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Abstract We present explicit calculations of growth functions and growth
series of a variety of finitely generated groups, followed by some general results
about those measures of growth. We provide a self-contained proof that the
growth series of a group is rational if and only if the growth function satisfies a
recurrence relation of finite depth. Our goal is to showcase the subject matter
of the paper as a very accessible intersection of group theory, basic metric
geometry, and combinatorics.

1 Introduction

The growth of finitely generated groups has been a much studied topic in
recent years, especially since interest in this topic was rejuvenated in the 1980s
with M. Gromov’s characterization of groups of polynomial growth as virtually
nilpotent. For a quick flavor of the subject matter and its connections, see [1].

For a finitely generated group, the (cumulative) growth function α(n) is
defined as the number of group elements contained in a closed ball of radius
n about the identity element, and the spherical growth function σ(n) as the
number of group elements contained in the boundary of the closed ball. We
note that the group is finite if and only if α(n) is eventually constant, so we
mainly focus on infinite (finitely generated) groups.
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In the current paper we focus on explicit calculations of growth functions
and growth series. The objective is to calculate these measures of growth di-
rectly whenever possible, and later compare some of these calculations with
general results. As far as the group’s asymptotic geometry is concerned, the
exact forms of the growth functions are of less importance than the equiva-
lence classes of its growth functions (see Definition 25); however, we feel that
calculating the exact forms of the growth functions for some of these groups
show interesting details of the geometry of the Cayley graphs of these groups.
Moreover, this helps our aim of showcasing the subject matter of the paper
as a very accessible intersection of group theory, basic metric geometry, and
combinatorics.

The paper is organized as follows. Section 2 gives the preliminaries of
viewing a finitely generated group as a metric space and defines the growth
functions and series. Section 3 gives explicit calculations of growth functions
and series for some commonly occurring groups. This section is one of the
salient features of this paper, as explicit calculations for some of those cases
are not easily found in the literature. Section 4 gives some general results
about growth. While the general results in this section are well known, we
have tried to give simple and self-contained proofs of the results starting from
first principles. In this section we also give examples of distinct groups with
the same growth function and ask a related question. Section 5 gives a self-
contained proof of the fact that the growth series of a group is rational if and
only if the growth function eventually satisfies a recurrence relation.

This work is based on an undergraduate research project, started when
J. Preston was a student at Montana Tech. We have tried to keep the prereq-
uisites of this exposition to a minimum, at the level of beginning material from
undergraduate level first courses in group theory and metric spaces.

The authors wish to thank the anonymous referee for the very detailed
comments. The referee’s guidelines helped improve the exposition of this paper
to a great extent.

2 Preliminaries

Any group can be represented in terms of a set S of symbols (called the gener-
ators) and a set R of relations between those symbols (called the relaters) [4].
We denote the group as G = ⟨S ∶ R⟩. Technically, G is a quotient of the free
group on the set S by the smallest normal subgroup of G containing R.

In geometric group theory, one usually explores asymptotic properties of
infinite groups which have a finite generating set. Below we describe a way of
defining a metric on a finitely generated group. See [5] for discussions on some
of these concepts.

Definition 1. Let G be a group and S be a finite set that generates G. We
assume S = S−1 = {s−1 ∶ s ∈ S}. We define the word length of g (norm of g)
to be

∥g∥ =min{n ∶ g = s1s2⋯sn, si ∈ S} .
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We define the word metric on G by setting

dS(g1, g2) = ∥g−11 g2∥ =min{n ∶ g−11 g2 = s1s2⋯sn, si ∈ S} .
We note that the the metric described above takes only integral values.

However, there is another way of associating a metric space with a finitely gen-
erated group, where the metric can take non-integral values. We will describe
it below, and then we will see that these two metrics are essentially the same.

Definition 2. Given a group G and a finite generating set S, we define the
Cayley graph Cay(G,S) to be the metric graph such that the following con-
ditions hold.

1. Vertices of the graph are the elements of G.

2. There is an edge connecting g1, g2 ∈ G if and only if g−11 g2 ∈ S ∪ S−1.

3. Each edge has length 1.

Taking each edge to be isometric to the interval [0,1], we can define a metric
on Cay(G,S) by declaring the distance between two points to be the infimum
of the lengths of all paths between them.

For example, Cay (Z,{1}) can be seen in Figure 1. Here any two vertices in
Z (considered additively) are connected by an edge if they differ by 1. Similarly,
in the case of Cay (Z,{2,3}) two vertices are joined by an edge if they differ
by 2 or 3, as can be seen in Figure 2.

