
Ball State Undergraduate Mathematics Exchange

http://www.bsu.edu/libraries/beneficencepress/mathexchange

Vol. 13, No. 1 (Fall 2019)

Pages 20 – 35

Sudoku Solutions in MuPAD

Using a Gröbner Basis

Arlan (A.J.) Zelenky and Ry Gallagher

Arlan (A.J.) Zelenky graduated from Saint Francis Uni-
versity in 2019 with a degree in Mathematics with a concen-
tration in Secondary Education. He intends to go into the
teaching field and hopes to teach at both the high school
and college levels.

Ry Gallagher is a senior student with double major in
Mathematics and Computer Science at Saint Francis Uni-
versity. He will pursue a career in Information Technology
after graduation.

Abstract A Gröbner basis is a construction in algebraic geometry that aids the
study of the zero locus of a set of polynomials. We present MuPAD programs
that perform a Gröbner basis computation for the ideal describing conditions
of a Shidoku (four-by-four puzzle) board or a Sudoku (nine-by-nine puzzle)
board. This is implemented using three different strategies : the sum and
product method, the binary method, and the quotient method. The paper also
includes a theorem guaranteeing the result of the quotient method.

1 Introduction

Solving Sudoku puzzles using a Gröbner basis methodology has been studied
by different authors (e.g., [1], [2], and [3]) using various methods and computer
algebra systems. For a detailed discussion of multiple methods for solving Su-
doku puzzles using Gröbner bases, we refer the reader to [1]. Among these,
the functionality and performance of MuPAD (a computer algebra package of
MATLAB) on computation in algebraic geometry is seldom explored. In this
project, we explore MuPAD functions and efficiency in Gröbner bases computa-
tion by solving Sudoku puzzles. In our experiments, the quotient method turns

Sudoku Solutions in MuPAD Using a Gröbner Basis 21

out to be the most efficient method. In this paper we improve its efficiency by
performing the operations in a finite field of integers.

In Section 2 we give a brief introduction to Sudoku and its simplified version,
Shidoku. Three methods of constructing sets of polynomials related to Sudoku
are explained in detail. The methods are the sum and product method, the
binary method, and the quotient method. The first two methods are described
in [1], while the latter method is described in Chapter 3 of [3].

Section 3 begins with some relevant concepts in algebraic geometry. Then
we prove that the quotient method over a finite field yields solutions to Sudoku
boards. The section finishes with a brief discussion of Gröbner bases, without
mathematical details.

The construction and performance of MuPAD programs using all three
methods is discussed in Section 4. In our experiments, the quotient method
turns out to be the most efficient method. We improve its efficiency by per-
forming operations in a finite field.

2 Sudoku Boards

Sudoku boards are number placement puzzles. A Sudoku board of order n2 is
an n2 ×n2 array of cells with some of the cells containing symbols drawn from
the symbol set S = {1,2, ..., n}. Further, we require that there be a unique
way to place symbols drawn from S in the remaining cells so that there is no
repetition of symbols in any row, any column, or any of the canonical n × n
sub-arrays (called blocks) that tile the Sudoku board. Meanwhile, a Sudoku
board solution of order n2 is the n2 ×n2 array of symbols one obtains by filling
in all of the cells in a Sudoku board. All Sudoku puzzles seen in newspapers
are Sudoku boards of order 9. The Sudoku puzzle frequently discussed in the
paper is seen in Figure 1.

Figure 1: Example of a Sudoku board

Order-4 Sudoku boards with 2× 2 blocks are called Shidoku boards. Below

22 BSU Undergraduate Mathematics Exchange Vol. 13, No. 1 (Fall 2019)

is an example of the Shidoku board commonly discussed in this paper.

Figure 2: Example of a Shidoku board

This particular Shidoku board (and any other Shidoku or Sudoku board)
can be solved through a process of elimination technique by looking at each
individual row, column, and block. In the second row, three elements 3,2,4 are
placed in the first three boxes. The number 1 must be placed in the last box
since otherwise the rules of Shidoku will be violated. Looking at the fourth
column, we have the numbers 3 in the first box and 2 in the third box already
given. Since we know that 1 needs to be in the second box in the fourth column
due to the previous operation, by process of elimination, 4 needs to be in the
fourth box in the fourth column. This process can be extended to find the
remaining numbers on this Shidoku board. The solution of this Shidoku board
is presented in Figure 3.

Figure 3: Solution of the Shidoku board presented in Figure 2

In the following we will formulate the Sudoku problem in terms of solv-
ing certain systems of polynomial equations. The variables of a polynomial
equation represent the numbers in the cells of a Sudoku puzzle. With the
preassigned numbers as given conditions, the solution set of the polynomial
equations will provide the solution of the corresponding Sudoku puzzle. This
transforms the process of trial and error and logical derivation into the process
of solving systems of polynomial equations. With appropriate formulations,
one can then solve a Sudoku puzzle by finding the zero locus of the associated
polynomial representations.

