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1 Introduction

The NCAA Division I Men’s Basketball Tournament goes by many names.
March Madness, The Big Dance, and simply The Tournament are just some
of the names you might hear come March. Every year, 68 of the best col-
lege basketball teams in the country are selected for the tournament and play
through a single elimination bracket until one team is crowned the national
champion. The results of this tournament are notoriously unpredictable, with
small schools frequently upsetting larger schools with more talented teams.
Every year millions of people across the world fill out brackets attempting to
predict the results of the tournament, but no perfect bracket has ever been
documented. Our goal was not necessarily to predict the perfect bracket but
to see if there is a mathematical way to more accurately predict the tournament
and apply it to the 2017 NCAA Men’s Basketball Tournament.

Sixty-eight teams are invited every year to the NCAA Men’s Basketball
Tournament. Four play-in games eliminate four teams, leaving the 64 that
make up the final bracket. The Round of 64 consists of 32 games, which
eliminates half of the 64 teams. The second round reduces these 32 teams
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down to 16, referred to as the Sweet 16. The Sweet 16 is then cut down to
the Elite 8, who play each other for one of the spots in the Final Four. These
four teams compete for the two spots in the national championship game,
which decides the team that will be named national champion. The traditional
method for scoring tournament brackets is to award 1 point for each Round
of 64 game correctly predicted, 2 points for each Round of 32 game, 4 points
for every Sweet 16 game, 8 points for each Elite 8 game, 16 points for each
of the Final Four games, and 32 points for correctly predicting the national
champion. Almost every major bracket pool uses these scoring rules, with the
only exception being ESPN.com, which simply multiplies each of these values
by 10. This creates a maximum possible bracket score of 192 (or 1920 on
ESPN.com). The ultimate goal of this project was to develop a system to
predict the highest-scoring bracket possible.

2 What Others Have Done

Attempting to predict the NCAA Tournament is not a brand-new phenomenon.
There are many algorithms that have been made public over the years. From
well-known statisticians, to machine learning competitions on kaggle.com, many
have tried their hand at using data to aid their bracket predictions. Silver’s
model [6] is based on a composite of 8 general equally-weighted team ratings (6
computer rankings and 2 human rankings) through 2017. Each computer rating
is based on very similar statistics such as wins and losses, strength of schedule,
margin of victory, and offensive and defensive efficiency. These statistics are
all computed from performance throughout the season.

Another previous study on this topic was written by Ezekowitz [3] and
published in the Harvard Sports Analysis Collective. Ezekowitz conducted his
analysis with the assumption that games in the NCAA Tournament are funda-
mentally different from those during the regular season. To test this he used a
variety of publicly available statistics that quantify a team’s regular season and
also developed a few of his own statistics to measure factors that he felt were
important in the tournament. In particular, he developed statistics to quantify
a team’s confidence and tournament experience. Using this model, Ezekowitz
was able to predict the tournament more effectively than many of the other
computer ranking systems that did not use his confidence and experience met-
rics.

Simple models often see more success in general predictive modeling appli-
cations, and the NCAA Tournament is no exception. In 2014 Kaggle.com, a
site that hosts a variety of predictive modeling competitions, held a compe-
tition called “March Machine Learning Mania,” a contest for predicting the
respective NCAA Tournament. Many models were entered using a wide array
of mathematical techniques.
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3 Data

For our analysis we collected data from eleven years of NCAA Men’s Basket-
ball Tournaments dating from 2006 to 2016. Each of the statistics collected
falls into one of four categories: general information, offense, defense, and ball
control. The majority of the statistics collected come from the archived na-
tional statistics on stats.ncaa.org [5], with a few exceptions. Turnover margin
from 2006-2008, strength of schedule from 2007-2016, free throws attempted
per game for all years, and opponent free throws attempted per game for all
years were collected from teamrankings.com [7]. Strength of schedule from 2006
was collected from cbssports.com [1].

The statistics in the general information category include: NCAA Tourna-
ment seed, season win-loss record, average margin of victory (or defeat), and
strength of schedule. The statistics in the offensive category include: points
scored per game, assists per game, field goal percentage, three-point field goals
made per game, three-point field goal percentage, free throws attempted per
game, and free throw percentage. The statistics in the defensive category in-
clude: points allowed per game, blocks per game, steals per game, field goal
percentage defense, and opponent free throws attempted per game. The statis-
tics in the ball control category include: rebound margin per game and turnover
margin per game.