Figure 1: Cayley graph of Z with generating set {1}

Figure 2: Cayley graph of Z with generating set {2,3}
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The above two ways of viewing a finitely generated group as a metric space
are the same in the sense of the following notion of equivalence.

Definition 3. A function f ∶ (X,dX) → (Y, dY ) is said to be a quasi-isometric
embedding if there exist λ,μ > 0 such that

1

λ
dX(x,x′) − μ ≤ dY (f(x), f(x′)) ≤ λdX(x,x′) + μ.

Additionally, if f is coarsely surjective (i.e. there exists D > 0, such that for
all y ∈ Y , there exists x ∈X such that dY (f(x), y) <D), then f is said to be a
quasi-isometry.

We note that embedding a finitely generated group with the word metric
into its Cayley graph is a quasi-isometry.

Now that we can look at a finitely generated group as a metric space, we
can define its growth functions and growth series. For the next definition, recall
that the closed ball of radius n (in the word metric) around the identity element
e ∈ G is the set B̄n(e) = {g ∈ G ∶ dS(g, e) ≤ n}.
Definition 4. Let G be a finitely generated group and S be a finite generating
set. We define the growth function α ∶ N→ N as

α(n) = ∣B̄n(e)∣
for n ∈ N. Note that as G is finitely generated, ∣B̄n(e)∣ is always finite.
Definition 5. We define the spherical growth function as

σ(n) = α(n) − α(n − 1).
for all n ≥ 1. Also, we define σ(0) = α(0) = 1.

The spherical growth function can also be thought of as the number of
elements whose length is exactly n. Now we can define the corresponding
growth series.

Definition 6. The growth series is defined as the formal power series

A(z) = ∞∑
n=0

α(n)zn.
Definition 7. Similarly, we define the spherical growth series as the formal
power series

S(z) = ∞∑
n=0

σ(n)zn.
Remark 8. The power series that are introduced in Definitions 6 and 7 are
“formal” power series - algebraic objects without any notion of convergence.
More specifically, these are elements of the ring of formal power series with real
coefficients R[[x]], where the addition and multiplication are defined similar
to as in the ring of polynomials with real coefficients. In fact, the ring of
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polynomials with real coefficients R[x] is a subring of R[[x]]. Formal power
series are often used in combinatorics, in the technique of using “generating
functions” as an efficient tool of dealing with infinite sequences of numbers.
For a nice introduction to generating functions see [6].

We use Cayley graphs to help us find growth functions and growth series. It
is often easier to find the spherical growth function σ than the growth function
α. It would be useful to somehow relate the two growth functions and the two
growth series.

Theorem 9. The following equalities hold.

1. α(n) = 1 + n∑
i=1

σ(i)
2. S(z) = (1 − z)A(z)
Proof. The proof of part 1 comes directly from the definitions of α and σ.

For proving part 2, from Definition 7 and Definition 5, we have

S(z) = ∞∑
n=0

σ(n)zn
= α(0) + [α(1) − α(0)] z + [α(2) − α(1)] z2 +⋯+ [α(n) − α(n − 1)] zn +⋯
= (α(0) + α(1)z + α(2)z2 + α(3)z3 +⋯) − (α(0)z + α(1)z2 + α(2)z3 +⋯)

= A(z) − zA(z)
= (1 − z)A(z).

3 Examples

In this section, we calculate the growth functions and series of some commonly
occurring groups. These are direct calculations, based on the definitions of
the growth functions and series, and visualizations of the Cayley graphs of the
corresponding groups in each case. We omit the sketches of most of the Cayley
graphs, all of which are easily drawn.

Example 10. Consider the group Z with standard generating set {1}. We can
easily find the growth functions and growth series by looking at Cay (Z,{1})
from Figure 1. From Cay(Z,{1}) we can see that σ(n) = 2 for n = 1,2, . . . as
the number of elements of length n is always 2, thus from Theorem 9 we have
α(n) = 2n + 1 for n = 1,2, . . .. Now that we have α and σ, we can find A and
S. We show this in detail to demonstrate the usual technique of finding these
series. We have

S(z) = ∞∑
n=0

σ(n)zn = 1 + ∞∑
n=1

2zn = 1 + 2z

1 − z
= 1 + z

1 − z
.

From Theorem 9, we have
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1 + z

1 − z
= (1 − z)A(z) and so A(z) = 1 + z

(1 − z)2 .

