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The notion of a negatively curved group is at first highly non-intuitive because
it links two areas of mathematics that are not usually associated with one
another. Curvature is generally a property that we associate with geometric
objects like curves or surfaces in R3, while a group is an algebraic structure
that we associate with objects like integers or matrices. However, there is a
way to define a group structure on paths in a geometric object like a manifold,
the so-called fundamental group of the manifold, such that certain aspects of
negative curvature are reflected in the group.

Negatively curved groups are interesting not only because of their alge-
braic properties but also because of their applications in both computer sci-
ence and art. They make up the vast majority of all fundamental groups of
three-dimensional manifolds, which are spaces that look locally like the three-
dimensional world we live in. A famous example of the use of negatively curved
reflection groups in art is M.C. Escher’s woodcut Circle Limit IV (1960), which
illustrates the overall structure of such a group. The reason that these groups
are important to computer scientists is that they are what is called “automatic”
and consequently have “solvable word problem.” [2]

This article is a brief exploration of negatively curved groups. In order
to connect geometry to group theory we begin by describing the procedure of
forming a fundamental group. Next, we review the concept of curvature for
two-dimensional manifolds and develop an intuitive notion of what a negatively
curved group should look like. We then turn this intuitive notion into an exact
criterion that distinguishes negatively curved groups in general. Finally, we
analyze three examples.

Fundamental groups

Definition. Let X be a path-connected space, that is, a space in which any two
points are connected by a path in X. Two paths in X, which begin and end at
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the same point, are called homotopically equivalent if they can be continuously
deformed into one another while keeping their endpoints fixed. If we denote
the concatenation of two paths by “x” (first running along one path and then
along the other path), the set G of all equivalence classes of paths, which begin
and end at some fixed base point p of X, forms a group under the operation
“x”. We call (G, %) the fundamental group of X.

Consider, for example, the fundamental group (G, %) of a torus, that is, the
surface of a doughnut. Every loop can be deformed into a product of loops
that wind around the top and of loops that wind around the doughnut hole.
Denoting these two types of generating
loops by a and b, respectively, one can check
that axb = bxa in G. It follows that (G, )
is isomorphic to Z ¢ Z.

In order to get some idea as to what a
negatively curved fundamental group might
look like, we now consider this construction
in the context of general surfaces and their
curvature. Exact definitions of these two
concepts can be found in [5]. Here, we will
only give a brief review of the curvature of surfaces in 3-space.

Curvature

Given a point p on a surface M, we would like to measure the curvature of
M at p. In order to define the notion of curvature for surfaces, we recall the
corresponding notion for planar curves.

The curvature of a circle of radius r is defined to be %
(The larger the circle, the smaller its curvature.) Given
a planar curve C, one way of describing its curvature at
a point p is to look at the osculating circle at p, which is
the circle that best approximates the curve at p. It can
be found as follows: take three points on the curve, call
them a, b, and c¢. These three points uniquely determine
a circle. The osculating circle will be the circle formed by
letting a, b, and c limit to the point p, along the curve.
The curvature x of C' at p is defined to be %, where r is the radius of the
osculating circle at p. If the planar curve C is a line, then the osculating circle
has infinite radius and thus the curvature is equal to zero, which is consistent
with the intuitive notion of curvature.

Now, in order to measure the curvature of a surface M at a point p, we con-
sider certain lines passing through p and examine their curvature. Specifically,
if we are given a surface M in R?, we can find a normal vector to the surface
at the point p. If we look at all possible planes that contain the normal vector
and intersect these planes with the surface we will get a collection of planar
curves on the surface that pass through p. If we compute the curvature of all
of these curves in their respective planes using the osculating circle (record-
ing the curvature as positive or negative depending on whether the osculating
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circle opens in the direction of the normal vector or not), then the Gaussian
curvature of M at p is the product ki - K2, where kp is the minimum of the
curvatures of all those curves and ks is their maximum.

