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Abstract We explore new details about permutations with exactly one increasing
subsequence of length three in increasing generality. We first examine some special
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cases of these permutations when we specify the positions of the increasing subse-
quence and give a conjecture on one of these cases. Then we present a bijection
between permutations with one increasing subsequence of length three and triples of
Dyck paths, which as a corollary gives an enumeration result previously proved only
with generating functions.

Introduction

A permutation σ is given by σ = σ1σ2⋯σn where ∣σ∣ = n. We define a 123 pattern
as any increasing subsequence of σ of length three, i.e., a 123 pattern exists in a
permutation σ if there exists a < b < c such that σa < σb < σc. For example, σ =
62845731 has four occurrences of a 123 pattern: 245, 247, 257, and 457. We will be
concerned with permutations containing exactly one occurrence of a 123 pattern. In
this case we will let σa = i, σb = j, σc = k for some i < j < k, and in the rest of this
paper, i, j, k, a, b, c are reserved for this meaning.

Definition 1. The set Φi,j,k
n = {σ ∈ Sn ∣ σ contains exactly one increasing subse-

quence of length three and that subsequence is ijk}. For example, σ = 972856413 is
a member of Φ2,5,6

9 . We also let Φn = ⋃i,j,k Φ
i,j,k
n

The set Φn has been studied by others preceding our investigation. For small n,∣Φn∣ produces the sequence 1,6,27,110,429,1638, . . . ; this is sequence A003517 in the
On-line Encyclopedia of Integer Sequences [8]. In [5], Noonan proves that the number
of these σ in Φn is 3

n
( 2n
n+3).

In the next section, we describe the ways to count the permutations in Φi,j,k
n .

We investigate those σ in Φj−1,j,j+1
n , Φ1,j,j+1

n , and Φj−1,j,k
n . In the section Bijection

between Φn and triples of Dyck paths, we present a bijection φ between those σ in Φn

and triples of Dyck paths. Permutations in Φn are represented first with two Dyck
paths, one which starts with two up steps and another which ends in two down steps.
These two are then further broken into a total of six Dyck paths and finally recombined
into three Dyck paths. As a corollary, this bijection shows Φn is enumerated by the
sum of the product of three Catalan numbers CrCsCt where r, s, t ≥ 1 and r+t+s = n.
Previously this was proved using generating functions, but ours is a bijective proof.

Counting the permutations with exactly one in-
creasing subsequence of length 3

Definition 2. For a permutation σ = σ1σ2⋯σn, the reverse of σ, denoted σr, is
defined as σr = σnσn−1⋯σ1. The complement of σ, denoted σc, is defined as σc =(n + 1 − σ1)(n + 1 − σ2)⋯(n + 1 − σn).

Note the subsequence (n + 1 − i)(n + 1 − j)(n + 1 − k) is the complement of the
subsequence ijk for σ of length n.

Theorem 3. The number of σ in Φi,j,k
n equals the number of σ in Φn+1−i,n+1−j,n+1−k

n .

Proof. If we apply the reverse map to σ, we find σr has exactly one occurrence of
321, and that occurrence is kji. In σr, k = σn+1−c, j = σn+1−b, and i = σn+1−a. If
we apply the complement map to σr, now σn+1−c = n + 1 − k, σn+1−b = n + 1 − j, and
σn+1−a = n+1−i by definition of the complement. Since n+1−k < n+1−j < n+1−i and
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n+1− c < n+1− b < n+1−a, σrc has exactly one occurrence of a 123 pattern, namely
σn+1−cσn+1−bσn+1−a. This shows there is a one-to-one correspondence between each
σ in Φi,j,k

n and each σ in Φn+1−i,n+1−j,n+1−k
n . Therefore, the number of σ in Φi,j,k

n is
equal to the number of σ in Φn+1−i,n+1−j,n+1−k

n .

Lemma 4. For permutations in Φi,j,k
n , j is always in a fixed position, and that

position is n − j + 1, i.e., j = σn−j+1. All elements q such that q < j, except i, and k
appear after j. All elements m such that j < m ≤ n, except k, and i appear before j.