Example 11. Now, consider the same group Z but with generating set {2,3}.
The Cayley graph can be seen in Figure 2, where the curved lines above the
horizontal represent the elements which differ by the 2 generator and the curved
lines below the horizontal represent the elements which differ by the 3 generator.
The values for α(1), α(2), α(3), and α(n) can be better seen in Figure 3.

Figure 3: B̄n(0) for n = 1,2,3. After n = 2 there is a clear pattern in the Cayley
graph. We simply add the elements ±(3n + 1),±(3n + 2),±(3n + 3).

For n ≥ 2, every element from −3n to 3n is in B̄n(0). By adding the two
generators to 3n we get the elements 3n+ 2 and 3n+ 3. We can also add the 2
generator to 3n − 1 to get 3n + 1. Similarly we can subtract the two generators
from −3n and subtract the 2 generator from −3n + 1. Hence for B̄n+1(0) we
add the elements ±(3n+ 1),±(3n+ 2),±(3n+ 3). For our growth functions and
series we have
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α(n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 n = 0
5 n = 1

6n + 1 n = 2,3, . . .

σ(n) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 n = 0
4 n = 1
8 n = 2
6 n = 3,4, . . .

S(z) = 1 + 3z + 4z2 − 2z3

1 − z

A(z) = 1 + 3z + 4z2 − 2z3

(1 − z)2 .

Compare these results with Cay(Z,{1}) in Example 10. Note that the growth
function α for Z with standard generator {1} is different than the one for Z

with generators {2,3}, but both are (piecewise) linear.

Remark 12. One can create infinitely many examples by considering Z with
generating set {p, q}, where p, q are primes. Assume p < q. Since p, q are prime,(p, q) = 1. Then, there exists s, t ∈ Z, such that sp + tq = 1. We conjecture that
in such a case we have the following formula for the spherical growth function
(where s and t are such that ∣s∣ + ∣t∣ is minimal):

σ(n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, n = 0
4n, n = 1,2, . . . , ∣s∣ + ∣t∣

2(p + q − 2), n = ∣s∣ + ∣t∣ + 1, . . .
.

It will be interesting to try to get growth functions for Z with generating
set {p, q} (where p, q are primes), without ∣s∣ , ∣t∣ explicitly appearing in the
expressions.

Example 13. Consider the group Z2 = Z⊕Z with standard generating set S ={(1,0), (0,1)}. One can see that the elements in the sphere B̄n ((0,0)) /B̄n−1 ((0,0))
are (0,±n), (±1,±(n− 1)), (±2,±(n− 2)), . . . , (±n,0) so there are 2+ 4+ 4+⋯+
4 + 2 = 4n elements. Hence σ(n) = 4n for n = 1,2, . . .. The spherical growth
function can be better visualized in Figure 4.
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Figure 4: B̄n ((0,0)) for n = 1,2,3. The elements colored red are those associ-
ated with σ(1), σ(2), and σ(3) respectively.

Therefore, by Theorem 9 α(n) = 1 + n∑
i=1

4i = 2n2 + 2n + 1. Using the same

technique as Example 10 we get

S(z) = (1 + z

1 − z
)2

A(z) = (1 + z)2
(1 − z)3 .

In deriving the above expressions for S(z) and A(z) we need to calculate
closed form expressions for various formal power series. For example, to find
∞∑
n=1

nzn we note that it equals
∞∑
n=1

z
d

dz
(zn) and use the usual sum of geometric

series as in Example 10. For this and similar techniques see [6].
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Example 14. Consider the infinite dihedral group D∞ = Z2∗Z2 = ⟨a, b ∶ a2, b2⟩.
We observe that σ(n) = 2 for n = 2,3, . . . (the only two elements of length n
are abab⋯ and baba⋯ where the words have n letters, as a and b are their own
inverses), and hence, using Theorem 9, α(n) = 2n+ 1 for n = 2,3, . . .. Also, we
have

S(z) = 1 + z

1 − z

A(z) = 1 + z

(1 − z)2 .
Note that D∞ has the same growth as Z, showing that non-isomorphic

groups can have the same growth. Now consider Z2 ∗ Z3 = ⟨a, b ∶ a2, b3⟩. We
get the following growth functions and growth series

σ(n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, n = 0

3 ⋅ 2n−1
2 , n is odd

2
n
2 +1, n is even

α(n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, n = 0
7 ⋅ 2n−1 − 6, n is even
5 ⋅ 2n−1 − 6, n is odd

S(z) = (1 + z)(1 + 2z)
1 − 2z2

A(z) = (1 + z)(1 + 2z)
(1 − 2z2)(1 − z) .

