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A paradox is, generally speaking, a disproof of our intuitive sense of what
“should” be true. Through the ages, then, there have been many instructive
and interesting paradoxes that have informed and reshaped mathematical in-
tuition. As the field of mathematics has become more rigorous and less näıve,
the consequences of this increasing emphasis on logical precision have often
escaped mathematicians.

In this article, we will look at two famous paradoxes: Russell’s Paradox and
the paradox of Banach and Tarski. These are two of the realizations that have
shaped the world of mathematics in which we live and work: it is a weirder one
than the layman might realize.

Russell’s Paradox

Until the mid-1800s, mathematicians approached set theory somewhat näıvely.
They simply assumed that sets existed and that they were nice to deal with.
Unfortunately, this didn’t last: Bertrand Russell discovered his famous para-
dox. It disproved the intuitive idea of sets being simply any collection of ob-
jects. For suppose a set really were any collection of objects. Then, since sets
themselves are objects, we could gather all sets into a set. What would hap-
pen if this set of all sets, call it A, actually existed? This monster would be
quite difficult to imagine, not the least because it would be an element of itself:
A ∈ A.

Let us concern ourselves with the following subset (and element) of A, the
set N = {K|K /∈ K} ⊆ A. Then is N ∈ N? Of course not: for if it were, then
it could not be an element of itself by its very definition. But if it is not, then
it exactly fits the criterion for inclusion back in itself! This is the paradox: the
statement N ∈ N should either be true or false—provided we assume that A
exists, that is. We therefore have reached a contradiction and conclude that
there can be no set of all sets.
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This dealt quite an ugly blow to näıve set theory. Mathematics would no
longer be able to take for granted its foundational assumptions: they would
have to be reformulated and shown consistent, inasmuch as that is possible.

The Banach-Tarski Paradox

In the years following, some mathematicians formulated axioms for set theory
which regulate what constitutes a set. One of these, the Axiom of Choice, raised
a few eyebrows. The Axiom of Choice is fundamental to almost all modern
mathematics. For example, it is equivalent to the Well-Ordering Principle (that
every set can be well-ordered) and the assertion that an arbitrary cartesian
product of nonempty sets is nonempty. The axiom simply states this:

Axiom of Choice. Given any collection S of nonempty disjoint sets, there
exists a set C which contains exactly one element from each element of S.

The next little surprise we are going to examine is one of the ugly children
of the Choice Axiom. It is known as the Banach-Tarski Paradox. Essentially,
the theorem, published by S. Banach and A. Tarski in 1924 [1], shows that it
is possible to take a solid ball in three-dimensional Euclidean space, partition
it into a finite number of pieces, and then perform a finite number of rigid
motions on them to rearrange the pieces into two balls, each of whose volume
is equal to that of the first. From this, they concluded:

The Banach-Tarski Paradox. Let A and B be bounded subsets of a Eu-
clidean space in at least three dimensions, neither of which has an empty in-
terior. Then there exist partitions of A and B into a finite number of disjoint
subsets A = A1 ∪A2 ∪ · · · ∪An, B = B1 ∪B2 ∪ · · · ∪Bn, such that, for each i
between 1 and n, Ai is congruent to Bi.

This paradox implies the startling “pea and the sun” result:

A ball the size of a pea can be sliced up into a finite number of pieces, and
those pieces moved by only rigid motions in three-dimensional space, to form a
ball the size of the sun.

More generally, the same is true of any two bounded subsets of Rn (n > 3)
with nonempty interiors. We are going to take a look at the proofs of the
three-dimensional versions of these rather counterintuitive results. Before we
do that, we need a few preliminaries.

Definition. Let A,B ⊆ Rn. A is said to be piecewise congruent to B, denoted
by A ≈ B, if A can be partitioned into finitely many pairwise disjoint subsets
A1, A2, A3, . . . , As such that each Ai can be translated and rotated to some Bi
so as to form pairwise disjoint sets B1, B2, B3, . . . , Bs whose union equals B.
If A ≈ B′ ⊆ B, we write A 4 B.