Method 1: Sum and Product Method

The first method employed by [1] that we applied in MuPAD involves creating
equations describing the total sum and product of each row, column, and block.
To obtain a solution in a 4× 4 Shidoku board, the numbers 1,2,3,4 are placed
such that each number appears exactly once in each row, column, and block.
There are 16 cells on a Shidoku board. We define a variable xi for each cell,
arranged left to right, top to bottom. Since they only assume values 1,2,3,4,

Sudoku Solutions in MuPAD Using a Gröbner Basis 23

they satisfy the 16 equations

(xi − 1)(xi − 2)(xi − 3)(xi − 4) = 0, i = 1, . . . ,16.

In addition, for any four variables xi, xj , xk, xl that only assume values 1,2,3,4,
it can be easily checked that the equations

xi + xj + xk + xl = 10,

xi ⋅ xj ⋅ xk ⋅ xl = 24,

give a unique solution

xi = 1, xj = 2, xk = 3, xl = 4

up to order. These equations are assigned to each row, column, and block. For
example, the equations for the first row are given by

x1 + x2 + x3 + x4 = 10,

x1 ⋅ x2 ⋅ x3 ⋅ x4 = 24.

The equations for the first block are given by

x1 + x2 + x5 + x6 = 10,

x1 ⋅ x2 ⋅ x5 ⋅ x6 = 24.

Since there are four rows, four columns, and four blocks, these equations yield
12⋅2 = 24 equations. In all, 40 equations are needed to describe a Shidoku board
in order to satisfy the rules. In order to obtain a single solution (i.e., a single
member of the zero locus of the corresponding set of polynomials) one should
also include the linear polynomial equations xi1 −ai1 = 0, ..., xit −ait = 0, where
ai1 , ..., ait are the initial clues lying in cells i1, ..., it. For example, in Figure
3, the linear equations representing the initial clues are x4 − 3 = 0, x5 − 3 =
0, . . . , x13 − 2 = 0.

This process can be expanded to a Sudoku board. In a 9× 9 Sudoku board
solution, each of the nine numbers 1,2,3,4,5,6,7,8,9 must appear exactly once
in each row, column, and block. We define 81 variables for the 81 cells, arranged
left to right, top to bottom. Since they only assume values 1,2,3,4,5,6,7,8,9,
the variables satisfy the 81 equations

(xi − 1)(xi − 2)⋯(xi − 9) = 0, i = 1, . . . ,81. (1)

Unfortunately, for any nine variables of these, if we specify that their sum is
45 and product is 362880, there exists more than one solution. For example,
both of the following two sets of numbers have a sum of 45 and a product of
362880: {1,2,3,4,5,6,7,8,9}, {1,2,4,4,4,5,7,9,9}.
Since the values of the numbers are irrelevant, we instead choose the set{−2,−1,1,2,3,4,5,6,7}. This set is the unique solution of equations speci-

24 BSU Undergraduate Mathematics Exchange Vol. 13, No. 1 (Fall 2019)

Figure 4: Solution of the Sudoku board presented in Figure 1

fying a sum of 25 and a product of 10080, regardless of the order of elements.
Consequently, equation (1) is modified to reflect this change:

(xi + 2)(xi + 1)⋯(xi − 7) = 0, i = 1, . . . ,81.

The following two equations are assigned to each row, column, and block:

xi1 +⋯+ xi9 = 25 and xi1⋯xi9 = 10080.

For example, the equations for the first row are given by

x1 +⋯+ x9 = 25 and x1⋯x9 = 10080.

The equations for the first block are given by

x1 + x2 + x3 + x10 + x11 + x12 + x19 + x20 + x21 = 25,

x1 ⋅ x2 ⋅ x3 ⋅ x10 ⋅ x11 ⋅ x12 ⋅ x19 ⋅ x20 ⋅ x21 = 10080.

For the 9 rows, 9 columns, and 9 blocks, these yield 9 ⋅ 3 ⋅ 2 = 54 equations. In
all, 135 equations are needed to describe a Sudoku board solution in order to
satisfy the rules.

Method 2: Binary Method

The second method employed by [1] that we applied in MuPAD involves cre-
ating equations using binary variables assuming values of either 0 or 1. For
the ith cell of a Shidoku puzzle, 4 variables xi1, xi2, xi3, xi4 are defined. They
satisfy the equations

x2
ij − xij = 0, j = 1,2,3,4.

Sudoku Solutions in MuPAD Using a Gröbner Basis 25

Note that this gives 64 variables and 64 equations. The indices 1,2,3,4 indicate
the number placed in the cell. For example, if the first cell has the number 2,
then

x11 = 0, x12 = 1, x13 = 0, x14 = 0.

Since these variables only assume values 0 and 1, by requiring

xi1 + xi2 + xi3 + xi4 = 1, i = 1, . . . ,16,

we make sure the value of the ith cell is well-defined, i.e., only one of the four
variables assumes value 1, whose second index is placed in the cell. Now we
consider the fact that each number may only appear once in each row, column,
or block in a Shidoku board. This is achieved if every pair of numbers sharing a
row, column, or block are different. The following equations describe the rule:

xi1xj1 + xi2xj2 + xi3xj3 + xi4xj4 = 0,

for i, j = 1, . . . ,16, where i, j run through cells sharing a row, column, or
block. Notice that only one of xi1, xi2, xi3, xi4 assumes value 1, and only one
of xj1, xj2, xj3, xj4 assumes value 1. The above equations guarantee that the
two cells take different values. In each row or column, there are (4

2
) = 6 pairs.