To see the σ(n) above, observe that a−1 = a and b−1 = b2. Then, the elements
of length n are abab⋯ and baba⋯ with some (or all) of the occurrences of b
replaced by b−1. Now when n is even, we have abab⋯ab and baba⋯ba. In both
words we have n

2
occurrences of b, thus there are 2

n
2 + 2

n
2 = 2

n
2 +1 words of

length n. Now if n is odd, we have abab⋯a and baba⋯b. In the first word we
have n−1

2
occurrences of b, hence we have 2

n−1
2 words starting with a. For the

second word we have n+1
2

occurrences of b. Hence we have 2
n+1
2 words starting

with b or b−1. Hence there are 2
n−1
2 + 2

n+1
2 = 3 ⋅ 2n−1

2 words overall of length n.
Though the topic of growth of groups is really interesting for infinite (finitely

generated) groups, we calculate the growth of the finite cyclic groups below.
Note that, as expected, the functions α(n) here are eventually constant.

Example 15. Consider the group Zm = ⟨a ∶ am⟩. The Cayley graphs can be
thought of as regular polygons with number of sides equal to m. For example,
the Cayley graph for Z3 looks like a regular triangle and Z4 looks like a square.
The Cayley graph of Zm can be seen in Figure 5. We leave it to the reader to
check the following formulas.
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Figure 5: Cayley graph of Zm with generating set {a}

If m = 2, then

σ(n) = { 1, n = 0,1
0, n = 2,3, . . .

α(n) = { 1, n = 0
2, n = 1,2, . . .

S(z) = 1 + z

A(z) = 1 + z

1 − z
.

If m is an even integer and greater than 2, then we have

σ(n) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, n = 0
2, n = 1,2, . . . , m

2
− 1

1, n = m
2

0, n = m
2
+ 1, m

2
+ 2, . . .

α(n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, n = 0
2n + 1, n = 1,2, . . . , m

2
− 1

m, n = m
2
, m

2
+ 1, . . .

S(z) = 1 + 2

m
2 −1∑
i=1

zi + z
m
2

A(z) = ⎛
⎝1 + 2

m
2 −1∑
i=1

zi + z
m
2
⎞
⎠(

1

1 − z
) .

and if m is odd and greater than 1 we have
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σ(n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, n = 0
2, n = 1,2, . . . , m−1

2
0, n = m+1

2
, m+3

2
, . . .

α(n) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, n = 0
2n + 1, n = 1,2, . . . , m−1

2
m, n = m+1

2
, m+3

2
, . . .

S(z) = 1 + 2

m−1
2∑

i=1

zi

A(z) = ⎛
⎝1 + 2

m−1
2∑

i=1

zi
⎞
⎠(

1

1 − z
) .

Example 16. Consider the free group on two generators F2 = ⟨a, b⟩. We
can easily find the growth series by first finding σ(n). We can find σ(n) by
examining the Cayley graph in Figure 6. We have σ(0) = 1 and σ(1) = 4.
Notice that for each subsequent σ(i), each point for σ(i − 1) breaks off into 3
distinct points. So σ(i) = 3σ(i − 1) for i > 1. One can see that

σ(n) = { 1, n = 0
4 ⋅ 3n−1, n = 1,2, . . .

.

Figure 6: Cayley graph of F2 with generating set {a, b}

And now to find α(n) we use Theorem 9 to get

α(n) = 2 ⋅ 3n − 1.

Now we can find the spherical growth series
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S(z) = ∞∑
n=0

σ(n)zn = 1 + z

1 − 3z
and A(z) = 1 + z

(1 − 3z)(1 − z) .
We can generalize for Fm = ⟨a1, a2, . . . , am⟩. Since there are no relations,

the elements in B̄1(e)/e are a1, a2, . . . , am and their inverses. Hence σ(1) = 2m.
Consider an element in B̄1(e)/e, say ai. All the elements which are adjacent
to ai and are in B̄2(e)/B̄1(e) are aiaj where aj ≠ a−1i . Hence there are (2m−1)
elements branching out from ai and since we have 2m elements in B̄1(e), we
have σ(2) = 2m(2m − 1). Now, for each element in B̄n(e)/B̄n−1(e) one can
create (2m − 1) new elements. Hence σ(n) = 2m(2m − 1)n−1 for n = 1,2, . . ..
The growth functions and series are

σ(n) = { 1, n = 0

2m (2m − 1)n−1 , n = 1,2, . . .

