbers. Both approaches to statistical inference have an arbitrary element.
For the classical approach, one sees this in the choice of sample space. Accord-
ing to Jeffrey[5] a sample space is the set of observations that one wants to work
with, but may no be able to choose due to practical constraints. Similarly, in
Bayesian approach it is not always straight forward to determine how long a
random sequence should be in order to achieve convergence, while estimating
the parameters of a posterior distribution.
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Applications of Bayesian networks

Exact inference is feasible in small to medium-sized networks. Exact infer-
ence in large networks takes relatively longer time. We resort to approximate
inference techniques which may be faster and may produce good results. Com-
putation involved in inferences in a Bayesian network can be performed with
packages: Netica, GeNle, HUGIN, Elvira and BUGS/WinBUGS. In most of
these packages, information about the observed value of a variable is propa-
gated through the network to update the probability distributions over other
variables that are not observed directly. The law of total probability is used
in the ‘forward’ propagation case, that is computing conditional probabilities
of each child while instantiating the parent. Using Bayes rule, influences may
also be identified in a ‘backwards’ direction, from dependent variables to their
parents [5].

Fig.4 illustrates an example of a Bayesian network, taken from Cowell et
al [3]. In this example, dyspnea may be caused by tuberculosis, lung cancer
or bronchitis, or none of them, or more than one of them. A visit to Asia
increases the chances of tuberculosis, while smoking is known to be a risk
factor for both lung cancer and bronchitis. The results of a single chest X-ray
do not discriminate between lung cancer and tuberculosis, as neither does the
presence or absence of dyspnea.

The model might be applied to the following hypothetical situation. A pa-
tient with dyspnea, who had recently been to Asia, shows up at a Chest clinic?
Smoking history and chest X-ray are not yet available. The doctor would like
to know the chance that each of these diseases is present, and if tuberculosis
were ruled out by another test, how would that change the belief in lung can-
cer? Also, would knowing smoking history or getting an X-ray contribute more
information about cancer, given that smoking may ‘explain away’ the dyspnea
since bronchitis is considered a possibility? Finally, when all information is in,
can we identify which was the most influential in forming our judgment [4]?
All these questions and possibilities can be answered by inference (by means of
algorithms) from the model. Fig. 5 illustrates Netica being used in this same
example with conditional probabilities for each node [7].

Further applications

Bayesian networks can be applied to social network analysis to derive insights
that are not possible using traditional social network analysis techniques. We
discuss three types of analyses that are enabled using Bayesian networks: aug-
menting social network algorithms with uncertainty, searching the network for
nodes, and inferring new links in the network.

Traditional social network graph theoretic algorithms do not take uncer-
tainty into account. While a node may appear to have a high value for degree
centrality, the algorithm does not consider the certainty of the links, author-
ity from whom the link information was gathered, recency of the link, or any
other type of meta-information (i.e., qualifiers of the information) that may be
known Carleson et al., 2006 ([2]).
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Bayesian networks can augment social network algorithms by considering
meta-information in their calculations. For example, the user of a social net-
work tool that incorporates uncertainty might be interested in determining
the ‘importance’ of each individual in the network. The user would create a
Bayesian network for ‘importance’, which might contain one node representing
the algorithmic degree centrality computation, and another node that repre-
sents the total certainty of the data used in the calculation. These two nodes
might be parents of the ‘importance’ node, which the user would provide with
a set of conditional probability entries. In addition, due to the abductive rea-
soning capabilities of Bayesian networks, one could investigate questions such
as, ‘What might be required for this individual to increase in importance?’ by
setting the value on an individual’s ‘importance’ node to a value, and observing
what values the parent nodes would need to support that belief.

{Wisil To Asia )
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Lung Cancer
Tuherculnsis
oF Cancer
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Figure 4: A Bayesian network for medical diagnosis
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Figure 5: Netica inference engine for medical diagnosis problem

Bayesian networks can be applied to all individuals in a social network.
The user can find and sort results of individuals of interest in a social network.
This is particularly useful when the user is working with a large network (e.g.,
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email traffic in a multinational corporation), and wants to find nodes that
fit a particular set of attributes. For example, a user might be interested in
individuals within the network that are likely to become future leaders in the
organization. This is different from searching for simple node attributes, such
as ‘Name’ or ‘Age’, because the notion of ‘Leadership Potential’ is a psycho-
social concept based on a combination of other attributes and relationships
that cannot be handled by a simple search capability. Some of those attributes
or relationships may be associated with a degree of uncertainty [6]. Prominent
examples of social networks today include facebook, myspace, and hi5.

Bayesian Networks with Continuous random variables

So far, we have discussed about Bayesian networks with discrete random vari-
ables. We can also have a Bayesian network with continuous random variables.
An example is a Gaussian Bayesian network which contains variables that are
normally distributed. In a Gaussian Bayesian network, the parents are nor-
mally distributed and each child is a linear function of its parents, plus an
error term which is normally distributed with mean zero and variance o?. For
instance if x1, s, ..., z, are the parents of Y, then

Y =byxy + boxg + ... + by, + €, where € ~ N(0,02)
Y is distributed conditionally as

Y|z~ N(byxy +bowg + ... + bpy, 02).

There are exact inference algorithm for Gaussian Bayesian networks. Most
Bayesian network inference algorithms like Netica and HUGIN handle Gaussian
Bayesian networks. HUGIN uses the exact algorithm while Netica discretizes
the continuous distribution and then does inference using discrete variables [7].

Conclusion

Graphical models are probabilistic models for which a graph denotes the con-
ditional independence structure between random variables. They provide a
natural tool for dealing with two problems that occur throughout applied
mathematics and engineering, uncertainty and complexity, and in particular
they play an increasingly important role in the design and analysis of machine
learning algorithms [5]. Using the concepts of graph theory and probability
theory we can simplify complex systems to make it easier to solve practical
problems. Unknown parameters in a graphical model can be estimated by
the method of maximum likelihood, numerical and Markov Chain Monte Carlo
methods. Graphical modeling, especially Bayesian networks, have a wide scope
of applicability in vast fields due to the fact that inferences can easily be made
based on the model. Areas of applicability include military, industrial, medical
diagnostics, and commercial especially in computer software engineering.
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