Proof. Let σ be a permutation in Φi,j,k
n . In order to avoid another occurrence of 123,

all elements q such that q < j, excluding i, must appear after j in σ. There are j − 2
of these elements, and together with k, there are at least j − 2 + 1 = j − 1 elements
following j. In order to avoid another occurrence of 123, all elements m such that
j < m ≤ n except k must appear before j in σ. There are n − j − 1 of these elements
plus i. Then there are at least n − j − 1 + 1 = n − j elements appearing before j in σ.
Since there are at least j−1 elements after j and at least n−j elements before j, then
j = σn−j+1.
Definition 5. Let σ ∈ φi,j,k

n . We define the head of permutation σ as σ1⋯σn−j ,
i.e., there are n − j elements in the head. The tail of the permutation we define as
σn−j+2⋯σn, i.e., there are j − 1 elements in the tail.

For example, σ = 972856413 has a head of 9728 and a tail of 6413. By Lemma
4, j = σn−j+1, so j is between the head and the tail and is contained in neither. The
head, j, and the tail completely describe each σ.

Increasing subsequence of the form (((j − 1)))(((j)))(((j + 1)))

In this section we restrict our investigation to those σ in Φj−1,j,j+1
n . For example,

σ = 76384215 is a member of Φj−1,j,j+1
n where j = 4 because it has an increasing sub-

sequence of length three that is 345. By Theorem 3, this is the same as investigating
those σ in Φn−j,n+1−j,n+2−j

n .

Lemma 6. For all σ in Φj−1,j,j+1
n , there are Cn−j ways to arrange the head of σ.

Proof. By Definition 5, there are n − j elements in the head of the permutation. All
elements in the head must be greater than j+1 except for j−1 by Lemma 4. Elements
in the head can be arranged in any way avoiding another 123 pattern because none
of the numbers in the head could create another 123 pattern with j or any of the
elements in the tail. It is known the Catalan numbers, Cn, count the ways to arrange
permutations of length n avoiding 123 patterns [4]. Therefore, there are Cn−j ways
to arrange the head of the permutation σ.

Lemma 7. For all σ in Φj−1,j,j+1
n , there are Cj−1 ways to arrange the tail of σ.

Proof. By Definition 5, there are j − 1 elements in the tail of the permutation. All
elements in the tail must be less than j − 1 except for j + 1 by Lemma 4. Elements
in the tail can be arranged in any way that avoids another 123 pattern since none
of the numbers in the tail could create another 123 pattern with j or with any of
the elements in the head. Once again, there are Cn ways to arrange permutations of
length n that avoid a 123 pattern, thus there are Cj−1 ways to arrange the tail of the
permutation σ.

Theorem 8. For all n ≥ 3 and all j with 1 < j < n, the number of permutations in
Φj−1,j,j+1

n is Cn−jCj−1.
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Proof. Lemmas 6 and 7 completely describe those σ in Φj−1,j,j+1
n . Therefore the

number of σ in Φj−1,j,j+1
n is Cn−jCj−1.

For example, ∣Φ3,4,5
8 ∣ = C8−4C4−1 = C4C3 = 14 × 5 = 70, i.e., there are 70 distinct

permutations in Φ3,4,5
8 .

Increasing subsequence of the form 1(((j)))(((j + 1)))

In this section we restrict our investigation to those σ in Φ1,j,j+1
n . For example, σ =

71864532 is a member of Φ1,j,j+1
n where j = 4 because it has an increasing subsequence

of length three that is 145. By Theorem 3, this is the same as investigating those σ
in Φn−j,n−j+1,n

n .

Lemma 9. Every σ in Φ1,j,j+1
n will always have a fixed tail where σn−j+2 = j + 1,

σn−j+3 = j − 1, σn−j+4 = j − 2, . . . , σn = 2 for all j > 2. If j = 2, then σn = 3.

