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Abstract For any graph G, an assignment of ranks to its vertices by a function
f ∶ V (G) → {1,2, ..., k} is a k-biranking of G if f(u) = f(v) implies that every u-v
path contains vertices x and y such that f(x) > f(u) and f(y) < f(u). The birank
number of a graph, denoted bi(G), is the minimum k such that G has a k-biranking.
We determine the birank number for 3 × n grid graphs for several small values of
n, and then obtain upper and lower bounds for all n. In the process we define two
algorithms for constructing valid biranks on such graphs.

Introduction

A k-ranking on a graph G is an assignment of positive integers, or ranks, 1, . . . , k to
the vertices of G such that if any two vertices are assigned the same rank then every
path between them contains a vertex with higher rank. Graph rankings were first
used by Iyer, Ratliff, and Vijayan [7]. A k-biranking on a graph is a generalization
of graph ranking which was defined by Jamison [8] as an assignment of ranks to the
vertices of G so that if any two vertices are assigned the same rank then every path
between them contains a vertex with higher rank and a vertex with lower rank. The
minimum k for which a graph G has a valid k-biranking is the birank number of G
which we denote by bi(G).

The birank number has been determined for path, cycle, ladder, and Möbius
graphs ([5, 6]). This work focuses on 3×n grid graphs, denoted G3,n. There has been
some work on studying rankings on grid graphs ([1, 4, 9]), but these techniques do
not generally extend to the birank problem.
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A variation of ranking known as on-line ranking has been studied as well (see
for instance [3]). An on-line ranking requires obtaining a valid ranking by assigning
ranks to vertices as they are added in an arbitrary order to build a graph from its
subgraphs. The ranking must be valid at each stage. We have not found any work
discussing on-line biranking of graphs.

In the Preliminaries section we introduce some preliminary notions and determine
the birank number for G3,n for n ≤ 6. In the Growing Valid Birankings section, we
introduce a method for constructing valid birankings on G3,n similar to the on-line
rankings mentioned above in that it allows us to “grow” the grid by adding new
columns but maintaining valid birankings. In the A Recursive Method section we
illustrate a more efficient method for generating valid birankings on G3,n graphs.
Finally, in the A Lower Bound section we establish a lower bound for bi(G3,n) and
show that it differs from our upper bound by at most a factor of 3.

Throughout, we represent G3,n as a rectangular grid, three rows high, and will
refer to rows and columns in this way.

Preliminaries

Here we introduce terminology useful in the proofs and discuss optimal birank num-
bers for G3,1 through G3,6 as base cases.

Dividers and Distances

The technique of high and low dividers has been used for other families of graphs
such as paths and ladders (see [5] and [6]). The definition below is more general than
those used in the above papers.

Definition 1. Given a biranking f ∶ V (G) → {1, ..., k} on a graph G, and vertices
x, y such that f(x) = f(y), a low divider for x and y is a set of vertices L ⊆ V (G)
such that ∀z ∈ L, f(z) < f(x) and the removal of L disconnects the graph with x and
y in separate components.

A high divider is defined in a similar way using larger ranks. Clearly if x and y
are assigned the same rank in a valid biranking, then there must be both a high and
low divider between x and y.

For example, in Figure 1, the vertices assigned ranks 1 and 2 make up a low
divider for the vertices assigned rank 3. Similarly the vertices assigned ranks 4 and 5
make up a high divider for the vertices assigned rank 3.

Figure 1: G3,2

On G3,n a high or low divider for vertices x and y will consist of two or more
vertices. If one of x or y is a corner vertex (i.e., a vertex of degree 2), then two vertices
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may suffice to form a divider. Otherwise a divider must contain at least three vertices.
We will use the concept of dividers heavily in our later proofs.

We now note some properties involving the distance between vertices of equal
rank. It is clear from the definition of a birank that for two vertices in any graph to
be assigned the same rank they must be a distance of at least 3 apart.