The shape of a surface M near a point p of negative Gaussian curvature
resembles a saddle. If the Gaussian curvature of M at p is positive then, locally,
it looks like a dome. If, on the other hand, the Gaussian curvature is zero at
p, then the surface M, near p, either looks flat like a table top (at least in its
quadratic approximation) or like a cylinder (bending in only one direction).

One way to visualize the curvature of a surface at

& point is to make the surface shiny and to consider
the reflection that can be seen near that point. If the
' reflection reverses both left and right, and up and down
(or neither) then the surface is positively curved. An
' example of this would be a spoon, where the point is
located at the bottom of the bowl of the spoon. If the
reflection only reverses one direction, then the surface is
negatively curved at that point. This can be observed,
for example, at a point on the bell of a tuba, somewhat

like the figure on the left.

It is a fact that a closed (compact) surface, which
has negative Gaussian curvature at every one of its points, cannot be formed in
R3 but requires at least R*. We think of the fundamental groups of such nega-
tively curved closed surfaces, or negatively curved closed manifolds in general,
as the prototypical examples of negatively curved groups. Triangles drawn on
negatively curved surfaces (or manifolds) are thinner than usual: their sides
tend to bend inward. Based on this principle of thin triangles, we would like
to find a more general criterion for when a group should be called negatively
curved. To this end, we will need to construct a geometric object called the
Cayley graph. To understand the construction, we first develop some tools.

Cayley graphs and their geometry

A word, in a given set S = {a; | i € I} of symbols, is a finite sequence of
symbols a; and their formal inverses a; . For convenience, we will denote the
empty word as e. We call a word reduced if no symbol is adjacent to its in-
verse. The set of all reduced words under the operation * of concatenation,
followed by reduction (repeatedly eliminating adjacent pairs of inverses), forms
a group, called the free group F' on the generators S. If we are also given a
set R of relationships among the generators, like a4af1a3 = e, We can con-
struct the largest group generated by .S, in which all of these relations hold,
by forming the quotient G = F/N, where N is the smallest normal subgroup
of F' which contains R. We call (S | R) a presentation for the group G. For
example, the fundamental group of the torus above has the finite presentation
<a, blaba= bt = e>. All our group presentations will be finite.

Given a group presentation G = (S | R), we can create a directed graph,
called the Cayley graph, in the following manner. There is one vertex for
each element of the group. If y = xa; with z,y € G and a; € S, then there
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is a directed edge from z to y labelled a;. The Cayley graph of the above
presentation of the fundamental group of the torus, for example, looks like an
integer grid in R?, as depicted on the next page.

If we declare each edge of the Cayley graph to have length equal to 1 unit,
we can define the distance between two points as the length of a shortest path
connecting them. Such a shortest (continuous) path is also called a geodesic.
The Cayley graph is therefore an example of what is called a geometry: a
metric space in which closed metric balls are compact and any two points are
connected by a geodesic.

We are now ready to formulate our curvature condition for groups.

Definition. The group G = (S| R) is called negatively curved if its Cayley
graph has uniformly thin triangles in the following sense: there is a constant
6 > 0 such that each point on the side s; of a geodesic triangle s;sos3 lies
within 0 of some point of the union ss U s3 of the other two sides.

It can be shown that this definition is independent of the specific presenta-
tion of the group G (see [3]) and that, as expected, the fundamental groups of
negatively curved manifolds are negatively curved groups.

Examples
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Now it would be very nice to look at A

some examples of this definition and fig-

ure out whether certain groups are neg- - A
atively curved or not. —- 4

The first example that we will look
at is the free group on two generators.

The first thing that we need to do is con- —- -
struct the Cayley graph for the presen- = -
tation (a, b | no relations). Every vertex %%“
z of the Cayley graph has four neigh-
bors, namely za, zb, zb~' and za~!. -
The graph is shown on the right. We

observe that a path in this particular Cayley graph is a geodesic if and only
if it does not backtrack, and that there is a unique geodesic between any two
points. Thus, if we look at any geodesic triangle with sides s1, s2, and s3, we
find that s; C s U s3. We conclude that all geodesic triangles are §-thin with
0 = 0. Therefore, the free group on two generators is negatively curved.