Proof. Consider σ in Φ1,j,j+1
n . All elements f such that 1 < f < j and j+1 must appear

in the tail of the permutation by Lemma 4. By way of contradiction let σa = n and
σb = m for a < b where m,n are elements in the tail such that n < m. If so, an
additional occurrence of a 123 pattern is formed by 1(n)(m). This contradicts our
original assumption of only one occurrence of a 123 pattern. Therefore, all elements
in the tail appear in decreasing order. Hence, every σ in Φ1,j,j+1

n has a fixed tail where
σn−j+2 = j + 1, σn−j+3 = j − 1, σn−j+4 = j − 2, . . . , σn = 2 for all j > 2. If j = 2, the tail
only contains the element 3, so σn = 3.

Theorem 10. For all n ≥ 3 and all j such that 1 < j < n, the number of permutations
in Φ1,j,j+1

n is Cn−j .
Proof. By Lemma 4 we know elements of σ in Φ1,j,j+1

n that are greater than j + 1,
and 1, must appear in the head. Then there are n − (j + 1) + 1 = n − j elements in
the head. By definition of the head, these are all of the elements in the head. Since
we know the tail is fixed by Lemma 9, the only elements that can be rearranged are
the elements in the head. We know there are Cn−j ways to arrange these elements to
avoid a 123 pattern since the elements in the head cannot form another 123 pattern
with the elements in the tail. Therefore, the number of σ in Φ1,j,j+1

n is Cn−j .
For example, ∣Φ1,5,6

9 ∣ = C9−5 = C4 = 14, i.e., there are 14 distinct σ in Φ1,5,6
9 .

Increasing subsequence of the form (((j − 1)))jk

In this section we restrict our investigation to those σ in Φj−1,j,k
n . For example,

σ = 865394712 is a member of Φj−1,j,k
n where j = 4 because it has an increasing

subsequence of length 3 that is 347. By Theorem 3 this is the same as investigating
those σ in Φn−k+1,n−j+1,n−j+2

n .
By Lemma 4 all elements less than j − 1 along with k are in the tail of the

permutation. So there are j − 1 elements in the tail. By definition of the tail, these
are all of the elements in the tail. Therefore, there are Cj−1 ways to arrange the
elements in the tail since none of these elements can form another 123 pattern with
the elements in the head.

All elements m where m > k, all elements q where j < q < k, and (j−1) must go in
the head of the permutation by Lemma 4, i.e., all elements greater than j, excluding
k and including j − 1 are in the head. In order to avoid a 123 pattern in the head of
the permutation, we know all elements q as well as (j−1) must be fixed in decreasing
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order. To find the formula counting the ways to arrange the head, we can treat all
elements q and (j − 1) as 1s since they are all in a fixed order and are less than all
elements m. Now we look for a way to arrange words of length n which have r 1s
that avoid a 123 pattern where n is the length of the head.

Conjecture 11. The number of words of length n with r 1s that avoid the pattern
123 is given by the recurrence relation:

ar,n = ar−1,n−1 + ar+1,n.

n = 1 1
n = 2 1 2
n = 3 1 3 5
n = 4 1 4 9 14
n = 5 1 5 14 28 42
n = 6 1 6 20 48 90 132
n = 7 1 7 27 75 165 297 429

Figure 1: Triangle for the recurrence relation ar,n = ar−1,n−1 + ar+1,n.

We conjecture that the triangle in Figure 1 above represents the number of words
containing r 1s and have length n that avoid 123. We found some of the terms in the
triangle through examples and then found the completed triangle in a paper written
by Noonan and Zeilberger [6]. Each row corresponds to the length of the word. Each
diagonal that starts on the top left and goes to the bottom right corresponds to the
number of 1s in the word where the diagonal 1 2 5 14 42 132 429 corresponds to r = 1.
The recurrence relation in Conjecture 11 was not found in Noonan and Zeilberger’s
paper.

In Conjecture 11, ar−1,n−1 represents the words in the set of ar,n words where the
two leftmost 1s are in adjacent positions. Because the two 1s are next to each other,
they can be treated as one 1. Thus, the length of the word would decrease to n − 1
and the number of 1s would decrease to r − 1. ar+1,n represents the remaining words
in the set of ar,n words in which the two left most 1s are not adjacent. Note that this
is only one approach to solving Conjecture 11. It is possible that there are others.