Given a vertex v in a graph G, if we denote by Nv the set containing v together
with the vertices adjacent to v, then the following lemma follows directly from the
definition of birank:

Lemma 2. Given a graph G with a valid biranking f , if f(u) = f(v) for distinct
vertices u and v in G, then Nu ∩Nv = ∅.

For a biranking on a graph we denote by n(r) the number of vertices assigned
the rank r. The following lemma highlights the utility of a distance argument in
establishing upper bounds for birank numbers.

Lemma 3. Given any rank r in a valid biranking of G3,5, n(r) < 5.

Proof. Assume that n(r) ≥ 5 on G3,5. Notice that in G3,n, if v is a corner vertex,
then ∣Nv ∣ = 3, otherwise ∣Nv ∣ ≥ 4. As a consequence of Lemma 2, it is clear that r
may be assigned to at most two corner vertices. By Lemma 2, if n(r) = 5, then the
total number of distinct vertices accounted for by the neighborhoods of vertices with
rank r is at least 3+3+4+4+4 = 18. However, G3,5 has only 15 vertices and we have
reached a contradiction.

Base Cases

In general, we will find upper bounds for bi(G) by constructing a valid biranking on
G, then we will prove this upper bound is tight. The birank number for G3,2 through
G3,4 has been determined in [2]. Below, we determine the birank number for G3,5

and G3,6. See Table 1 for a summary of known birank numbers.

Theorem 4. bi (G3,5) = 10.

Proof. Assume that we have a valid biranking on G3,5 with 9 ranks. Notice the ranks
1 and 2 may only appear at most once because there are not enough vertices assigned
lower ranks to form a low divider. Similarly the ranks 8 and 9 may appear at most
once. Now n(3) ≤ 2 because there are at most two vertices assigned rank lower than
3, which means the rank 3 can have at most one low divider.

Note n(4) ≤ 2 since if n(3) = 2 then a vertex of rank 3 must be placed in a corner
with 1 and 2 directly adjacent, so there are no ranks lower than 4 available to form
a low divider and n(4) = 1. If n(3) = 1, then there are only three vertices with ranks
lower than 4, so the rank 4 has at most one low divider.

Analogously, n(7) ≤ 2 and n(6) ≤ 2 by a high divider argument. Given these
restrictions, the ranks 1 through 4 and 6 through 9 have accounted for at most 12
vertices, so we need at least three vertices assigned a rank of 5. We will show this is
impossible.

Case 1. n(((3))) = n(((4))) = 2 or n(((6))) = n(((7))) = 2:

If n(3) = 2, then a vertex of rank 3 must be placed in a corner with 1 and 2 directly
adjacent because we need to form a low divider using only two vertices.

Now in order to have n(4) > 1 the rank 4 needs to have a low divider. The only
way this can happen is if 4 is placed in the corner nearest the existing rank 3 and the
second 3 is placed directly adjacent to 4. See Figure 2.
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Figure 2: G3,5

Now we have a second 4 to use as part of a low divider for 5, but the only way
n(5) > 1 is if the 5 is placed to the right of 1 with a second 4 placed directly to the
right of it. See Figure 3.

Figure 3: G3,5

Notice, 5 is surrounded by lower ranks and free to repeat. However, there are no
more ranks less than 5 to allow another repeat. Therefore, n(5) ≤ 2 if n(3) = n(4) = 2.
Likewise if n(7) = n(6) = 2, then n(5) ≤ 2 by a similar argument using high dividers.
Therefore, ranks 1 through 9 can be used at most 14 times on 15 vertices and we have
reached a contradiction.

Case 2. n(((3))) +n(((4))) ≤ 3 and n(((6))) +n(((7))) ≤ 3:

If n(3)+n(4) ≤ 3 and n(6)+n(7) ≤ 3, then ranks 1 through 4 and 6 through 9 account
for at most 10 vertices. On G3,5, n(5) ≤ 4 by Lemma 3. Therefore, ranks 1 through
9 can be used at most 14 times on 15 vertices and we have reached a contradiction.

Therefore, bi (G3,5) > 9. By Figure 4 we see bi (G3,5) ≤ 10. Therefore, bi (G3,5) =
10.