The second group that we will look at is the fundamental group of the
torus: <a,b | aba=1b~1 = e>. The Cayley graph for this group presentation
is the familiar integer grid in R? shown on the next page. The torus can-
not be deformed so as to have negative curvature at every one of its points.
We therefore do not expect this group to be negatively curved. It is im-
portant to note that geodesics are not unique in this graph. For example,
you can go from e at (0,0) to a?b? at (2,2) by six different geodesic paths:
aabb, abab, baab, abba, baba, and bbaa. In general, every geodesic path is a

stairstep path so that there is a total of (‘"1:;'"‘) geodesic paths from e to a™b™.

ii*i— _iii.
+ —
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In order to show that thereisno § > 0
such that the geodesic triangles in this
Cayley graph are uniformly J-thin, con-
sider the following geodesic triangle: let
s1 be the straight line path connecting
(20,28) and (24, —26), let so be the zigzag
path from the origin e to (26,2d) which
begins in the y-direction, and let s3 be a
similarly defined path from e to the point
(20, —26). Consider the point P(0,2§) on
s1. Then the distance from P to any point
on the sides s or s3 is at least 25. Hence,
this group is not negatively curved.

The final example that we will look at is

the orientation preserving subgroup of the
group generated by the reflections R;, Ra,
and R3 through the sides of a triangle in the
hyperbolic plane with opposed angles of %,
7 and 7, respectively. The resulting tiling
is depicted on the right, in the Poincaré
disk model. This group has presenta-
tion <a,b |a? =e,b® =¢,(ab)” = e>, where
a and b are the rotations a = R o Ry
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and b = Ry o R3. A part of the Cay-

ley graph for this group is pictured below, where the dotted lines repre-
sent multiplication by b and the solid lines represent multiplication by a.

(Since a = a~!

responding incoming edge for a~

, every outgoing edge for a has been combined with the cor-
into one single solid edge.) A geodesic

edge path in this graph is a reduced word that does not contain in-
stances of words like bb, (ab)* or (ab)®ab~!, which go more than half way
around a 3-gon, a 14-gon or their joined 15-gon, because these could be re-
placed by b1, (b71a™1)3 or (b=ta=1)3b, respectively, shortening the path.

[
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¢ o\ 7y

We would like to show that this
group is negatively curved. In order to
check if the Cayley graph has uniformly
thin triangles, consider two geodesic
edge paths, represented by words A and
B, such that A connects the group ele-
ment x to the group element y, and B
connects y to z. It is possible for AB to
not be a geodesic path, because words
that were not previously allowed could
have been introduced into AB, where
the end of A is connected to the begin-
ning of B. First, reduce the concatena-
tion AB by cancelling generators with
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their inverses. Next, look for a word of the type mentioned above, which goes
more than half way around a 3-gon, 14-gon or 15-gon, and replace it by its
shortcut the other way around the same 3-gon, 14-gon or 15-gon, respectively.
Note that we may have to repeat the two steps of this process several times,
before we finally arrive at a geodesic edge path C' connecting x to z. However,
the number of such shortcut replacements is bounded by the length of the word
AB. Therefore, if we apply this shortening algorithm to the perimeter word
of a geodesic triangle, the number of necessary replacements is bounded by
the length of the perimeter. Since the perimeter spells out a trivial word in
the group, these cyclic replacements provide a sense of area for this triangle in
terms of 3-gons, 14-gons and 15-gons, which is bounded by a linear function of
the perimeter. As one might expect, such a uniform linear bound of area, in
terms of perimeter, forces triangles to be uniformly thin. (For details see [1,
pp. 419-421].) We conclude that this group is negatively curved.

Conclusion

Not only is every fundamental group of a closed negatively curved manifold
negatively curved in the above sense, but many other classes of groups are
negatively curved as well. Indeed, according to Gromov, almost every finitely
presented group is negatively curved. Many geometric ideas and techniques
have thus found profound applications to group theory. Conversely, the study
of negatively curved groups can lead to important discoveries about three and
four-dimensional manifolds that otherwise might be very difficult to make.
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