α(n) = m (2m − 1)n − 1

m − 1

S(z) = 1 + z

1 − (2m − 1)z
A(z) = 1 + z

[1 − (2m − 1)z] (1 − z) .
With the above example we see that the non-abelian free groups have ex-

ponential growth.

Example 17. The Fundamental Theorem of Finitely Generated Abelian Groups
states that every finitely generated abelian group is isomorphic to a group of the
form

Zn ⊕Zp1 ⊕Zp2 ⊕⋯⊕Zpm

where the pi’s are powers of primes. Using the growth series for Zn (See Sec-
tion 4) and the series for the Zpi ’s (Example 15), we get the growth series using
Theorem 29. We have

S(z) = (1 + z

1 − z
)n ∏

i,where 2∤pi

⎛⎜⎝1 + 2
⎛⎜⎝

pi−1

2∑
j=1

zi
⎞⎟⎠
⎞⎟⎠ ∏

k,where 2∣pk

⎛⎜⎝1 + 2
⎛⎜⎝

pk
2 −1∑
m=1

zm
⎞⎟⎠ + z

pk
2

⎞⎟⎠
A(z) = (1 + z)n

(1 − z)n+1 ∏
i,where 2∤pi

⎛⎜⎝1 + 2
⎛⎜⎝

pi−1

2∑
j=1

zi
⎞⎟⎠
⎞⎟⎠ ∏

k,where 2∣pk

⎛⎜⎝1 + 2
⎛⎜⎝

pk
2 −1∑
m=1

zm
⎞⎟⎠ + z

pk
2

⎞⎟⎠ .

We will see later that the growth of the Finitely Generated Abelian Groups,
even though they appear rather complicated, are primarily influenced by the Zn

component of the group. See Example 26.

Example 18. Consider the Dihedral group, Dn = ⟨r, s ∶ rn = 1, s2 = 1, srs = r−1⟩.
The Cayley graph Cay(Dn,{r, s}) can be seen in Figure 7.
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Figure 7: Cayley graph of Dn with generating set {r, s}

It is left to the reader to check the following formulas for the growth series
and growth functions for m > 2 are

σD2m(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, n = 0
3, n = 1
4, n = 2,3, . . . ,m − 1
3, n =m
1, n =m + 1
0, n =m + 2,m + 3, . . .

αD2m(n) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, n = 0
4, n = 1
4n, n = 2,3, . . . ,m − 1

4m − 1, n =m
4m, n =m + 1,m + 2, . . .

S2m(z) = 1 + 3z + 4
m−1∑
i=2

zi + 3zm + zm+1

A2m(z) = (1 + 3z + 4
m−1∑
i=2

zi + 3zm + zm+1)( 1

1 − z
)
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σD2m−1(n) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, n = 0
3, n = 1
4, n = 2,3, . . . ,m − 1
2, n =m
0, n =m + 1,m + 2, . . .

αD2m−1(n) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, n = 0
4, n = 1
4n, n = 2,3, . . . ,m − 1

4m − 2, n =m,m + 1, . . .

SD2m−1(z) = 1 + 3z + 4
m−1∑
i=2

zi + 2zm

AD2m−1(z) = (1 + 3z + 4
m−1∑
i=2

zi + 2zm)( 1

1 − z
) .

4 General Results

In this section we discuss some general properties of the measures of growth
we introduced earlier. General references to the material in this section are [3],
[5].

Proposition 19. Consider a group generated by m elements. We have the
following bounds for the two growth functions.

1. σ(n) ≤ 2m(2m − 1)n−1
2. α(n) ≤ m(2m−1)n−1

m−1

Proof. Both results follow from the growth functions of the free groups from
Example 16.

In the last section we calculated the exact growth functions of several
groups. We will see now that as far as the asymptotic properties of the group
are concerned, the exact growth functions are not so important as a certain
equivalence class of those functions which we define below.

Definition 20. Let f, g ∶ N → N. We say f ⪯ g if and only if there exist
C,D > 0 such that f(x) ≤ Cg(Dx). We say f ≍ g if f ⪯ g and g ⪯ f .

Remark 21. In some of the literature (see [5]), the definition of the equivalence
class of growth functions involves additive constants (on top the multiplicative
constants C,D mentioned above). As we are interested in an essentially asymp-
totic notion of equivalence, our definition is sufficient.

Proposition 22. Let n,m ∈ N.
1. If n ≤m, then xn ⪯ xm.



Measuring Growth of Groups 63

2. If n ≠m, then xn /≍ xm.

3. xn ≺ 2x.