Figure 4: Optimal biranking on G3,5

Theorem 5. bi (G3,6) = 11.

Proof. Assume that we have a biranking on G3,6 with 10 ranks. Notice that the ranks
1, 2, 9, 10 may appear at most once. Note that n(3) ≤ 2. Similarly n(8) ≤ 2.
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Case 1. n(((3))) = n(((8))) = 2:

Notice that if n(3) = 2, then a 3 must be placed in a corner and the adjacent vertices
to the rank 3 must be assigned the ranks 1 and 2. This will restrict n(4) ≤ 2 and
n(5) ≤ 2 by an argument similar to the one given in the proof of Theorem 4. Similarly,
if n(8) = 2, then n(7) ≤ 2 and n(6) ≤ 2. Notice this will only account for at most 16
out of the 18 vertices in G3,6. Thus we have a contradiction.

Case 2. n(((3))) = 2 and n(((8))) ≤ 1 or n(((3))) ≤ 1 and n(((8))) = 2:

Notice that if n(3) = 2, then n(4) ≤ 2, n(5) ≤ 2 by the same argument as in Case 1.
However, if n(8) ≤ 1, then n(7) ≤ 2 and thus n(6) ≤ 3 because there are at most 4
vertices with ranks larger than 6 allowing for at most two high dividers. Notice that
this will only account for at most 16 out of the 18 vertices in G3,6. If n(3) ≤ 1 and
n(8) = 2, the same result will follow. Thus we have a contradiction.

Case 3. n(((3))) ≤ 1 and n(((8))) ≤ 1:

Notice that if n(3) ≤ 1, then n(4) ≤ 2 because there are at most 3 lower ranks than
4. Now, n(5) ≤ 3 because there are at most 5 lower ranks allowing for at most 2 low
dividers. Similarly, by higher ranks, if n(8) ≤ 1, then n(7) ≤ 2 and n(6) ≤ 3. Notice
that this only accounts for 16 out of the 18 vertices in G3,6. Thus, we have reached
a contradiction.

Therefore, bi (G3,6) > 10. By Figure 5, we see that bi (G3,6) ≤ 11. Therefore
bi (G3,6) = 11.

Figure 5: Optimal biranking on G3,6

Now we have a set of base cases where the birank number of G3,n has been
determined for n < 7.

We finish what we will consider our base cases by providing figures below which
establish the bounds bi (G3,7) ≤ 12 and bi (G3,8) ≤ 13.

Figure 6: Biranking on G3,7
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Figure 7: Biranking on G3,8

Growing Valid Birankings

We now develop a method for building valid birankings on G3,n in general, which is
also optimal from G3,2 to G3,6, called the “3 in the corner” or 3C Method. This is a
constructive method that begins with a small base case and describes how to assign
ranks as the graph adds columns.

We begin with G3,2, as labeled in Figure 8, as a base case.

Figure 8: G3,2 labeled using the 3C Method.

Given G3,n for n > 2 with a biranking constructed using the 3C method, we may
extend this ranking to G3,n+1 using the two cases below.

Case 1. n is even:

Given a biranking on G3,n constructed by the 3C Method with t as the largest label,
when n is even, the (n − 1) and n columns will be assigned ranks as in Figure 9.

Figure 9: A labeling of the (n − 1) and n columns of G3,n by the 3C Method
for n even.

We will extend this labeling to G3,n+1 as in Figure 10.



The Birank Number of 3 × n Grid Graphs 7

Figure 10: A labeling of the (n − 1), n, and (n + 1) columns of G3,n+1 by the
3C Method for n even.

Note that by assumption, the ranks (t + 1) and (t + 2) do not appear earlier in the
graph so they may appear anywhere in the (n + 1) column. Notice that (t − 1) has
high and low dividers and so may appear on the middle vertex in the (n + 1) column.
Thus our extension is a valid biranking on G3,n+1.
Case 2. n is odd:

Let a biranking on G3,n be constructed by the 3C Method with t as the largest label.
When n is odd, the (n − 1) and n column will be assigned as in Figure 11.