Once the statistics were collected, we worked with any of the issues and
inconsistencies that arose in the data. These inconsistencies were either caused
by rule changes or by changes in the way a statistic was calculated. For exam-
ple, starting in the 2009 season the three-point line in college basketball was
moved back one foot, causing three-point percentages to fall by almost two per-
cent. We cannot directly compare values from before and after this rule change
because it would have been easier for a team to have a three-point percentage
of 40%, for example, under the old rules than under the new rules. Another
impactful rule change took place at the beginning of the 2016 season when
the shot clock was reduced from 35 seconds to 30 seconds, which increased the
pace of play and increased average scoring by around 5 points per game. An
example of inconsistent formulas being used to calculate a statistic can be seen
in the strength of schedule data. Teamrankings.com used a different formula
to compute strength of schedule between 2012 and 2016 than it did from 2007
to 2011, and the 2006 data from cbssports.com used another different formula.
This makes it impossible for us to directly compare the strength of schedule
from one year to another.

To deal with this issue we normalized the data for each year by subtracting
the average value of that statistic for a given year and dividing by the sample
standard deviation for that year. This process creates a distribution centered at
0, with values above 0 representing an above average value for a given statistic
and values below 0 representing a below average statistical value. This allows
us to compare statistics across years since we can look at how above or below
average a team was for a certain statistic rather than just looking at a single
statistic.

Another data issue that we needed to deal with was that some of our statis-
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tics were highly correlated. For example, a team’s win-loss record has a strong
positive correlation to its average margin of victory because teams that win
a lot of games tend to also have a high average margin of victory. Seed and
strength of schedule are also highly correlated because teams who play more
difficult schedules are usually rewarded with better seeds. To deal with these
correlations we used a process called principal component analysis. In our
model, principal component analysis was used to replace two correlated statis-
tics by a linear combination of the two to produce one single statistic. We
used this process to produce two sets of principal component statistics, one
combining seed and strength of schedule, and another combining a team’s win
percentage with its average margin of victory.

4 Generalized Linear Models

One method of predictive modeling that we used was a generalized linear model.
A generalized linear model (GLM) is a modified version of traditional linear
regression, which takes the form

Y = β0 + β1X1 + ⋅ ⋅ ⋅ + βkXk.

The response variable Y is expressed as a linear combination of the independent
variables Xi. A traditional linear regression solves for the constants β0, . . . , βk

such that the sum of the squared errors between the actual values of Y and the
predicted values of Y is minimized.

A GLM is similar to traditional regression, but the GLM extends the model-
ing capabilities. On the left-hand side of the equation the output Y is replaced
by a function g(Y ) = β0 + β1X1 + ⋅ ⋅ ⋅ + βkXk. The function g(⋅) is called the
link function. The link function can take a variety of forms depending on what
the application of the GLM will be. The inverse of this link function is then
used to turn the linear combination of predictors Xi into a predicted value. A
log link function takes the form ln(Y ) = β0 + β1X1 + ⋅ ⋅ ⋅ + βkXk. The inverse of
this function expresses the response variable Y as a function of the indepen-
dent variables, taking the form Y = eβ0+β1X1+⋅⋅⋅+βkXk . This allows us to model
situations where values can only be positive because the exponential function
can only produce positive results.

The link function that we chose was the logit function, whose inverse takes
the form

Y = eβ0+β1X1+⋅⋅⋅+βkXk

1 + eβ0+β1X1+⋅⋅⋅+βkXk
,

which allows us to express the response variable Y as a function of the inde-
pendent variables [2]. The main advantage of this function is that it produces
an output between 0 and 1, which allows us to model the probability that a
team will win a given game.

The statistical software R is particularly useful for the computation of gen-
eralized linear models. The built-in glm() function in R takes input data and
computes the coefficients β0, β1, . . . , βk using maximum likelihood estimation
to make the model output best fit actual history. For a GLM, maximum likeli-
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hood estimation is used to compute the coefficients instead of the minimization
of the sum of squared errors technique used by traditional linear regression.

Since our data was not originally in a form that could be used in the GLM,
some manipulation was required to properly arrange the data. We started by
taking the historical results from each of the eleven tournaments for which
we had data and finding the winner of each given game. We also calculated
the difference between each of our collected statistics for each matchup and
recorded these for use as independent variables in the GLM. For example, one
matchup in 2016 was Kansas, a number 1 seed scoring 81.6 points per game,
against Austin Peay, a number 16 seed scoring 76 points per game. Since
Kansas won this game 105 − 79, the beginning of this data entry would be:

Win Seed PPG
1 -15 5.6

This type of calculation was done for every statistic that we collected for
every game in each of the past eleven years. Win was treated as the response
variable that our model was to predict and the other statistics, such as Seed
and PPG, were used as the independent, predictive variables. This was done
both for the raw data that we collected and for the normalized data created to
remove any inconsistencies arising between separate years of data.

