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Abstract

Generalized Linear Models (GLM) provides a unifying framework for many
commonly used statistical modeling techniques, particularly in the actuarial
field. The purpose of this paper is to portray the basic ideologies behind the
usefulness of generalized linear models.

Introduction

Advances in statistical theory and computational methodologies have enabled
statisticians to use methods analogous to those that have been developed for
linear models in a broader approach. Generalizations can be made about the
distributions of response variables, which can be, but are not limited to the
Normal distribution. In fact, the many properties of the Normal distribution
which make it easy to understand and work with are shared by a wider class
of distributions, known as the exponential family of distributions.

Consider a single random variable Y , with its probability distribution de-
pending on a single parameter, θ. It belongs to the exponential family of
distributions if it can be written in the form

f(y; θ) = ea(y)b(θ)+c(θ)+d(y).
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The more popular models in the exponential family besides the Normal
distribution are Poisson and Binomial. In the case of the Poisson distribution,
it can be used to model count data where the number of occurrences in a defined
environment are probabilistically independent.

The probability distribution function of the Poisson is

f(y; θ) =
θye−θ

y!
.

Exponentiating the distribution function yields

f(y; θ) = ey ln θ−θ−ln y!.

In this form, a(y) = y, b(θ) = ln θ, c(θ) = θ, and d(y) = ln y!.
In addition, we need and can find expressions for the expected value and

variance of the derivatives of the log-likelihood function. From above, the log-
likelihood function is

l(θ; y) = a(y)b(θ) + c(θ) + d(y)

and its derivative with respect to θ is

U(θ; y) =
dl(θ; y)
dθ

= a(y)b′(θ) + c′(θ),

where the function U is the score statistic and its expected value and variance
are key components for inference about parameter values.

The idea of a generalized linear model is anchored upon the notion that for
a set of independent random variables from the same exponential family, the
point of analytical interest is the smaller set of parameters, where a monotone,
differentiable link function exists as a transformation. This link function in
question provides an explanatory relationship between the linear predictor and
the mean of the original distribution function.

The identification of the link function is highly dependent on the study and
the nature of the response variable. For example, if we have a binary response
then one can show through the exponential family representation of Binomial
distribution that the natural or canonical link for the linear combination of
explanatory variables is the logit link. Other possible links for binary response
which are not the canonical links are probit and complementary log-log links.
However, it may prove beneficial should the domain of the link function be
matched to the range of the mean of the distribution function. For example, a
study modeling count data would logically be better served using Poisson re-
gression where the natural link is a log link, again coming from the exponential
family representation of the Poisson distribution

Recall the classical model

Y = xβ + ε

The link function is such that

g(E(Yi)) = g(µi) = xTi β + ε.

In essence, the generalized linear model is comprised of three parts:
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· The response variable(s) Y1, . . . , YN , which are assumed to be of the same
distribution from the exponential family

· A set of parameters β and explanatory variables

· A monotone link function

Case Study

The Society of Actuaries puts forth a set of preliminary exams that cover a
variety of material, including mathematical statistics and probability, inter-
est theory, life contingencies, financial economics, estimation and credibility.
These examinations average 3 hours and require plenty of preparation. SOA-
recommended amount of study time is 100 hours per hour of exam. This study
will attempt to answer the question of whether the amount of time spent (in
hours) studying is significant to the probability of passing any given 3 hour
exam.

Because of the nature of this study, initial thoughts were to model the study
using the logistic function, since the response variable is of the simple binary
form, Pass/Fail. If p is the probability of passing, then p

1−p is the corresponding
odds.

As such, the link function is

g(p) = ln
(

p

1− p

)
= xTβ,

which is then equivalent to modeling the probability as

p =
ex

T β

1 + exT β
,

and in this particular case,

xTβ = β0 + β1x,

with x being the number of hours spent studying. The likelihood function of a
binomial model is(

n
y

)
py(1− p)n−y →

(
n
y

)(
ex

T β

1 + exT β

)y (
1− ex

T β

1 + exT β

)n−y
.

There is no closed form for the maximum likelihood estimates of the parameters
β0 and β1, as each parameter is dependent on the other. In generalized linear
models, the Iterative re-Weighted Least Squares (IRLS) method is used. This
iterative numerical technique corresponds to the maximum likelihood criterion
if experimental errors have a normal distribution (which is part of the driving
factor behind generalized linear models). Under SAS, the default algorithm is
known as the Fisher scoring method, which utilizes the expected information
matrix in the acquisition of the maximum likelihood estimator (MLE).
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Data for 100 participants, including the number of hours studied, pass/fail
information, and exam score were simulated. Resulting data that was produced
were close in line with passing rates released by the SOA after each exam sitting.
The median number of hours studied among the participants was 174. Testing
was to determine if studying more than 174 hours was significant in affecting
the probability of passing.

The logistic procedure in SAS was used in analysis of data and the response
variable Y was marked as 1 if a participant passed. As such, thirty-nine percent
were successful. In the absence of further information about the population,
the model fit statistics provided a good measure to a decent extent. Further
criteria to consider may be how far in advance a participant began preparation,
average weekly hours spent studying, or even the number of hours of employer-
provided study time. At the default significance level, the null hypothesis, that
there is no significant increase in the probability of passing with an increased
number of hours studied, was rejected. Furthermore, the resulting parameter
estimates were also not rejected. β0, the intercept, was -1.9924 and β1, the
effects of the categorical hours spent studying that was greater than or equal
to 174, was 2.6557. This led to

xTβ = −1.9924 + 2.6557x.

Finally, the point estimate for the odds ratio suggests a highly increased prob-
ability of passing beyond 174 hours of preparation at a value of 14.235, with
the 95% Wald confidence interval being (5.06, 40.049).

Conclusion

Additionally, suggestive approaches to taking this case study further have been
proposed. Applications of other models may be considered, like the Poisson
model for discrete analytical purposes. An example along the same lines of
the case study would be counting the number of people passing any given test,
with the parameters of interest being factors that affect their total hours of
studying.

The study was a simple example of the utility that generalized linear mod-
els provide. As closely as the data was simulated, it is not reflective of actual
data, and it could serve as a better test had data been collected instead. Fur-
thermore, the test and data would have included more parameters of interest
as stated prior. However, time constraints have deemed the collection of data
not feasible.
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