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Abstract In this paper, we look at the numerical ranges of complex truncated
composition operators induced by analytic mappings of the open unit disk
to itself. Our matrices of interest have dimension 3 and the corresponding
operators are compact in the Hardy-Hilbert Space H2. We investigate the
geometric shapes of the numerical range for such operators.

1 Introduction

In an undergraduate Linear Algebra course, students generally view matri-
ces as actions on vectors in Rn. However, these vectors can also be viewed as

coefficients of polynomials. For example, in R3, the vector [ 2 3 5]T can be

identified with the polynomial 2 + 3x + 5x2. In this way, R3 can be viewed as
the space of polynomials degree 2 or less, denoted P2. In general, Rn+1 can be
viewed instead as Pn. We keep the standard inner (dot) product the same, so
we also now have a way to consider “angles” between and “lengths” of polyno-
mials! In fact, taking this idea to infinite dimensions (and equating functions
with their Taylor series - which are infinite polynomials) is the starting point
for research on what is known as the Hardy-Hilbert space.
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The Hardy-Hilbert space H2 consists of functions analytic (continuously
differentiable) in the open unit disk on the complex plane. What this means
is that the functions have a Taylor series centered at the origin with a radius
of convergence of at least 1. However, that is not the only requirement. For
our analogy of dot product to make sense, we also require that any function
f(z) = ∑∞n=0 anzn in H2 must satisfy

∥f∥2 = ⟨f, f⟩ = ∞∑
n=0

∣an∣2 < ∞.

This says that we can maintain our standard dot product, but the value
becomes an infinite series that must converge. For example, 1
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This natural generalization means that doing finite-dimensional work on Pn

may give information about H2, so open questions in H2 are sometimes worth
studying first on the simpler spaces Pn. (In fact, these spaces are proper sub-
spaces of H2.) In particular, composition operators are an area of intense study
on H2. They have deep connections to multiplication operators (considered the
building blocks of operator theory) and dynamical systems. Note: Although
H2 is defined over the complex numbers, the explanation above is the same:
simply think of polynomials on Cn instead of Rn.

A composition operator onH2 with symbol ϕ is defined on any function f by
Cϕf = f ○ϕ. If ϕ maps the disk into itself and is analytic, then Cϕ is a bounded
(continuous) operator. For most composition operators, the subspaces Pn of
H2 are not invariant (meaning Cϕ does not map Pn back into itself), but we can
approximate the idea with a truncated matrix. We will call this a truncated
composition operator (TCO). As an example, consider the polynomial space
P2, with the standard basis now being represented as the functions {1, z, z2}.
If ϕ = a+bz+cz2, then the composition matrix Cϕ with respect to the standard
basis is ⎡⎢⎢⎢⎢⎢⎣

1 a a2

0 b 2ab
0 c b2 + 2ac

⎤⎥⎥⎥⎥⎥⎦
.

This is achieved by considering the action of the composition operator,
functionally, on each of the basis elements, and then writing out the ma-

trix. So, Cϕ1 = 1 ○ ϕ = 1 = [ 1 0 0]T , and this is true for any composi-

tion operator. Likewise, Cϕz = z ○ ϕ = ϕ = a + bz + cz2 = [ a b c]T , and

Cϕz
2 = z2 ○ϕ = ϕ2 = a2+2abz+(b2+2ac)z2+⋯, but here, we truncate the terms

past degree 2, giving the vector [ a2 2ab b2 + 2ac]T . Since we truncated at
degree 2 for P2, we will call this operator P2Cϕ.
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Now that we have described the setting, what would we like to know about
composition operators on H2? The numerical range of an operator T , W (T ),
is defined by

W (T ) = {⟨Tx,x⟩ ∶ ∣∣x∣∣ = 1}.
The Toeplitz-Hausdorff Theorem states that this is a convex subset of the com-
plex plane that gives information about the operator. For example, the closure
of the numerical range always contains the convex hull of the eigenvalues, and
so can be used to approximate or find eigenvalues. In infinite-dimensional set-
tings, the numerical range can indicate when an operator commutes with, or
is equal to, its adjoint. Recently, numerical range has been applied to quan-
tum physics and quantum computing. However, in the case of composition
operators on H2, incredibly little is known about the numerical range–even
composition operators with linear symbols have not had their numerical ranges
discovered! Therefore, we will focus on the numerical ranges of our truncations
of these composition operators on P2.