In each block, we need only to consider the diagonal pairs, since other pairs
have been considered in rows and columns. There are 4 blocks, each of which
contains 2 diagonal pairs. Hence 6 ⋅ 4+ 6 ⋅ 4+ 2 ⋅ 4 = 56 equations are needed for
this rule. All in all, there are 136 polynomial equations. Recall that the linear
polynomials representing the initial clues should be included to guarantee a
unique solution.

This process can be expanded to a Sudoku board solution. However, since
there are 9 variables for each cell and there are 81 cells in a Sudoku board, we
need 729 variables. To describe the conditions of a Sudoku board solution, over
800 polynomials are needed! In our experiment, computing a Gröbner basis of
this method did not produce a Sudoku board solution in MuPAD as MuPAD
“ran out of memory”.

Method 3: Quotient Method

In this section, we adapt the set of polynomial equations from [3] for a Sudoku
puzzle to the finite field Z11. We choose the field Z11 since it is the smallest
finite field containing 9 distinct values. Define a variable xi for cell i. Define
the polynomials Fi ∈ Z11[xi] by

Fi(xi) = (xi − 1)⋯(xi − 9) = x9
i + a8x

8
i +⋯+ a0

for some a� ∈ Z11, � = 0, . . . ,8. Consequently, for any i ≠ j,

Fi(xi) − Fj(xj) = (x9
i + a8x

8
i +⋯+ a0) − (x9

j + a8x
8
j +⋯+ a0)

= (x9
i − x9

j) + a8(x8
i − x8

j) + a7(x7
i − x7

j) +⋯ + a1(xi − xj).

26 BSU Undergraduate Mathematics Exchange Vol. 13, No. 1 (Fall 2019)

Note that if � is odd,

x�
i − x�

j = (xi − xj)(x�−1
i + x�−2

i xj +⋯+ xix
�−2
j + x�−1

j).
On the other hand, if � is even,

x�
i − x�

j = (x�/2
i + x

�/2
j)(x�/2

i − x
�/2
j),

in which the factor (x�/2
i − x

�/2
j) can be further factorized in the same pattern.

It follows that the polynomial Fi(xi) −Fj(xj) contains a factor xi − xj . Hence
the functions

Gij(xi, xj) = Fi(xi) − Fj(xj)
xi − xj

∈ Z11(xi, xj)
are polynomials. Set

E = {(i, j) ∣ 1 ≤ i < j ≤ 81 such that i, j are in the same row, column, or block}.
Theorem 1. Each member of the zero locus of the set of polynomial equations{Gij = 0 ∣ (i, j) ∈ E} is the solution of a Sudoku board.

We will prove this theorem after going over some of the concepts involved
in Section 3.

3 Proof of Theorem 1

In this section, we prove Theorem 1. Let k be a field and k[x1, . . . , xn] be the
ring of polynomials with variables x1, x2, ..., xn and coefficients in k. We will
use the following facts from [4].

Definition 1. A subset I ⊆ k[x1, . . . , xn] is an ideal if it satisfies:

(i) 0 ∈ I.
(ii) If f, g ∈ I, then f + g ∈ I.
(iii) If f ∈ I and h ∈ k[x1, ..., xn], then hf ∈ I.
Lemma 2. If f1, . . . , fs ∈ k[x1, . . . , xn], then

⟨f1, . . . , fs⟩ = { s∑
i=1

hifi ∣ h1, . . . , hs ∈ k[x1, . . . , xn]}
is an ideal of k[x1, . . . , xn].

We will call ⟨f1, . . . , fs⟩ the ideal generated by f1, . . . , fs. Meanwhile, f1, . . . , fs
are the generators of this ideal, and a set of generators is a basis of the ideal.

Definition 3. Let f1, . . . , fs be polynomials in k[x1, . . . , xn]. Then we set

V (f1, . . . , fs) = {(a1, . . . , an) ∈ kn ∣ fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s}.
We call V (f1, . . . , fs) the affine variety defined by f1, . . . , fs.

Sudoku Solutions in MuPAD Using a Gröbner Basis 27

Lemma 4. If f1, . . . , fs and g1, . . . , gt are generators of the same ideal in
k[x1, . . . , xn], then we have V (f1, . . . , fs) = V (g1, . . . , gt).
Definition 5. An affine variety V (I) where I = ⟨f1, . . . , fs⟩ is defined by

V (I) = V (f1, . . . , fs) = {(a1, . . . , an) ∈ kn ∣ fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s}.
Using the terminology of ideals we can restate Theorem 1 as follows:

Theorem 1. Let Fi,Gij, and E be defined as in Section 2. Let I = ⟨Gij ∣(i, j) ∈ E⟩ be the ideal generated by polynomials Gij, such that i, j are in the
same row, column, or block. Let a⃗ = (a1, ..., a81). Then a⃗ ∈ V (I) if and only if
ai = 1, ...,9 and ai ≠ aj whenever i, j are in the same row, block, and column.