Figure 11: A labeling of the (n − 1) and n columns of G3,n by the 3C Method
for n odd.

We will extend this labeling to G3,n+1 as in Figure 12.

Figure 12: A labeling of the (n − 1), n, and (n + 1) columns of G3,n+1 by the
3C Method for n odd.

Note that the rank (t + 1) may appear on any vertex in the (n + 1) column. All
other repeated ranks have appropriate high and low dividers. Thus our extension is
a valid biranking on G3,n+1.
Definition 6. Let T (G3,n) denote the number of ranks used to birank G3,n using
the 3C Method.

The following lemma is clear from the definition of the 3C Method.



8 BSU Undergraduate Mathematics Exchange Vol. 11, No. 1 (Fall 2017)

Lemma 7. Given G3,n labeled using the 3C Method,

T (G3,n) = T (G3,n−1) + ⎧⎪⎪⎨⎪⎪⎩
1 if n is even

2 if n is odd.

This recursive formula gives a sequence of values for T (G3,n) which we may
express as follows.

Theorem 8. T (G3,n) = 5 + ⌊n−2
2

⌋ + 2 ⌈n−2
2

⌉.
Proof. Let G3,2 serve as a base case where T (G3,2) = 5. Notice that for n > 2, a
1 will be added to T (G3,2) for every even number between 2 and n. Similarly a
2 will be added to T (G3,2) for every odd number between 2 and n. The number
of evens larger than 2 and less than or equal to n is given by ⌊n−2

2
⌋. Likewise the

number of odds larger than 2 and less than or equal to n is given by ⌈n−2
2

⌉. Therefore
T (G3,n) = 5 + ⌊n−2

2
⌋ + 2 ⌈n−2

2
⌉.

Clearly, bi(G3,n) ≤ T (G3,n). The 3C Method does very well for small values
of n and in fact it generates optimal birankings on G3,2 through G3,6. However it
stops being optimal at G3,7 since every rank in a biranking generated by the 3C
Method may appear at most twice. Other methods for constructing birankings allow
for individual ranks to repeat more often which becomes important for larger values
of n.

A Recursive Method

We now develop a recursive method for generating valid birankings on G3,n. The
Straight Cut Method uses a central cut to divide the graph into two smaller subgraphs.
First we will introduce the definition of the Straight Cut and show how it acts on
G3,n in general, then we compute the number of ranks needed to birank G3,n using
the Straight Cut Method.

Definition 9. The Straight Cut is a subgraph of G3,n which appears in the ⌈n
2
⌉ and⌈n

2
+ 1⌉ columns as labeled in figure 13.

Figure 13: The Straight Cut

For large enough k, the Straight Cut acts as high and low dividers and splits G3,n

leaving two subgraphs A and B as in figure 14. Thus A and B may be approached
as two independent biranking problems (as long as no ranks smaller than 4 or larger
than k − 3 are used).
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Figure 14: The Straight Cut with Subgraphs A and B

Since the number of columns in subgraph B is at most equal to the columns in
A, it suffices to find a valid biranking for A, then apply the same pattern of ranks to
B.

More precisely, let f ∶ V (G3,⌈n
2
−1⌉) → {1, ..., s} be a valid biranking on A. Then

subgraph B may also be labeled with at most s ranks. If we let k = s + 6, then
g ∶ V (G3,n) → {1, ..., (s + 6)} is a valid biranking if g(v) = f(v) + 3 for subgraphs A
and B on G3,n and if g assigns the values of Figure 13 to the vertices of the straight
cut.

Therefore, if G3,⌈n
2
−1⌉ may be labeled with s ranks, then G3,n may be labeled

with s + 6 ranks. We have proven the following lemma.

Lemma 10. bi (G3,n) ≤ bi (G3,⌈n
2
−1⌉) + 6.