In the second section of this paper, we will investigate the numerical range
of every possible 3 × 3 truncated composition operator (TCO) and give proofs
for the shapes for which we did not need projective geometry. In section three,
we will give equations for the 3×3 TCOs for which we use projective geometry
to identify their curves. In the final section, we will pose questions for further
research. Throughout this paper, we display images for the numerical range
of an operator; these pictures are thanks to Valentin Matache’s MATLAB
function that plots the numerical range [6]. The other plots in this paper were
constructed using our own MATLAB, Mathematica, and Desmos code.

2 3 × 3 Numerical Range

For PnCϕ when n = 2, there are seven non-trivial possibilities for the form of
ϕ. This is because P2Cϕ truncates all terms past z2; the infinite series for
ϕ = a + bz + cz2 + dz3 +⋯ is truncated to only its first three terms a + bz + cz2,
where a, b and c are constants in C. We have listed each possible such ϕ and
the shape of the numerical range of the corresponding TCO in Table 1 below.
We now set out to prove each case. We begin by proving the numerical range
of ϕ = bz is a line or triangle. This relies on the well-known fact that the
numerical range of a normal matrix is the convex hull of the eigenvalues [1].

Theorem 1. Let T be the matrix representation of P2Cϕ with ϕ = bz. When
b ∈ R, W (T ) is a degenerate triangle (a line segment) with endpoints at 1 and
b2. When b ∉ R, W (T ) is a triangle with vertices at 1, b, and b2.

Proof. When ϕ = bz for Cϕ and b ≠ 0, our truncated matrix is

T =
⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 b 0
0 0 b2

⎤⎥⎥⎥⎥⎥⎦
.
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ϕ Numerical Range Description

ϕ = bz Triangle or Line
ϕ = bz + cz2 Convex Hull of an Ellipse and a Point
ϕ = cz2 Convex Hull of an Ellipse and a Point
ϕ = a Ellipse

ϕ = a + bz + cz2 Convex Hull of the Linear Envelope of pt(x, y) = 0
ϕ = a + cz2 Convex Hull of the Linear Envelope of pt(x, y) = 0
ϕ = a + bz Convex Hull of the Linear Envelope of pt(x, y) = 0

Table 1: Numerical Range Description of 3 × 3 TCOs where a, b, c ≠ 0

Since T is a diagonal matrix, T ∗T = TT ∗. Therefore, T is normal. Since T is
normal, W (T ) is the convex hull of the eigenvalues of T . The eigenvalues of T
are 1, b and b2.

When b ∉ R, the eigenvalues are no longer collinear, and the convex hull of
the eigenvalues of T will form a triangle with the vertices at the eigenvalues
1, b, and b2. When b ∈ R, the eigenvalues of T are collinear, and the convex
hull of the eigenvalues will be a line. Therefore, with b ∈ R, W (T ) degenerates
into a line segment with endpoints at 1 and b2, the maximum and minimum
eigenvalues respectively.

Figure 1: Numerical Range of P2Cϕ when ϕ = z/7

As seen from Theorem 1, Figure 1 is an image of the numerical range of
P2Cϕ when ϕ = bz such that b = 1

7
. Note that the numerical range is a line

segment with endpoints at 1 and 1
49
. Figure 2 shows the numerical range of

Cϕ when ϕ = bz such that b = i
7
. Note that the numerical range is a triangle

with vertices at 1, i
7
and −1

49
.
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Figure 2: Numerical Range of P2Cϕ when ϕ = iz/7

From previous research, we can also classify when the numerical range is
the convex hull of an ellipse and a point. We use the following theorem to do
so.

Theorem 2 (Theorem 2.3 of [5]). The numerical range W (T ) of a 3×3 matrix
T with the eigenvalues λj, j = 1,2,3, is the convex hull of an ellipse and a point
if and only if

(i) T is not normal, that is, d ∶= Tr(T ∗T ) −∑3
j=1 ∣λj ∣2 ≠ 0 and

(ii) the number

λ ∶= Tr(T ) + 1
d
(∑3

j=1 ∣λj ∣2λj −Tr(T ∗T 2))
coincides with one of λj.

If these conditions hold, then in W (T ), the point of the convex hull is at p = λ,
while the minor axis of the ellipse has length

√
d and its foci coincide with the

two remaining eigenvalues, λ1 and λ2, of T . In particular, W (T ) is a true
ellipse if and only if

(∣λ1 − λ∣ + ∣λ2 − λ∣)2 − ∣λ1 − λ2∣2 ≤ d.