Proof of Theorem 1. The direction “⇐” is shown in [3]. We show the other
direction. Let a⃗ ∈ V (I). Then Gij(ai, aj) = 0 for all i, j such that i, j are in the
same row, block, or column. Let (i, j) ∈ E. We show the following claims:

1. If ai, aj ∈ {1, ...,9}, then ai ≠ aj ;

2. ai ≠ 0, for all i;

3. ai ≠ 10, for all i.

Proof of claim 1: Suppose (i, j) ∈ E and ai = aj = b ∈ {1, ...,9}. Consider
the equation

Fi(xi) = Fj(xj) + (xi − xj)Gij(xi, xj).
Substituting xj = b into Fi(xi), we obtain

Fi(xi) = 0 + (xi − b)Gij(xi, b) = (xi − b)Gij(xi, b).
Note that Gij(b, b) = 0. This implies that Fi(xi) has a repeated root at b, a
contradiction.

Proof of claim 2: Suppose (i, j) ∈ E and aj = 0. Similar as above, we have

Fi(xi) = Fj(0) + xiGij(xi,0).
This implies (xi − 1)⋯(xi − 9) − Fj(0) = xiGij(xi,0)
and therefore, (xi − 1)⋯(xi − 9) + 1 = xiGij(xi,0).
Note that 1, . . . ,10 are not roots of the left-hand side. So 0 is the only solution,
a contradiction to claim 1.

Proof of claim 3: Suppose (i, j) ∈ E and aj = −1. We then have

Fi(xi) = Fj(−1) + (xi + 1)Gij(xj ,−1).
This implies

(xi − 1)⋯(xi − 9) − (−2)⋯(−10) = (xi + 1)Gij(xj ,−1)

28 BSU Undergraduate Mathematics Exchange Vol. 13, No. 1 (Fall 2019)

and therefore

(xi − 1)⋯(xi − 9) − 1⋯(−10) = (xi + 1)Gij(xj ,−1).
Again the only root of the left hand side is −1, a contradiction to claim 1.

This proves that a⃗ ∈ V (I) if and only if ai = 1, . . . ,9 and ai ≠ aj whenever
i, j are in the same row, column, or block.

4 Experiments and MuPAD Computations for
Shidoku and Sudoku Board Solutions

Finding a zero locus, and thereby finding a solution to a Sudoku puzzle, would
be a lot easier if the original set of polynomials could be traded in for a simpler
set of polynomials that has the same zero locus. The Gröbner basis technique
provides a method of finding this simpler set of polynomials. It is computa-
tionally complex, but computers, using software like MuPAD, can carry out
the calculations.

A Gröbner basis G of an ideal I is a basis such that, under an appropri-
ate ordering of the terms of polynomials, every possible leading term of the
polynomials in I is divisible by some leading term of the polynomials in G.
This leads to the fact that, if the polynomial equations are set up properly for
a Shidoku or Sudoku puzzle, the Gröbner basis of the ideal representing the
puzzle should consist of polynomials of the form xi −ai, where ai is the symbol
that lies in the cell i. Note that the row echelon form of a linear system of
equations is a special case of a Gröbner basis, where the terms are naturally
ordered as x1 > x2 > ⋯ > xn. Readers are referred to [4] to learn more about
the details of Gröbner bases.

For a Shidoku board, the Gröbner basis of each of the polynomial systems
constructed by the three methods consists of polynomials of the form xi − a,
which form the solution of the Shidoku board.

Figure 5 shows the Shidoku puzzle that was solved in Section 2. We use
this example to illustrate our implementation of the three methods in MuPAD.
The MuPAD code below implements the sum and product method.

Figure 5: Shidoku Puzzle in Figure 1

Sudoku Solutions in MuPAD Using a Gröbner Basis 29

GenerateSudoku := proc()

begin

G := [];

x := x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16;

// defining the first 16 basic equations which assigns values 1,2,3,4 to each

of the 16 variables;

for k from 1 to 16 do

g := poly((x[k]-1)*(x[k]-2)*(x[k]-3)*(x[k]-4),[x]);

G := append(G,g);

end_for:

// defining two equations (sum and product) for each row; (4 rows)

for k from 1 to 4 do

gsum := -10;

gprod := 1;

for j from 1 to 4 do

gsum := gsum+x[4*(k-1)+j];

gprod := gprod*x[4*(k-1)+j];

end_for:

gs := poly(gsum,[x]);

gp := poly(gprod-24,[x]);

G := append(G,gs,gp);

end_for:

// defining two equations (sum and product) for each column; (4 cols)

for k from 1 to 4 do

gsum := -10;

gprod := 1;

for j from 1 to 4 do

gsum := gsum+x[k+4*(j-1)];

gprod := gprod*x[k+4*(j-1)];

end_for:

gs := poly(gsum,[x]);

gp := poly(gprod-24,[x]);

G := append(G,gs,gp);

end_for:

// defining two equations (sum and product) for each 2x2 block; (4 blocks)

for i from 1 to 2 do

for k from 1 to 2 do

gsum := -10;

gprod := 1;

for j from 1 to 2 do

for l from 1 to 2 do

gsum := gsum+x[8*(i-1)+2*(k-1)+4*(j-1)+l];

gprod := gprod*x[8*(i-1)+2*(k-1)+4*(j-1)+l];

end_for:

end_for:

gs := poly(gsum,[x]);

gp := poly(gprod-24,[x]);

G := append(G,gs,gp);

end_for:

end_for:

G := append(G,poly(x4-3,[x]),poly(x5-3,[x]),poly(x6-2,[x]),poly(x7-4,[x]),

poly(x10-4,[x]),poly(x11-3,[x]),poly(x12-2,[x]),poly(x13-2,[x]));

end_proc:

Notice that the last two lines before the end of the procedure indicate the
numbers that are already placed on the board. In less than a second, MuPAD
produces the solution of the board, where xj − k indicates that symbol k lies
in cell j.