Observe that this relation is transitive: if A 4 B and B 4 C, then A 4 C.
Figure 1 depicts some piecewise congruent sets in the Euclidean plane. The
reader should be advised, however, that in general no assumption is made about
either the connectivity or the measurability of the individual pieces.
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Figure 1: In this example from the children’s game Tangram, all of the depicted
shapes are piecewise congruent to the central square.

We need the following lemma:

Lemma. If A 4 B and B 4 A, then A ≈ B.

Proof. Say A ≈ B′ ⊆ B and B ≈ A′ ⊆ A, and let f : A→ B′ and g : B → A′

be the functions following the stipulated rigid motions. Put C0 = A− A′ and
C1 = g(f(C0)). Continue inductively by defining Cn+1 = g(f(Cn)).

Put C =
⋃∞
n=0 Cn. Then A−C ⊆ A′ = A−C0 and g−1(A−C) = B−f(C),

since g(b) ∈ C if and only if b ∈ f(C). Therefore, as g−1 : A′ → B follows
the motion for A′ ≈ B, we have A − C ≈ B − f(C). Moreover, C ≈ f(C), so
A ≈ B.

Now we are ready for the main theorem:

Theorem (Banach-Tarski). Let P ⊆ R3 be a solid ball of any radius r. Then
there exist subsets A, B ⊆ P such that A ∩B = ∅ and A ≈ P ≈ B.

Proof. We sketch a proof of this theorem in several steps. First, we prove it
for the surface of P , then extend it to the solid ball. Specifically, let S be the
surface of P , centered at the origin. We will first show that there are A,B ⊆ S
with A ∩B = ∅ and A ≈ S ≈ B, using only rotations about the origin.

Let ρ and σ be counterclockwise rotations about the x-axis and z-axis,
respectively, each by the angle α = arccos

(
1
3

)
. Consider the set G = 〈σ, ρ〉

of all possible finite sequences of rotations σ, σ−1, ρ and ρ−1, without trivial
cancellation. Note that each sequence, under function composition, results in
an overall rotation of S about some axis through the origin. Using elementary
linear algebra, it can be shown that if the first of n moves in such a sequence
is a z-axis rotation, then it transforms the unit vector (1, 0, 0) into some vector
of the form

(
a
3n ,

b
√

2
3n , c

3n

)
with a, b, c ∈ Z and b 6= 0. (See [3] for details.)

Therefore, the empty sequence is the only sequence in G which equals the
identity function, and different sequences in G result in different rotations.
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Now, partition G into five disjoint sets: let X+ be the set of all sequences
whose last move is ρ, let X− be the set of all sequences whose last move is ρ−1,
let Z+ be the set of all sequences whose last move is σ, and let Z− be the set
of all sequences whose last move is σ−1. Then G = X+∪X−∪Z+∪Z−∪{id}.
Note that G = X+ ∪ ρX− and G = Z+ ∪ σZ−.

Each rotation in G−{id} fixes an axis through P . Let F be the set of points
in S where these axes meet S. Because G is countable, F is countable. No
element of G−{id} fixes a point on S−F . Moreover, the orbit of any point of
S−F under G is a set of distinct points corresponding bijectively to G. Let M
be a collection of exactly one point from the orbit of each point in S−F . Note
that in order to create M , we must use the Axiom of Choice to choose exactly
one point from each of the disjoint orbits of the points of S − F . Now define
A1 = {g(M) | g ∈ X+}, A2 = {g(M) | g ∈ X−}, B1 = {g(M) | g ∈ Z+}, and
B2 = {g(M) | g ∈ Z−}.

But now we have A1 ∪ ρ(A2) = S−F and B1 ∪ σ(B2) = S−F . This is the
heart of the proof: translating into the geometry of S the seemingly innocuous
fact that G has pairs of disjoint subsets with the property that the second set
of each pair can be shifted onto the complement of the first.