Proof. (Part 1) Since xn, xm ∶ N → N, for x ≥ 1, we have xn ≤ xm. Hence
xn ⪯ xm.

(Part 2) Without loss of generality, let n <m. By part 1, we know xn ⪯ xm.
Suppose xm ⪯ xn. Then there exist C,D > 0 such that xm ≤ C (Dx)n. Then

xm ≤ CDnxn ≤ Bxn

where B = CDn. Since xn > 0 for all x ∈ N, we have xm−n ≤ B. Then, as
x→∞, B →∞. But B must be a finite constant. Hence xm /⪯ xn.

(Part 3) The power series expansion of 2x is

2x = ∞∑
k=0

(ln(2))k xk

k!

= (ln(2))n xn

n!
+ ∑

k≠n

(ln(2))k xk

k!
.

Since both these summations are positive, then 2x > (ln(2))n xn

n!
. Hence xn <

( n!
(ln(2))n

)2x for all x,n ∈ N. Also, it is easy to see that there are no C,D > 0

such that 2x ≤ CDnxn for all x,n ∈ N. Hence, xn ≺ 2x.

For example, we see that the growth functions α(n) for Z with standard
generators, Z with generating set {2,3}, and Z with generating set {p, q} are
all equivalent (they are all eventually linear - see Examples 10 and 11). We can
now make a general statement about the growth functions for the same group
with distinct finite generating sets.

Theorem 23. Let G be a group with two distinct, finite generating sets S1, S2

and let αG,S1 and αG,S2 be the corresponding growth functions. Then αG,S1 ≍
αG,S2 .

Proof. Let S1 = {a1, a2, . . . , a�} and S2 = {b1, b2, . . . , bm}. Then from Defi-
nition 4, we see that α(n) = ∣A∣, where A = {w ∈ G ∶ d(e,w) ≤ n}. Let p =
max{dS1(e, bi)}. We can write any w ∈ A as

w = c1c2⋯ck, ci ∈ S1, k = dS1(e,w).
Now since ci ∈ G, we can write them as

ci = di1di2⋯diq, dij ∈ S2 ∪ {e} .
Then, dS2(e,w) ≤ pk = pdS1(e,w). Then, αG,S2(n) ≤ pαG,S1(n), which shows
that αG,S2 ⪯ αG,S1 . A similar argument shows that αG,S1 ⪯ αG,S2 .

Example 24. Recall in Example 10 and in Example 11 the growth functions α
for Z with standard generating set and {2,3} generating set are both eventually
linear. This is expected from the previous theorem.
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Based on Theorem 23, we make the following definition, noting that ≍ is an
equivalence relation.

Definition 25. Given a finitely generated group, we define the equivalence
class [α] of its growth function α and call it the growth type of G.

Example 26.

1. A group is finite if and only if it has growth type [x↦ 1].
2. Zn has growth type [x↦ xn].
3. Fm has growth type [x↦ 2x].
4. Finitely generated abelian groups Zn⊕Zp1 ⊕Zp2 ⊕⋯⊕Zpm have growth type[x↦ xn].

Moreover, we can show the following result.

Theorem 27. Let (G1, S1) and (G2, S2) be finitely generated groups. If f ∶
G1 → G2 is a quasi-isometric embedding, then αG1,S1 ⪯ αG2,S2 .

Proof. The argument is essentially the same as that of Theorem 23.

Example 28. (Quasi-Isometric Rigidity of Zn) The above shows that Zm ∼q.i.
Zn if and only if n =m.

Now we provide two results that are useful in calculating growth series of
familiar group theoretical constructions.

Theorem 29. Let G1,G2 be finitely generated groups with corresponding fi-
nite generating sets S1, S2. Let G = G1 ⊕ G2 and S = {(si,0) ∶ si ∈ S1} ∪{(0, sj) ∶ sj ∈ S2}. Then

SG,S(z) = SG1,S1(z) ⋅ SG2,S2(z).
Proof. The result follows from the equality σ(n) = ∑n

i=0 σ1(i)σ2(n − i) (see
Figure 8).

The above theorem generalizes Example 13 and gives the following series
for Zn:

S(z) = (1 + z

1 − z
)n

A(z) = (1 + z)n
(1 − z)n+1 .