30 BSU Undergraduate Mathematics Exchange Vol. 13, No. 1 (Fall 2019)

G:=GenerateSudoku()

groebner::gbasis(%,LexOrder)

[poly(x1 - 4, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x2 - 1, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x3 - 2, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x4 - 3, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x5 - 3, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x6 - 2, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x7 - 4, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x8 - 1, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x9 - 1, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x10 - 4, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x11 - 3, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x12 - 2, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x13 - 2, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x14 - 3, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x15 - 1, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16]),

poly(x16 - 4, [x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16])

The following code implements the binary method.

GenerateSudoku := proc()

begin

G := [];

x := x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,

x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37,x38,x39,

x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53,x54,x55,x56,x57,x58,

x59,x60,x61,x62,x63,x64;

// defining the first 64 basic equations which assigns values 0,1 to each

of the 64 variables;

for k from 1 to 64 do

g := poly((x[k]*(x[k]-1),[x]));

G := append(G,g);

end_for:

// defining two equations (sum and product) for each row; (4 rows)

for k from 1 to 16 do

gsum := -1;

gprod := 0;

for j from 1 to 4 do

gsum := gsum+x[4*(k-1)+j];

end_for:

gs := poly(gsum,[x]);

gp := poly(gprod,[x]);

G := append(G,gs)

end_for:

for i from 1 to 4 do

for j from 1 to 3 do

gs := x[16*(i-1)+4*(j-1)+1]*x[16*(i-1)+4*(j-1)+5]+ x[16*(i-1)

+4*(j-1)+2]*x[16*(i-1)+4*(j-1)+6]+ x[16*(i-1)+4*(j-1)+3]*x[16*(i-1)

+4*(j-1)+7]+ x[16*(i-1)+4*(j-1)+4]*x[16*(i-1)+4*(j-1)+8];

gl := poly(gs,[x]);

G := append(G,gl);

end_for:

end_for:

for i from 1 to 4 do

for j from 1 to 2 do

gs := x[16*(i-1)+4*(j-1)+1]*x[16*(i-1)+4*(j-1)+9]+ x[16*(i-1)

+4*(j-1)+2]*x[16*(i-1)+4*(j-1)+10]+ x[16*(i-1)+4*(j-1)+3]*x[16*(i-1)

Sudoku Solutions in MuPAD Using a Gröbner Basis 31

+4*(j-1)+11]+ x[16*(i-1)+4*(j-1)+4]*x[16*(i-1)+4*(j-1)+12];

gl := poly(gs,[x]);

G := append(G,gl);

end_for:

end_for:

for i from 1 to 4 do

for j from 1 to 1 do

gs := x[16*(i-1)+4*(j-1)+1]*x[16*(i-1)+4*(j-1)+13]+ x[16*(i-1)

+4*(j-1)+2]*x[16*(i-1)+4*(j-1)+14]+ x[16*(i-1)+4*(j-1)+3]*x[16*(i-1)

+4*(j-1)+15]+ x[16*(i-1)+4*(j-1)+4]*x[16*(i-1)+4*(j-1)+16];

gl := poly(gs,[x]);

G := append(G,gl);

end_for:

end_for:

//Columns below

for i from 1 to 4 do

for j from 1 to 3 do

gs := x[16*(j-1)+4*(i-1)+1]*x[16*(j-1)+4*(i-1)+17]+ x[16*(j-1)

+4*(i-1)+2]*x[16*(j-1)+4*(i-1)+18]+ x[16*(j-1)+4*(i-1)+3]*x[16*(j-1)

+4*(i-1)+19]+ x[16*(j-1)+4*(i-1)+4]*x[16*(j-1)+4*(i-1)+20];

gl := poly(gs,[x]);

G := append(G,gl);

end_for:

end_for:

for i from 1 to 4 do

for j from 1 to 2 do

gs := x[16*(j-1)+4*(i-1)+1]*x[16*(j-1)+4*(i-1)+33]+ x[16*(j-1)

+4*(i-1)+2]*x[16*(j-1)+4*(i-1)+34]+ x[16*(j-1)+4*(i-1)+3]*x[16*(j-1)

+4*(i-1)+35]+ x[16*(j-1)+4*(i-1)+4]*x[16*(j-1)+4*(i-1)+36];

gl := poly(gs,[x]);

G := append(G,gl);

end_for:

end_for:

for i from 1 to 4 do

for j from 1 to 1 do

gs := x[16*(j-1)+4*(i-1)+1]*x[16*(j-1)+4*(i-1)+49]+ x[16*(j-1)