Next, let l be an axis that passes through the center of S missing F . Further,
let τ be a rotation about l by an angle θ such that τn(F ) ∩ F = ∅ for all
n > 0 (recall that F is countable). We then have that τn(F ) ∩ τm(F ) = ∅
for 0 6 m < n, since otherwise we would be able to spin the other way m
times and contradict the assumption about θ. Put F = ∪∞n=0τ

n(F ). Then,
S = F ∪ (S − F ) ≈ τ(F ) ∪ (S − F ) = S − F .

This yields the sets A = A1∪A2 ≈ S−F ≈ S and B = B1∪B2 ≈ S−F ≈ S,
all by rotations, as we claimed in the beginning of the proof.

It is easy to extend the result from S to P−{0} by radial extension: append
to each point s on the surface the segment ts with 0 < t 6 1. So there are
subsets A and B of P − {0} such that A ∩B = ∅ and A ≈ P − {0} ≈ B.

Finally, we need to extend the result from P − {0} to P . Let l be the line
which passes through the point (0, 0, r/2) on the z-axis and which is parallel
to the x-axis. Call η the rotation about l by angle α = arccos( 1

3 ). Then
H = {0, η(0), η2(0), η3(0) . . .} are all distinct, because α is not commensurate
with 2π. This implies that P = H ∪ (P −H) ≈ η(H) ∪ (P −H) = P − {0},
which finishes the proof.

This, in and of itself, doesn’t seem quite as counterintuitive; it is really the
following two corollaries which illustrate how crazy the main result is.

Corollary 1. Let P0, P1 and P2 be three pairwise disjoint solid balls of the
same radius r. Then P0 ≈ P1 ∪ P2.

Proof. By the Banach-Tarski Theorem, there are subsets A,B ⊆ P0 such that
A ∩ B = ∅ and A ≈ P0 ≈ B. Then P1 ∪ P2 ≈ A ∪ B 4 P0 4 P1 ∪ P2. By the
above lemma, we have P0 ≈ P1 ∪ P2.

Corollary 2 (Banach-Tarski Paradox). Let A,B ⊆ R3 such that P1 ⊆ A ⊆ P2

and P3 ⊆ B ⊆ P4 for any solid balls P1, P2, P3, P4. In other words, let A and
B be any two bounded subsets of R3 with nonempty interiors. Then A ≈ B.
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Proof. Choose n large enough so that P2 can be covered with n copies of
P3; call them C1, C2, . . . , Cn. Put C ′1 = P2 ∩ C1, C ′2 = (P2 ∩ C2) − C1,
C ′3 = (P2 ∩ C3) − (C1 ∪ C2), . . . , C ′n = (P2 ∩ Cn) − (C1 ∪ C2 ∪ · · · ∪ Cn−1).
As a result of this construction, the sets C ′1, . . . , C

′
n partition P2. Translate

them to disjoint copies of P3; call them D1, D2, . . . , Dn. Say C ′i moves to
D′i ⊆ Di. Then A 4 P2 ≈ D′1∪D′2∪ · · ·∪D′n 4 D1∪D2∪ · · ·∪Dn ≈ P3 by the
above corollary, and P3 ⊆ B, so that A 4 B. By a repeat of the above process,
we also find that B 4 A. Thus, A ≈ B by the above lemma.

It is worth noting that A and B, because they do not preserve volume, are
nonmeasurable sets. This is a direct result of the use of the Axiom of Choice;
the existence of nonmeasurable sets is actually nearly equivalent to the Axiom
of Choice [2].

Conclusion

The Banach-Tarski Paradox is only one of many startling conclusions that
follow from the most foundational, fundamental assumptions in mathematics.
As mathematicians and mathematicians-in-training, one of the key things we
learn is to subordinate our näıve intuition to rigorous logic; toward that end,
familiarity with counterintuitive results is relatively important in continuing
to develop mathematically. More importantly, though, they lend a surreal
aesthetic to the structure of mathematics; they illustrate that our world is a
lot wilder than we might have otherwise thought.
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