Bijection between Φn and triples of Dyck paths

Definition 12. Let Dn be the set of all Dyck paths with n up steps. Also, let
TDn = {Dr ×Ds ×Dt ∣ r, s, t ≥ 1, r + s + t = n}.

The main goal of this section will be to present a bijection between Φn and TDn.
We begin with some background information.

It is known that a Dyck path, P , has a first return decomposition of the form
P = UαDβ where α and β are (possibly empty) Dyck paths [1]. This decomposition
is unique. Figure 2 illustrates this decomposition.

A permutation can be easily represented as an n × n array. We place σg = h in
the array at (g, h). To construct a Dyck path from a 123−avoiding permutation, we
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Figure 2: The first return decomposition UαDβ of a Dyck path P [1].

follow the bijection introduced by Elizalde and Deutsch [3]. We begin at (0, n) and
bound our permutation with a sequence of down and right steps. Figure 3 demon-
strates σ = 4231 and its corresponding Dyck path.

4

2

3

1 ⇒

4

2

3

1 ⇒

↷

Figure 3: The permutation σ = 4231 and its Dyck path UDUUDDUD.

Lemma 13. For all σ in Φi,j,k
n , when σ is represented as an n × n array, j lies on

the line that begins at point (0, n) and ends at (n,0), which we will call the diagonal.

Proof. In order for element d of permutation σ to lie on the diagonal, d must be in
the position n− d+ 1 of the permutation, i.e. d = σn−d+1. By Lemma 4, we know this
is true for all j in σ in Φi,j,k

n .

Theorem 14. There is a bijection φ ∶ Φn → TDn.

Proof. We begin by creating two Dyck paths from σ in Φi,j,k
n . We first plot σ on an

n × n array, as previously described. We then place two rectangles in the array: one
at (σa, j) and the other at (σb, i). Then, starting from the top leftmost box in the
array (0, n), we draw a path to the bottom rightmost box in the array (n,0) by only
using down steps and right steps. All of the numbers and rectangles in the array
except for i that are below the diagonal must be to the right of the path, while the
path remains as close to the diagonal as possible. Once the path has passed the first
rectangle, we finish the first Dyck path by extending the path to the diagonal. Since
the path extends underneath the rectangle, and then has to extend by at least one
more square to the diagonal, this first path is guaranteed to end in two right steps.
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We start the second Dyck path at the diagonal immediately to the left of j and build
the path the same way as previously discussed. The path extends down from the
diagonal at least one step to get to the top of the rectangle and then one more down
step to get to the bottom of the rectangle. Therefore, the second path begins in at
least two down steps. We end the second Dyck path once we reach (n,0). Next we
take away the grid lines, numbers, and rectangles, separate the two distinct Dyck
paths, and rotate the paths 135○ clockwise. After doing so, we see the right steps
translate to up steps. So it is guaranteed the Dyck path on the left will always end
with two down steps, and the Dyck path on the right will always start with two up
steps. Note that essentially we have modified our permutation with one occurrence
of a 123 pattern and created a permutation with no 123 patterns by switching the
positions of the 2 and 1 in the pattern, and then applying the bijection of Elizalde
and Deutsch [3], creating two paths instead of one, which marks the position where
the 2 originally occurred.

Since the paths have these beginning or ending steps, each path can be separated
into three parts, which we denote P1, P2, and P3, each of which could be empty.
Consider the left Dyck path. P1 is the path before the up step corresponding to the
last down step of the Dyck path. P1 does not include the guaranteed up and down
steps. To find P2, delete P1 and its guaranteed up and down steps from the Dyck
path. Then P2 is found similarly to P1 and does not include the guaranteed up and
down steps as well. We then delete P2 along with its guaranteed up and down steps
from the Dyck path. Whatever is left of the Dyck path is P3.