+4*(i-1)+2]*x[16*(j-1)+4*(i-1)+50]+ x[16*(j-1)+4*(i-1)+3]*x[16*(j-1)

+4*(i-1)+51]+ x[16*(j-1)+4*(i-1)+4]*x[16*(j-1)+4*(i-1)+52];

gl := poly(gs,[x]);

G := append(G,gl);

end_for:

end_for:

//Diagonals below

for i from 1 to 2 do

for j from 1 to 2 do

gs := x[8*(j-1)+32*(i-1)+1]*x[8*(j-1)+32*(i-1)+21]+ x[8*(j-1)

+32*(i-1)+2]*x[8*(j-1)+32*(i-1)+22]+ x[8*(j-1)+32*(i-1)+3]*x[8*(j-1)

+32*(i-1)+23]+ x[8*(j-1)+32*(i-1)+4]*x[8*(j-1)+32*(i-1)+24];

gs2:= x[8*(j-1)+32*(i-1)+5]*x[8*(j-1)+32*(i-1)+17]+ x[8*(j-1)

+32*(i-1)+6]*x[8*(j-1)+32*(i-1)+18]+ x[8*(j-1)+32*(i-1)+7]*x[8*(j-1)

+32*(i-1)+19]+ x[8*(j-1)+32*(i-1)+8]*x[8*(j-1)+32*(i-1)+20];

gl := poly(gs,[x]);

gl2:= poly(gs2, [x]);

G := append(G,gl,gl2);

end_for:

end_for:

G := append(G,poly(x15-1,[x]),poly(x19-1,[x]),poly(x22-1,[x]),poly(x28-1,[x]),

poly(x40-1,[x]),poly(x43-1,[x]),poly(x46-1,[x]),poly(x50-1,[x]));

end_proc:

32 BSU Undergraduate Mathematics Exchange Vol. 13, No. 1 (Fall 2019)

By default, MuPAD computes a Gröbner basis in the rational number field
Q. To reduce the complexity of operations and the number of possible values,
we can perform the operations in the finite field Z5 for a Shidoku puzzle. Mu-
PAD produced the result much more efficiently. The following code implements
the quotient method in the finite field Z5.

Sudoku4by4inZ5 := proc()

begin

// Set up polynomials in Z5 field;

G := [];

x := x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,

x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37,x38,x39,

x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50,x51,x52,x53,x54,x55,x56,x57,x58,

x59,x60,x61,x62,x63,x64,x65,x66,x67,x68,x69,x70,x71,x72,x73,x74,x75,x76,x77,

x78,x79,x80,x81;

// Since the underlying field is Z5, the variables assume value 0 to 4;

// Defining two equations (sum and product) for each exclusive set;

// Numbers in each row and column are different; (2x4+2x4=16 equations)

for i from 1 to 4 do

// 2 equations in each row;

gsum := x[4*(i-1)+1]+x[4*(i-1)+2]+x[4*(i-1)+3]+x[4*(i-1)+4];

gpsum := x[4*(i-1)+1]*x[4*(i-1)+2]+x[4*(i-1)+1]*x[4*(i-1)+3]

+x[4*(i-1)+1]*x[4*(i-1)+4]+x[4*(i-1)+2]*x[4*(i-1)+3]+x[4*(i-1)+2]

x[4(i-1)+4]+x[4*(i-1)+3]*x[4*(i-1)+4];

gs := poly(gsum,[x],Dom::IntegerMod(5));

gps := poly(gpsum,[x],Dom::IntegerMod(5));

G := append(G,gs,gps);

// 2 equations in each column;

gsum := x[(i-1)+1]+x[(i-1)+5]+x[(i-1)+9]+x[(i-1)+13];

gpsum := x[(i-1)+1]*x[(i-1)+5]+x[(i-1)+1]*x[(i-1)+9]+x[(i-1)+1]

*x[(i-1)+13]+x[(i-1)+5]*x[(i-1)+9]+x[(i-1)+5]*x[(i-1)+13]+x[(i-1)+9]

*x[(i-1)+13];

gs := poly(gsum,[x],Dom::IntegerMod(5));

gps := poly(gpsum,[x],Dom::IntegerMod(5));

G := append(G,gs,gps);

end_for:

// Numbers in each block are different; (32 equations)

for i from 1 to 2 do

for k from 1 to 2 do

gsum := x[2*(i-1)+8*(k-1)+1]+x[2*(i-1)+8*(k-1)+2]+x[2*(i-1)

+8*(k-1)+5]+x[2*(i-1)+8*(k-1)+6];

gpsum := x[2*(i-1)+8*(k-1)+1]*x[2*(i-1)+8*(k-1)+2]+x[2*(i-1)

+8*(k-1)+1]*x[2*(i-1)+8*(k-1)+5]+x[2*(i-1)+8*(k-1)+1]*x[2*(i-1)

+8*(k-1)+6]+x[2*(i-1)+8*(k-1)+2]*x[2*(i-1)+8*(k-1)+5]+x[2*(i-1)