The following corollaries follow directly from this theorem.

Corollary 3. Let T be the matrix representation of P2Cϕ with ϕ = bz + cz2

such that c ≠ 0. Then W (T ) is the convex hull of an ellipse and a point.

Proof. Suppose ϕ = bz + cz2 for Cϕ such that c ≠ 0. Our truncated matrix is

T =
⎡⎢⎢⎢⎢⎢⎣
1 0 0
0 b 0
0 c b2

⎤⎥⎥⎥⎥⎥⎦
.
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Computing λ and d, we see

λ = 1 + b + b2 + b∣b∣2 + b2∣b∣4 − b4b
2 − b2cc − b2b + bcc

−∣b∣2 − ∣b∣4 + bb + b2b
2 + cc

and
d = −∣b∣2 − ∣b∣4 + bb + b2b

2 + cc.

Using the fact that xx = ∣x∣2 for x ∈ C, we see λ = 1, and d = ∣c∣2. The eigenvalues
of our matrix are λ1 = 1, λ2 = b and λ3 = b2. Since λ = λ1, W (T ) is the convex
hull of an ellipse and a point by Theorem 2. Also by Theorem 2, W (T ) is a
true ellipse if (∣b−1∣ + ∣b2 −1∣)2 − ∣b2 − b∣2 ≤ ∣c∣2. But, since ∣b∣ + ∣c∣ < 1 in order for
the corresponding operator on H2 to be compact, (∣b−1∣+∣b2−1∣)2−∣b2−b∣2 will
never be less than ∣c∣2 (see Figure 3). Therefore, W (T ) is always the convex
hull of an ellipse and a point. Note that the case b = 0 is a sub-case for this
corollary: the numerical range of the corresponding TCO is the convex hull of
a circle centered at 0 and a point at 1.

Figure 3: When (∣b − 1∣ + ∣b2 − 1∣)2 − ∣b2 − b∣2 ≤ ∣c∣2 and ∣b∣ + ∣c∣ < 1

In Figure 4, we show the numerical range of P2Cϕ when ϕ = cz2 such that
c = 1

7
. It is the convex hull of a circle whose center is at 0 and a point at 1.
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Figure 4: Convex Hull of an Ellipse and a Point: Numerical Range of P2Cϕ

when ϕ = z2/7

We conclude this section with a final corollary on the numerical range of
P2Cϕ with ϕ = a.

Corollary 4. Let T be the matrix representation of P2Cϕ with ϕ = a such that
a ≠ 0. W (T ) is an ellipse with foci at 0 and 1.

Proof. When ϕ = a for Cϕ and a ≠ 0, our truncated matrix is

T =
⎡⎢⎢⎢⎢⎢⎣
1 a a2

0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦
.

Computing λ and d, we see λ = 1 + −aa−a2a2

aa+a2a2 and d = aa + a2a2. Using the fact

that xx = ∣x∣2 for x ∈ C, we see λ = 0 and d = ∣a∣2(1+ ∣a∣2). The eigenvalues of T
are 1 and 0. Since λ = 0, λ coincides with an eigenvalue of T . Therefore, W (T )
is the convex hull of an ellipse and a point by Theorem 2. We now check the
criteria for a true ellipse.

In our case, λ = 0. So, (∣λ1−λ∣+ ∣λ2−λ∣)2−∣λ1−λ2∣2 = (∣1∣+ ∣0∣)2−∣1−0∣2 = 0.
Also, d = ∣a∣2(1+ ∣a∣2) > 0. Since 0 < ∣a∣2(1+ ∣a∣2), we know that W (T ) is a true
ellipse with foci at the two eigenvalues by Theorem 2. Therefore, W (T ) is a
true ellipse with foci at 1 and 0.

Figure 5 shows the numerical range of P2Cϕ when ϕ = a such that a = 1/7.
The foci of the ellipse are at 0 and 1.
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Figure 5: Elliptical Numerical Range of P2Cϕ when ϕ = 1/7

3 3 × 3 Cases with Projective Geometry

For the remaining three cases, we reference the work of Kippenhahn [2], who
made groundbreaking discoveries about numerical range in the late 1950s. We
are only able to describe the boundary curves of these numerical ranges using
projective geometry. We focus on some specific examples to show explicitly
how some of these shapes look. In a paper by Mihaela and Valentin Matache
referencing Kippenhahn’s work [4], the following theorem is restated.