Now, consider the right Dyck path. Imagine a line that extends from the beginning
vertex of the Dyck path to the end vertex of the Dyck path. We will call this line the
horizon. P1 is the path after the first down step that touches the horizon. Again, P1

does not include the guaranteed up and down steps. Delete P1 and its guaranteed up
and down steps from the Dyck path. P2 is found similarly to P1. P3 is whatever is
left of the path after P2 and its guaranteed up and down steps are deleted. We now
have six Dyck paths that need to be combined in a way to form three Dyck paths.

To construct three Dyck paths from the six Dyck paths, we attach P1 from the
left Dyck path and P1 from the right Dyck path, and similarly for P2 and P3. In
order to attach each pair of Dyck paths together, the right Dyck path is elevated by
an up step, which results in an extra down step at the end. We can see this process
is reversible, and given three Dyck paths, we can first create six paths by identifying
the last horizon-touching point, and recombine them to form the two paths in the
inverse process to the one described here. Therefore, we have shown φ is a bijection,
as desired, and we now have three Dyck paths to represent each σ.

Figure 4 shows an example of the process of representing a permutation in Φi,j,k
n

as two Dyck paths. In this example, the top leftmost figure shows σ = 865294173
as an n × n array with the diagonal drawn in. We put σm on the squares (m,σm)
for all elements σm in σ. This σ is a member of Φ2,4,7

9 where σa = 2, σb = 4, σc = 7,
and a = 4, b = 6, and c = 8. The middle figure in this example shows where we
place the rectangles, at (σ4,4) and (σ6,2). A path is drawn from (0, 9) to (9, 0)
using only down steps and right steps. All the numbers and rectangles below the
diagonal, except 2, remain to the right of the path, while the path remains as close
to the diagonal as possible. One path ends at the first rectangle and extends to the
diagonal, underneath 4. The next path then begins at the diagonal to the left of 4,
and continues in the same way. After removing the grid, numbers, and rectangles,
the two Dyck paths are separated and rotated 135○ to obtain the two Dyck paths at
the bottom of Figure 4.
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Figure 4: The process of representing a permutation as two Dyck paths.

Figure 5: A Dyck path colored into its P1, P2, and P3.

Consider the Dyck path in Figure 5. We can divide this Dyck path into three
separate Dyck paths P1, P2, and P3, as explained previously. Since this Dyck path
begins in two up steps and does not end in two down steps, we know this must be
the right Dyck path.

P1 is the path after the first horizon-touching down step, which in Figure 5, is
colored in green. After deleting all of the green path along with its guaranteed up
and down steps, P2 is the path after the first horizon-touching down step, as colored
in blue. After deleting the blue path along with its guaranteed up and down steps,
P3 is what remains and is colored in red.

Figure 6: The three separate Dyck paths from Figure 5.

Figure 6 shows the resulting three Dyck paths. Doing this process on two Dyck
paths gives six resulting Dyck paths.
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Figure 7: Combining two Dyck paths UDUUDD and UUDUUDDUDD to
obtain UDUUDDUUUDUUDDUDDD.

In Figure 7 we show the process of gluing together two Dyck paths in which we
elevate the second Dyck path by one up step, shown in black, then attach it to the
first. We know this can be done by the first return decomposition of the Dyck paths.

In Figure 8, we continue our example of σ = 865294173, in which we started by
dividing the permutation into two Dyck paths.

8

6

5

2

9

4

1

7

3

Figure 8: The permutation σ = 865294173 on an array.

In Figure 9 we rotate the two Dyck paths 135○ clockwise and color it according
to each Dyck path’s P1, P2, and P3. Notice both Dyck paths contain no green paths,
meaning P1 is the empty Dyck path for both Dyck paths. Also notice there is no blue
path on the left Dyck path, meaning P2 on the left is the empty Dyck path.

Figure 9: The two Dyck paths, colored, from the example in Figure 8 rotated
135○ clockwise.

In Figure 10, we have the three Dyck paths to which this permutation now cor-
responds. We created these Dyck paths from taking each Pi on the left, adding an



Properties of permutations containing exactly one 123 subsequence 37

upstep, then adding the corresponding Pi on the right, and finally a downstep for
1 ≤ i ≤ 3.