Theorem 30. Let G1,G2 be finitely generated groups with corresponding finite
generating sets S1, S2. Let G = G1 ∗G2 and S = S1 ⊔disjoint S2. Then

SG,S(z) = SG1,S1(z) ⋅ SG2,S2(z)
SG1,S1(z) + SG2,S2(z) − SG1,S1(z) ⋅ SG2,S2(z) .
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Figure 8: Cayley graph of G1 ⊕G2 with generating set S

Proof. Any element of G1 ∗G2 can be written in the form gh1g1h2g2⋯hngnh
where g ∈ G1, h ∈ G2, gi ∈ G1/ {e}, and hi ∈ G2/ {e}. Let n ∈ N. Let w =
gh1g1h2g2⋯hngnh as above. First note dG(e,w) = dG1(e, g) +∑n

i=1 dG2(e, hi) +∑n
i=1 dG1(e, gi)+dG2(e, h). Then the number of elements of the form of w with

dG(e,w) = k is

∑
i1+i2+⋯+in+2=k

i2,...,in+1≥1

σ1(i1)σ2(i2)⋯σ1(in+1)σ2(in+2)

which is the kth coefficient of SG1,S1(z)((SG1,S1(z)−1)(SG2,S2(z)−1))nSG2,S2(z).
This gives us the series SG1,S1(z) ((SG1,S1(z) − 1)(SG2,S2(z) − 1))n SG2,S2(z)

for a fixed value of n. Therefore (using the formula for the sum of a “formal”
geometric series),

SG,S(z) = ∞∑
n=0

SG1,S1(z) ((SG1,S1(z) − 1)(SG2,S2(z) − 1))n SG2,S2(z)
= SG1,S1(z) ⋅ SG2,S2(z)
SG1,S1(z) + SG2,S2(z) − SG1,S1(z) ⋅ SG2,S2(z) .

The above theorem generalizes Example 14.

Proposition 31. Let G be a finitely generated group and H a finitely generated
subgroup. Then αH(n) ⪯ αG(n).



66 BSU Undergraduate Mathematics Exchange Vol. 13, No. 1 (Fall 2019)

Proof. Let G be a finitely generated group with finite generating set S1 and let
H be a subgroup of G with finite generating set S2. Define S′ = S1 ∪ S2, and
note that S′ generates G. Now consider αH,S2(n). Then,

αH,S2(n) =#{w ∈H ∶ dH,S2(e,w) ≤ n}
≤#{w ∈ G ∶ dG,S′(e,w) ≤ n}
= αG,S′(n).

Hence, αH,S2(n) ≤ αG,S′(n), which means αH,S2(n) ⪯ αG,S′(n). Since G has
two finite generating sets S1 and S′, then by Theorem 23, αG,S′ ≍ αG,S1 . Hence,
αH,S2(n) ⪯ αG,S1(n).
Remark 32. The above proposition gives us a way of putting a lower bound
on the growth function of a group when the growth function of a subgroup is
known. For example, if a group has a non-abelian free group as a subgroup,
then its growth function must be exponential.

Example 33 (Distinct groups with the same growth function). Given any
positive integer N , we demonstrate N non-isomorphic groups with the same
growth function.

We have seen that Z2 ∗Z2 and Z have the same growth function, but these
two groups are not isomorphic. Consider the free product of Z2 with itself
2(N − 1) times. We have

Z2 ∗Z2 ∗⋯ ∗Z2LMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMNMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMO
2(N−1) times

.

We know that this group has the same growth function as each of

Z2 ∗Z2 ∗⋯ ∗Z2LMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMNMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMO
2(N−2) times

∗Z

Z2 ∗Z2 ∗⋯ ∗Z2LMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMNMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMO
2(N−3) times

∗Z ∗Z

⋮
Z2 ∗Z2 ∗Z ∗Z ∗⋯ ∗ZLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMNMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMO

N−2 times

Z ∗Z ∗⋯ ∗ZLMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMNMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMO
N−1 times

.

Hence, we have created N non-isomorphic groups with the same growth func-
tion.

The above examples bring up the following question.

Question: Can there be infinitely many groups with the same growth
function?
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5 Rationality of Growth Series

Groups of rational growth (groups whose growth series with every finite gener-
ating set are rational functions) have been much studied. Examples of such
classes of groups are virtually abelian groups, hyperbolic groups, and the
Heisenberg group (For a brief history leading to the rational growth of the
Heisenberg group, see [2]). In this section we give a self-contained character-
ization of the rationality of the growth series (of a group with a specific gen-
erating set) in terms of recurrence relations satisfied by its growth functions.
This characterization of rationality of a formal power series is interesting even
outside the context of growth of groups.