+8*(k-1)+2]*x[2*(i-1)+8*(k-1)+6]+x[2*(i-1)+8*(k-1)+5]*x[2*(i-1)

+8*(k-1)+6];

gs := poly(gsum,[x],Dom::IntegerMod(5));

gps := poly(gpsum,[x],Dom::IntegerMod(5));

G := append(G,gs,gps);

end_for:

end_for:

G := append(G,poly(x4+3,[x],Dom::IntegerMod(5)),poly(x5+3,[x],Dom::IntegerMod(5)),

poly(x6+2,[x],Dom::IntegerMod(5)),poly(x7+4,[x],Dom::IntegerMod(5)),poly(x10+4,

[x],Dom::IntegerMod(5)),poly(x11+3,[x],Dom::IntegerMod(5)),poly(x12+2,[x],

Dom::IntegerMod(5)),poly(x13+2,[x],Dom::IntegerMod(5)));

end_proc:

Sudoku Solutions in MuPAD Using a Gröbner Basis 33

In our experiments, MuPAD produced solutions for Shidoku puzzles with ease
for any of the above methods. However, with the sum and product method and
binary method, it was not able to produce a solution for the simplest level of
Sudoku puzzle [3]. Using the quotient method in the finite field Z11, MuPAD
was able to produce a solution in seventeen seconds. The following shows the
result of the Gröbner basis computation of the Sudoku puzzle in Figure 4 using
the quotient method:

[poly(x1+2, x1,x2,...,x81,IntMod(11)), poly(x2+5, x1,x2,...,x81,IntMod(11)),

poly(x3-3,x1,x2,...,x81,IntMod(11)), poly(x4-1,x1,x2,...,x81,IntMod(11)),

poly(x5+4,x1,x2,...,x81,IntMod(11)), poly(x6-4,x1,x2,...,x81,IntMod(11)),

poly(x7-2,x1,x2,...,x81,IntMod(11)), poly(x8-5,x1,x2,...,x81,IntMod(11)),

poly(x9+3,x1,x2,...,x81,IntMod(11)), poly(x10-1,x1,x2,...,x81,IntMod(11)),

poly(x11+4,x1,x2,...,x81,IntMod(11)), poly(x12+3,x1,x2,...,x81,IntMod(11)),

poly(x13-3,x1,x2,...,x81,IntMod(11)), poly(x14-2,x1,x2,...,x81,IntMod(11)),

poly(x15-5,x1,x2,...,x81,IntMod(11)), poly(x16+5,x1,x2,...,x81,IntMod(11)),

poly(x17-4,x1,x2,...,x81,IntMod(11)), poly(x18+2,x1,x2,...,x81,IntMod(11)),

poly(x19-2,x1,x2,...,x81,IntMod(11)), poly(x20-5,x1,x2,...,x81,IntMod(11)),

poly(x21-4,x1,x2,...,x81,IntMod(11)), poly(x22+5,x1,x2,...,x81,IntMod(11)),

poly(x23+3,x1,x2,...,x81,IntMod(11)), poly(x24+2,x1,x2,...,x81,IntMod(11)),

poly(x25+4,x1,x2,...,x81,IntMod(11)), poly(x26-3,x1,x2,...,x81,IntMod(11)),

poly(x27-1,x1,x2,...,x81,IntMod(11)), poly(x28+3,x1,x2,...,x81,IntMod(11)),

poly(x29-2,x1,x2,...,x81,IntMod(11)), poly(x30-1,x1,x2,...,x81,IntMod(11)),

poly(x31-4,x1,x2,...,x81,IntMod(11)), poly(x32-3,x1,x2,...,x81,IntMod(11)),

poly(x33+4,x1,x2,...,x81,IntMod(11)), poly(x34-5,x1,x2,...,x81,IntMod(11)),

poly(x35+2,x1,x2,...,x81,IntMod(11)), poly(x36+5,x1,x2,...,x81,IntMod(11)),

poly(x37-4,x1,x2,...,x81,IntMod(11)), poly(x38+2,x1,x2,...,x81,IntMod(11)),

poly(x39+5,x1,x2,...,x81,IntMod(11)), poly(x40+3,x1,x2,...,x81,IntMod(11)),

poly(x41-5,x1,x2,...,x81,IntMod(11)), poly(x42-2,x1,x2,...,x81,IntMod(11)),

poly(x43-3,x1,x2,...,x81,IntMod(11)), poly(x44-1,x1,x2,...,x81,IntMod(11)),

poly(x45+4,x1,x2,...,x81,IntMod(11)), poly(x46+4,x1,x2,...,x81,IntMod(11)),

poly(x47-3,x1,x2,...,x81,IntMod(11)), poly(x48-5,x1,x2,...,x81,IntMod(11)),

poly(x49+2,x1,x2,...,x81,IntMod(11)), poly(x50+5,x1,x2,...,x81,IntMod(11)),

poly(x51-1,x1,x2,...,x81,IntMod(11)), poly(x52+3,x1,x2,...,x81,IntMod(11)),

poly(x53-2,x1,x2,...,x81,IntMod(11)), poly(x54-4,x1,x2,...,x81,IntMod(11)),

poly(x55-5,x1,x2,...,x81,IntMod(11)), poly(x56+3,x1,x2,...,x81,IntMod(11)),

poly(x57+2,x1,x2,...,x81,IntMod(11)), poly(x58+4,x1,x2,...,x81,IntMod(11)),

poly(x59-1,x1,x2,...,x81,IntMod(11)), poly(x60-3,x1,x2,...,x81,IntMod(11)),

poly(x61-4,x1,x2,...,x81,IntMod(11)), poly(x62+5,x1,x2,...,x81,IntMod(11)),

poly(x63-2,x1,x2,...,x81,IntMod(11)), poly(x64-3,x1,x2,...,x81,IntMod(11)),

poly(x65-1,x1,x2,...,x81,IntMod(11)), poly(x66+4,x1,x2,...,x81,IntMod(11)),

poly(x67-2,x1,x2,...,x81,IntMod(11)), poly(x68-4,x1,x2,...,x81,IntMod(11)),

poly(x69+5,x1,x2,...,x81,IntMod(11)), poly(x70+2,x1,x2,...,x81,IntMod(11)),

poly(x71+3,x1,x2,...,x81,IntMod(11)), poly(x72-5,x1,x2,...,x81,IntMod(11)),

poly(x73+5,x1,x2,...,x81,IntMod(11)), poly(x74-4,x1,x2,...,x81,IntMod(11)),

poly(x75-2,x1,x2,...,x81,IntMod(11)), poly(x76-5,x1,x2,...,x81,IntMod(11)),

poly(x77+2,x1,x2,...,x81,IntMod(11)), poly(x78+3,x1,x2,...,x81,IntMod(11)),

poly(x79-1,x1,x2,...,x81,IntMod(11)), poly(x80+4,x1,x2,...,x81,IntMod(11)),

poly(x81-3,x1,x2,...,x81,IntMod(11))]

Figure 6 gives a visual representation of the code generated above for the
quotient method. Remember that in the finite integer field Z11 we have xj +k ≡
xj−(11−k) (mod 11). For example, x80+4 ≡ x80−7 (mod 11). This congruence
yields each number on the Sudoku board! Try to match up all of the equations
with each entry on the completed solution to see for yourself.

34 BSU Undergraduate Mathematics Exchange Vol. 13, No. 1 (Fall 2019)

Figure 6: Solution of the Sudoku board presented in Figure 1

5 Conclusion

In this project we explored MuPAD’s performance on a Gröbner basis com-
putation by solving Shidoku and Sudoku puzzles. With all three methods we
investigated, MuPAD produced unique solutions for a well-defined Shidoku
puzzle in less than 1 second. For a Sudoku puzzle, even with an easy puzzle,
MuPAD spent 17 seconds to produce the solution, with much worse efficiency
than that of Singular [3]. However, there is much more to explore in this
problem. The paper [5] presents an efficient method of computing binary poly-
nomials. Incorporating this method to our binary method for Sudoku puzzles
could be a future direction. The efficient algorithms F4 [6] and F5 [7] for com-
puting a Gröbner basis have not been implemented in MuPAD. Considering
MATLAB’s powerful matrix computations the implementation of F4 and its
variations could be profitable.

6 Acknowledgements

We thank Dr. Ying Li, Associate Professor of Mathematics at Saint Francis
University, for all of her support in helping us with writing this paper, for giving
us countless amount of insight on the material in abstract algebra and algebraic
geometry, and for allowing both of us to become involved with this project. We
also thank Dr. Brendon LaBuz, Associate Professor of Mathematics at Saint
Francis University, for his valuable reviews of the manuscipt.

Bibliography

[1] E. Arnold, S. Lucas, L. Taalman, Gröbner basis representations of Sudoku,
College Math. J. 41(2)(2010), pp. 101-112.

Sudoku Solutions in MuPAD Using a Gröbner Basis 35

[2] J. Gago-Vargas, I. Hartillo-Hermoso, J. Mart́ın-Morales, and J. M. Ucha-
Enŕıquez, Sudokus and Gröbner bases: not only a divertimento, in Com-
puter Algebra in Scientific Computing, Lecture Notes in Comput. Sci.,
4194, Springer, Berlin, 2006, pp. 155-165.

[3] W. Decker, G. Pfister, A First Course in Computational Algebraic Geom-
etry, Cambridge, United Kingdom, 2013.

[4] D. A. Cox, J. B. Little, and D. O’Shea, Ideals, Varieties, and Algorithms:
an Introduction to Computational Algebraic Geometry and Commutative
Algebra, Springer, New York, 2008.

[5] Y. Sato, A. Nagai, and S. Inoue, On the computation of elimination ideals
of boolean polynomial rings, in Computer Mathematics, Lecture Notes in
Computer Science, 5081, Springer, Berlin, 2008, pp. 334-348.

[6] J. C. Faugère, A new efficient algorithm for computing Gröbner bases (F4),
J. Pure Appl. Algebr., 139(1-3) (1999), pp. 61-88.

[7] J. C. Faugère, A new efficient algorithm for computing Gröbner bases
without reduction to zero F5. in International Symposium on Symbolic and
Algebraic Computation Symposium, ISSAC (2002), France, pp. 75–82.