This produced two data sets of 722 entries each with each entry correspond-
ing to one of the 722 tournament games played between 2006 and 2016. We
were able to use these data sets along with the glm() function in R to compute
the coefficients to be used to calculate the Y to be plugged into the logit func-
tion. This would calculate the probability that a team would win a game given
a set of independent variables.

We made eight brackets using various GLMs. We made one bracket using
all of the raw statistics that we had available and made another using all of the
statistics after they had been normalized. We made a bracket using the GLM
with only the five statistics that our decision trees analyses (described in the
next section) had shown to be most impactful, and also made a bracket using
the GLM with the statistics that we arbitrarily thought were most important.
Another bracket was made using the GLM for the data using the principal
component analysis statistics in place of highly correlated statistics. We also
made a bracket using a different GLM for each round of the tournament because
some statistics may have had more predictive power in some rounds than in
others. We also included brackets made from using GLMs with only offensive
statistics or only defensive statistics, even though our analysis had shown that
these did not have great predictive power.

5 Decision Trees and Random Forests

Decision trees are a popular form of machine learning that can be used in
a plethora of ways. At a high level they work by taking a set of data and
determining multiple binary classification and/or regression subsets. These
subsets give quick and accurate insight into correlations between predictive
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variables and the response variable we want to predict. Beginning with the
whole set of data at the top of the tree, called the root node, the decision tree
uses an algorithm to determine which variables split the outcomes in the most
substantial ways. Said another way, the algorithm looks at all the correlations
between the response variable and predictive variables and splits on the variable
that gives the most distinct result.

There are two algorithms that we can utilize in the ‘rpart’ decision tree
code depending on the data we are using and what we are trying to accomplish.
Some say the two algorithms do not produce significantly different results, but
since we are dealing almost exclusively with continuous data, we used the Gini
impurity algorithm rather than the information gain algorithm.

The Gini impurity works by measuring the disorder of a set of elements.
This measurement “is calculated as the probability of mislabeling an element
assuming that the element is randomly labeled according to the distribution
of all the classes in the set” [4]. The author of the aforementioned article also
provides a good example of calculating this probability:

Example 1. Suppose we have a set with 6 elements: red, red, blue, blue,
blue, blue. (The classes of this set are red and blue.) We select an element at
random. Then we randomly label it according to the distribution of classes in
the set. This would be equivalent to labeling the selected element by rolling a 6
sided die with 4 blue sides and 2 red sides. The probability that we misclassify
the element is equal to the probability that we select a red element times the
probability that we label it blue plus the probability that we select a blue element
times the probability that we label it red. This is, 2/6 ∗ 4/6 + 4/6 ∗ 2/6 = 16/36.

An original Gini impurity is calculated for the root node. The larger the
number of variables, the closer to 1 the beginning measure is. The goal of this
algorithm is to minimize the average Gini impurity at each level. This is how
the decision tree decides what variable to first split on, by choosing the split
that minimizes the average Gini impurity.

One downside to decision trees is that they do not incorporate any ran-
domness in their predictions. With the various decision tree buckets that we
explored, we found that different outlooks gave different results. For example,
while seed is often ranked very highly from year to year, the exact number
where it splits differs from year to year. A way to incorporate these differ-
ent measures is through ensembling an array of decision trees and averaging
them to obtain what is formally called a random forest. An additional benefit
of random forests is that they can utilize the specificity of overfitting decision
trees while negating the consequences. By default, random forests grow trees as
far as possible and average them together. Because the algorithm for decision
trees results in the same overfitted tree every time, random forests introduce a
source of randomness. This is done by using various subsets of both the rows
in the data as well as the variables.

The ‘randomforest’ package in R allows us to run such random forests and
produce probability metrics for each individual team, indicating their chance
to win a particular game. After running the random forests, the output uses
the removed subsets of data and tests them on the created model. This plot
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measures the increase in mean squared error (MSE) of the model if a designated
variable were removed from a model. This is essentially another predictor to
what statistics hold the most predictive power and measures such power.

