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Introduction

In quantum mechanics and in other branches of physics, it is common to ap-
proach physical problems using algebraic and analytic methods. Examples
include the use of differential equations for many interesting models, the use of
quantum groups in quantum physics, and of differential geometry in relativity
theory. In this article, we discuss the Hermite polynomials, some of their prop-
erties and a brief description of their applications to the Quantum Harmonic
Oscillator.

Hermite Polynomials

Hermite polynomials, named after the French mathematician Charles Hermite,
are orthogonal polynomials, in a sense to be described below, of the form

n
2 dv

H,(x)=(-1)"e g e ® (1)

forn=0,1,2,3,....
The first few Hermite polynomials are

e for n =0 we have Hy(z) =1
e for n =1 we have Hq(x) = 2z

e for n =2 we have Hy(r) = 422 — 2.
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Definition 1. For n € N, we define Hermite polynomials H,,(x) by

i Hn(l‘) n __ 2xr—r?

o r=e , for |r| < oo. (2)

n=0

To find H,(x), expand the right hand side of (2) as a Maclaurin series in r
and equate coefficients. From Equation (2) we derive the closed expression

i — o (20" 3)

where |z] denotes the largest integer less than or equal to xz. Checking with
n =0,1,2,..., we find that (3) yields the expected Hermite polynomials. To
prove that (3) holds in general, one can use induction (see [2]).

Recurrence Relations

Next we discuss recurrence relations that Hermite polynomials satisfy. We start
with
Hyq(x) — 2¢Hy,(z) + 2nH,—1(x) =0, n=12,..., (4)

which follows from the fact that the generating function w(z,r) = e2er—r’
satisfies the differential equation dw/dr — (22 — 2r)w = 0.

The next recurrence relation connects H, () and H,_1(z). From (2), we
have

H! () =2nH, 1(x), n=12.... (5)

Now, after a moment’s thought, and combining the above two recurrence rela-
tions we have another relation

H)!(z) — 2zH] (z) +2nH,(z) =0, n=12,.... (6)

From a mathematician’s viewpoint, relation (6) is a second-order linear differen-
tial equation, which is called Hermite’s differential equation. From a physicist’s
point of view, differential equation (6) plays a central role in one of the most
important physical models, namely the one-dimenisional Quantum Harmonic
Oscillator. For both mathematicians and physicists, solutions of (6) are the
Hermite polynomials.

Orthogonality

Next, we turn to a common topic for polynomials such as Hermite polynomials,
the orthogonality. Our goal is to prove that the family of Hermite polynomials
{H,} for n =0,1,2, ... is orthogonal with respect to the weight e~ In other
words, we will prove that
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+o0 5
/ e Hy(x)Hp(z)dx =0 (7)

—0o0

for m # n. To prove this we will use a technique from [2]. It is easy to show
by direct differentiation and using (6) that

u, = e 2 Hy(x) and  u, =e 2 Hp(x)

satisfy

ul’ + (2n+1—2*)u, =0 (8)
and

ull, 4+ (2m +1 — 2%)u,, = 0. (9)

Multiplying (8) by ., and (9) by w,, transforms each into

Uil 4+ (21 4+ 1 — 22Uy, = 0 (10)
and
Ul + (2m + 1 — 2*)uyuy, =0, (11)

respectively. Subtracting (11) from (10) we have
(umun — upui ) + 2(n — m)umu, = 0. (12)

Finally, integrating (12) from —oo to 400 shows that
+o0 5
(n— m)/ e Hy(x)Hp(z)dx = 0.

Therefore, (7) follows if m # n.

When m = n, we have

+o0 R
/ e " H,(z)H,,(z)dx = 2"n!\/7,
—co

a result which takes more work than the m # n case — for a detailed proof, see

[2].

Connection with Quantum Harmonic Oscillator

In this final part of our paper, we will show the connection of Hermite Poly-
nomials with the Quantum Harmonic Oscillator. First of all, the analogue of
the classical Harmonic Oscillator in Quantum Mechanics is described by the
Schrddinger equation

2m

w// + hQ

(E—-V(y)y =0,
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where 1) is the state of a particle of mass m in the potential V(y), with energy
E.

We will suppose that the potential has the form V(y) = 32, and therefore
we consider the following equation

2m
P+ ﬁ(E —y*)Y = 0. (13)
In order to simplify this equation, we make a change of variable y = kzx.
Equation (13) is transformed to

2mk* 2mk?
wl/ - h2 '/1:21/) = - h2 Ewa

where the differentiation is now with respect to the new variable z. Choosing
the constant k appropriately our equation becomes

P =2t = =By, (14)

where

2m

Equation (14) is a second order differential equation with variable coefficients.
To solve this equation, we first notice that ,(z) = e~°/2 is a solution of

the differential equation 1" — 221) = —. Using the method of variation of
parameters (see [3]) we find the following solutions of Equation (14):

Un (@) = i (x) H (). (15)

Here, 1. (z) is the solution defined above, and H(zx) is a function to be de-
termined. To find the form of H(z), we substitute ¢, (z) given by (15) into
equation (14) and we obtain the following equation:

H" —2zH' + (8 —1)H = 0. (16)

Setting 8 — 1 =2n < 8 = 6, := 2n+ 1 in (16) we obtain none other than
the Hermite differential equation (6) whose solutions are H(x) := H,(z), the
Hermite polynomials.
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