Figure 10: The resulting three Dyck paths.

It is well known that the number of Dyck paths containing n up steps corresponds
to the nth Catalan number. For this example, we now see the permutation σ =
865294173 corresponds to Dyck paths of length 6, 2, and 1.

Since we are showing φ is a bijection, we will present an example now starting
with three Dyck paths and construct the corresponding permutation in Φi,j,k

n .

Figure 11: Our three beginning Dyck paths of length 4, 4, and 2, colored
according to the six Dyck paths from which they are constructed.

Figure 11 depicts the three Dyck paths we will use in this example. The green,
blue, and red paths before the first black up step in these three Dyck paths make up
P1, P2, and P3, respectively, of the left Dyck path. Similarly, the green, blue, and
red paths after the first up step in these three Dyck paths make up P1, P2, and P3,
respectively, of the right Dyck path. Notice P1 of the right Dyck path is empty.

Figure 12: The two Dyck paths created by combining paths P1, P2, and P3 for
the left and right Dyck paths.

When we combine P1, P2, and P3 of each Dyck path, we obtain the two Dyck
paths shown in Figure 12. Once we have these two Dyck paths, we can rotate them
135○ counterclockwise, so the down steps correspond to straight down steps and the
up steps correspond to right steps and place the paths on a 10×10 array, as shown in
Figure 13. We then place the rectangles where they belong based on where the two
Dyck paths cross on the array. This allows us to see i = 4 and j = 6. Based on how
the Dyck path falls on the array, we can also right away place the numbers that fall
below the diagonal by looking where a down step is immediately followed by a right
step. From there, there is only one way to arrange the rest of the numbers so there is
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only one occurrence of a 123 and the Dyck path still represents the permutation. For
this example, our resulting permutation is σ = 8(10)49637251 as shown in the figure
on the right, which is a member of Φ4,6,7

10 . We now see this permutation σ corresponds
to Dyck paths of length 4, 4, and 2.

8
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6

3

7

2

5

1

Figure 13: The two Dyck paths on 10 × 10 array

Corollary 15. ∣Φn∣ = ∑
r,s,t≥1,
r+s+t=n

CrCsCt

This corollary can be more quickly proved using generating functions, but this
bijective proof helps to illuminate the deep connections between pattern-avoiding and
pattern-containing permutations and Dyck paths.

Acknowledgments

Special thanks to Dun Qui for his assistance with this bijection. Also thank you
to the National Science Foundation DMS - 1451801 Grant for funding the program
that enabled this research. Finally, thanks to the Office of Research and Sponsored
Programs at the University of Wisconsin-Eau Claire for providing additional support
for student research.

Bibliography

[1] Baril J., Kirgizov S., and Petrossian A., Dyck paths with a first return decompo-
sition constrained by height, Preprint, 6 June 2017.

[2] Callan D., A recursive bijective approach to counting permutations containing
3-letter patterns, arXiv:math/0211380, Preprint, 25 November 2002.

[3] Deutsch E. and Elizalde S., A simple and unusual bijection for Dyck paths and
its consequences, Ann. Comb., 7, 2003, 1–17.

[4] Linusson S., Pattern avoidance and Catalan numbers, Enumerative Combina-
torics, 1 December 2014.



Properties of permutations containing exactly one 123 subsequence 39

[5] Noonan J., The number of permutations containing exactly one increasing subse-
quence of length three, Discrete Math., 152/1-3, 1999, 307–313.

[6] Noonan J. and Zeilberger D., The enumeration of permutations with a prescribed
number of “forbidden” patterns, arXiv:math/9808080, Preprint, 17 August 1998.

[7] Qui D. and Remmel J.B., Quadrant marked mesh patterns in 123-avoiding per-
mutations, arXiv:1705.00164, Preprint, 29 April 2017.

[8] Sloane N. J. A., Sequence A003517 in The On-Line Encyclopedia of Integer Se-
quences (1991), published electronically at https://oeis.org.