Once these tests were completed, we set up various brackets generated by
random forests. These brackets were determined using different combinations
of statistics. Like the GLM, we created brackets incorporating all statistics
tested as well as ones only using the general information statistics. This gave
us general brackets and brackets generated by the consistently high ranking
influence of the general information statistics. We also made brackets deter-
mined by the top ranked statistics from our tests. Using varying amounts of
statistics can help us determine if there is any benefit to adding additional
inputs. Analyzing that not every round of the tournament values each statistic
equally, we created two of each bracket. One used the rankings of all our his-
torical games in each round to determine a single probability for a team that
we then applied to all rounds in 2017. In this case, each team had the same
probability of winning a game no matter what round they were potentially
playing in. The other analyzed how different statistics ranked in each round
and generated different probabilities for each team based on the round they
would potentially be playing in. These combinations of brackets gave a good
spectrum from simplicity to complexity.

6 Results

To track the success of our brackets, we created a group on ESPN.com. This
scored the brackets for us and also allowed us to compare the success of
our brackets against the total of 18.8 million brackets that were entered on
ESPN.com. ESPN provides statistics on where a bracket ranks out of all those
entered and also lists what percentile a bracket is in. For example, a bracket
in the 60th percentile has a higher score than 60% of the brackets entered on
ESPN.

In total, our group was comprised of 24 brackets: 8 GLM brackets, 12
random forest brackets, 1 bracket from another computer-based prediction,
and 3 control brackets. For one control, we picked the tournament based only
on seed, which is the simplest method of filling out a bracket and which also
provided a benchmark to measure our predictive brackets against. The other
two control brackets were the personal brackets that we filled out individually
based on our own intuitions.

After the first 16 games of the tournament on the first day, our brackets
were doing very well. Five of our 24 brackets predicted every game correctly,
representing 20.8% of our group. For comparison, after the first day only 0.8%
of all brackets on ESPN were still perfect. We had a total of 20 out of 24 brack-
ets miss two or fewer games, which was 83.3% of our group, compared with
26.3% of all brackets. Twenty-two of our brackets were above the 50th per-
centile after day one. The average score of all brackets in our group ranked #7
out of the roughly 58,000 eligible groups that had been created on ESPN.com.

By the end of the first round, we did not have any perfect brackets remain-
ing. However, 17 of our 24 brackets predicted at least 27 of the first 32 games
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correctly, which represented 70.8% of our group. Only 5.1% of all brackets on
ESPN were this successful, showing that our predictive models were creating
some value. At the end of the first round, 22 of our 24 brackets were above the
50th percentile and our group ranked #10 out of all groups on ESPN.

The remaining rounds of the tournament were not as successful for our
group. In the second round, Villanova was upset by Wisconsin, knocking out
the team that 16 of our brackets had predicted to win the national champi-
onship. Despite this, after the second round, 18 of our 24 brackets were still
above the 50th percentile. However, our group fell to #3202 out of all groups
on ESPN.

The biggest failure of our predictions was that none of our models pre-
dicted that eventual champion North Carolina would win the tournament. Our
group’s ranking suffered as we fell behind many of the groups that included
brackets picking North Carolina to win the tournament. At the end of the
tournament, our group ranked as #26,000 out all eligible groups on ESPN.com.
However, 18 of our 24 brackets were still above the 50th percentile.

Removing the 3 control brackets, 17 of our 21 predictive brackets finished
above the 50th percentile. If the results of the tournament were totally random,
there would be a 0.35% chance of this happening, which translates to a roughly
1 in 277 chance. This shows that our predictive models were effective and did
add significant value to the process of filling out a bracket. The models were
certainly better than our personal methods, as Tim’s bracket finished tied for
last in our group and Cody’s bracket finished 22nd.

7 Conclusion

Obviously, none of our models were perfect and from the start we never ex-
pected them to be. This is one of the realities of predictive modeling; no matter
how well constructed a model is, it will never be able to perfectly predict the
future. However, it is clear that our methods added a significant amount of
value to the process of filling out a bracket. From this standpoint, we view
our project as a huge success. It also gave us a great opportunity to grow our
skill and experience with predictive modeling. In the grander scheme of things,
predictive modeling can help people make predictions not only for fun events
such as March Madness, but it also has applications in many other fields. It is
proving to be an integral aspect in minimizing losses, forecasting disasters, and
many other things. Overall, predictive modeling helps us understand how to
best assist others in more efficient ways. The beauty of the NCAA tournament
is that a new season starts next year and we will refine and improve our models
so that we can try again, and be wrong again, next year.
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