Theorem 5 (Theorem 1 of [4]). Let T be any square matrix with complex
entries. Its numerical range W (T ) is the convex hull of the linear envelope of
the curve having the equation pt(x, y) = 0, where

pt(x, y) = det(xRT + yI T + I).
The linear envelope is the family of lines that are tangent to a given curve.

In Matache’s definition, we find where pt(x, y) = 0, which is known as the dual
to the numerical range. Then, we take every pair (X,Y ) on the dual curve
and graph the lines Xx + Y y + 1 = 0. If we take the convex hull of the linear
envelope, we obtain the numerical range. When ϕ = a + bz + cz2 such that
a, b, c ≠ 0, a, c ≠ 0, or a, b ≠ 0, for Cϕ, we get the following dual equation:

pt(x, y) = 1
4
a4bx3 + 1

4
a4bxy2 − a4x2

4
− a4y2

4
− 1

4
a3cx3 − 1

4
a3cxy2 − 5

4
a2b2x3 −

a2b2x2− 5
4
a2b2xy2−a2b2y2− a2x2

4
− a2y2

4
+abcx3+abcx2+abcxy2+abcy2+2acx2+

2acx + b3x3 + b3x2 + b2x2 + b2x + bx2 + bx − c2x3

4
− c2x2

4
− 1

4
c2xy2 − c2y2

4
+ x + 1.
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We will now give an example of the numerical range as a convex hull of the
linear envelope of the curve pt(x, y) = 0. We use the equation ϕ = 1/7 + z/7.
For ϕ, we begin by finding the equation

pt(x, y) = 81x3 + 5397x2 − 17xy2 + 39102x − 189y2 + 33614

33614

using the formula above. Setting pt(x, y) = 0, we get the graph of the dual
found in Figure 6. The graph of the lines Xx + Y y + 1 = 0 with (X,Y ) on the
dual curve is found in Figure 7. In Figure 8, we see the convex hull of the linear
envelope, which is the final numerical range picture.

Figure 6: pt(x, y) = 0 when Cϕ when ϕ = 1/7 + z/7

Figure 7: Xx + Y y + 1 = 0 from pt(x, y) = 0 of Cϕ when ϕ = 1/7 + z/7
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Figure 8: Numerical Range of P2Cϕ when ϕ = 1/7 + z/7

Close visual inspection of Figure 7 demonstrates that the numerical range
is not completely elliptical. In fact, there is only one case where the numerical
range of P2Cϕ when ϕ = a+az is an ellipse. Computing λ and d from Theorem 2

yields λ = − (a−5)a2

5a2+1
and d = 5a4 + a2. The only case where λ coincides with one

of the eigenvalues is when a = 1/3. When this is the case, ϕ = 1/3+ z/3 and our
TCO is

T =
⎡⎢⎢⎢⎢⎢⎣
1 1/3 1/9
0 1/3 2/9
0 0 1/9

⎤⎥⎥⎥⎥⎥⎦
.

We compute and find λ = 1/3, and d = 14/81. So, we have shown that the
numerical range of P2Cϕ when ϕ = 1/3 + z/3 is the convex hull between an
ellipse and a point. Furthermore, to check if W (T ) is an ellipse, we compute(∣λ1 − λ∣ + ∣λ2 − λ∣)2 − ∣λ1 − λ2∣2 ≤ d. We compute each side of the inequality
and see that it is satisfied as 0 ≤ 14/81. Therefore, W (T ) is a true ellipse with
foci at 1 and 1/9. See Figure 10 and Figure 11 for numerical range pictures of
P2Cϕ when ϕ = 1/3 + z/3.
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Figure 9: pt(x, y) = 0 when Cϕ when ϕ = 1/3 + z/3

Figure 10: The Linear Envelope of pt(x, y) = 0 of Cϕ when ϕ = 1/3 + z/3
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Figure 11: Numerical range of P2Cϕ when ϕ = 1/3 + z/3

4 Final Remarks and Further Questions

We conclude our paper with further questions to investigate.

1. Are there any classifications of numerical ranges for the 3 × 3 cases that
extend to infinite dimensions? If so, is there a way to determine the limit
of the numerical radius?

2. To what extent can our methods be used on 4 × 4 matrices or higher?
When does the numerical range cease to look like one of our described
shapes as the Taylor series differ more for larger truncations (if it does)?
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