A linear recurrence relation of depthM is a sequence of numbers {an} where
an+1 = α1an +α2an−1 +⋯+αMan−M+1, for some fixed numbers αi, i = 1, . . . ,M .

Theorem 34. The growth series of a group (under a specific generating set)
is rational if and only if its corresponding growth function eventually satisfies
a linear recurrence relation of finite depth.

Proof. (⇐) Suppose there are m,N ∈ N so that for all n ≥ N

σ(n) = c1σ(n − 1) + c2σ(n − 2) +⋯ + cmσ(n −m),
where ci ∈ Z. Then,

S(z) = σ(0) + σ(1)z + σ(2)z2 +⋯+ σ(n)zn +⋯
c1zS(z) = c1σ(0)z + c1σ(1)z2 + c1σ(2)z3 +⋯+ c1σ(n − 1)zn +⋯
c2z

2S(z) = c2σ(0)z2 + c2σ(1)z3 + c2σ(2)z4 +⋯+ c2σ(n − 2)zn +⋯
⋮

cmzmS(z) = cmσ(0)zm + cmσ(1)zm+1 + cmσ(2)zm+2 +⋯+ cmσ(n −m)zn +⋯.

Then,

S(z) (1 − c1z − c2z
2 −⋯− cmzm)

= σ(0) + [σ(1) − c1σ(0)] z + [σ(2) − c1σ(1) − c2σ(0)] z2
+⋯+ [σ(m) − c1σ(m − 1) −⋯ − cmσ(0)] zm
+⋯+ [σ(N − 1) − c1σ(N − 2) −⋯ − cmσ(N −m − 1)] zN−1
+ ∞∑

n=N

(σ(n) − c1σ(n − 1) − c2σ(n − 2) −⋯ − cmσ(n −m)) zn.
Since σ(n) = c1σ(n − 1) + c2σ(n − 2) + ⋯ + cmσ(n −m) for all n ≥ N , the

summation equals zero. Hence, S must be a rational function since, S(z) =
σ(0) + (σ(1) − c1σ(0)) z +⋯+ [σ(N − 1) − c1σ(N − 2) −⋯ − cmσ(N −m − 1)] zN−1

1 − c1z − c2z2 −⋯− cmzm
.

(⇒) Suppose S(z) = P (z)
Q(z) is a rational function, where P and Q are poly-
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nomials and S(z) is in reduced form. Let Q(z) = a0 + a1z + ⋯ + aNzN and
recall that S(z) = ∑∞n=0 σ(n)zn. If Q(0) = 0, let am be the first non-zero co-
efficient in Q. Defining Q1(z) = z−mQ(z) we note that Q1(0) ≠ 0. Then, as
Q1(z)∑∞n=m σ(n−m)zn = P (z), we note that replacingQ byQ1 does not change
the recurrence relation condition, which is merely shifted. If degP ≥ degQ1, by
long division we have P

Q1
= R + P1

Q1
, where R and P1 are polynomials. Again,

note that replacing P
Q1

by P1

Q1
does not affect the recurrence relation condition

(it is just shifted). Finally, we can assume (by re-scaling) that Q(0) = 1.

Summarizing, by the above discussion, we can assume ∑∞n=0 σ(n)zn = P (z)
Q(z)

where Q(0) = 1 and degP < degQ. Let Q(z) = 1+a1z+⋯+aNzN and let P (z) =
b0 + b1z + ⋯ + bMzM where M < N . Then we have Q(z)∑∞n=0 σ(n)zn = P (z).
Now, by equating coefficients we have,

σ(0) = b0

σ(1) + a1σ(0) = b1 ⇒ σ(1) = b1 − a1σ(0)
σ(2) + a1σ(1) + a2σ(0) = b2 ⇒ σ(2) = b2 − a1σ(1) − a2σ(0)

⋮
σ(M) + a1σ(M − 1) + a2σ(M − 2) +⋯ + aM−1σ(1) + aMσ(0) = bM .

Hence σ(M) = bM −a1σ(M − 1)−a2σ(M − 2)−⋯−aM−1σ(1)−aMσ(0). Then,
for n ≥M + 1

σ(n) = −a1σ(n − 1) − a2σ(n − 2) −⋯ − aM−1σ(n −M + 1) − aMσ(n −M).
Hence, σ eventually satisfies a linear recurrence relation of depth M .

Remark 35. In Example 16 we noted that σ(n) satisfies a recurrence relation
and hence by the above theorem the growth series must be rational. In the same
example we actually calculated the growth series and it is indeed rational.
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