The Straight Cut method applies this cutting process to G3,n, then again to the
larger subgraph, then again until we reach one of our base cases. After t iterations of
this method on G3,n, we are left with G3,b, where

b = ⌈1
2
⌈⋯⌈1

2
⌈1
2
⌈n
2
− 1⌉ − 1⌉ − 1⌉⋯⌉ − 1⌉

= ⌈1
2
(⋯(1

2
(1
2
(n
2
− 1) − 1) − 1)⋯) − 1⌉

= ⌈ 1

2t
(n − t−1∑

i=1 2
i) − 1⌉

= ⌈ 1

2t
(n + 1 − t∑

i=02
i)⌉

= ⌈ 1

2t
(n + 1 + (1 − 2t+1))⌉

= ⌈n + 2

2t
⌉ − 2.

If the set of base cases for bi (G3,n) is G3,1,...,G3,m, then the number of steps this
method needs to reach a base case G3,b such that b ≤ m is given by
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⌈n + 2

2t
⌉ − 2 ≤ m, which yields

⌈ n + 2

m + 2
⌉ ≤ 2t, and so

⌈log2 ( n + 2

m + 2
)⌉ ≤ t.

For the Straight Cut method we use the set of base cases from the Preliminaries
section, and so m = 8. Thus the number of iterations to reach a base case is given by
t = ⌈log2 (n+2

10
)⌉. After t iterative cuts on G3,n, if G3,(⌈n+2

2t
⌉−2) can be labeled with s

ranks, then G3,n may be labeled with s + 6t ranks.

Definition 11. Given a graph G3,n, we denote by S(G3,n) the number of ranks
needed to produce a valid biranking using the Straight Cut method.

Theorem 12. Given n ≥ 5, if b = ⌈n+2
2t

⌉ − 2 and t = ⌈log2 (n+2
10

)⌉, then

S (G3,n) = 6t +
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8 if b = 4

10 if b = 5

11 if b = 6

12 if b = 7

13 if b = 8.

Proof. As discussed above, if we iterate the Straight Cut process t times on G3,n, we
are left with the base case of G3,b with 4 ≤ b ≤ 8. The cases in the formula above
indicate how many ranks are needed for each base case. Each time we iterate the
process we require 6 more ranks which will add 6t to the total.

Clearly bi (G3,n) ≤ S (G3,n) and so this function gives an upper bound for all 3×n
grid graphs and shows the bi(G3,n) grows with at most the log of n.

A Lower Bound

The previous sections have focused on developing methods for generating valid bi-
rankings on G3,n which provide an upper bound for bi(G3,n). Here we establish a
lower bound on bi(G3,n).

First, note that for n even, the cycle graph C3n is a subgraph of G3,n, and for
n ≥ 3 odd, G3,n has C3n−1 as a subgraph. See Figure 15 for examples.

The birank number of a cycle graph is known (see [5]), so we have the bounds
given below.

Lemma 13. When n is even,

bi(G3,n) ≥ bi(C3n) = ⌊log2(3n − 1)⌋ + ⌊log2 (3n − 1

3
)⌋ + 3.

When n is odd,

bi(G3,n) ≥ bi(C3n−1) = ⌊log2(3n − 2)⌋ + ⌊log2 (3n − 2

3
)⌋ + 3.
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Figure 15: Examples showing how we may draw C12 as a subgraph of G3,4 and
C14 as a subgraph of G3,5.

Values of this lower bound for small n are shown in Table 1. We have the following
result that shows this lower bound comes within a constant factor of the upper bound
given by the Straight Cut method.

Theorem 14. If lb(n) is the lower bound for bi(G3,n) given above, then S(G3,n) ≤
3 ⋅ lb(n) for all n ≥ 5.

Proof. First, Table 1 establishes the result for n = 5. Now note that

⌈log2 (n + 2)⌉ ≤ ⌊log2 (n + 2) + 1⌋= ⌊log2 (2n + 4)⌋= ⌊log2 (2n + 6 − 2)⌋≤ ⌊log2 (3n − 2)⌋ ,
where the last inequality holds when n ≥ 6. So for n ≥ 6,

S(G3,n)
lb(n) ≤ 6 ⌈log2 (n+2

10
)⌉ + 13⌊log2(3n − 2)⌋ + ⌊log2 ( 3n−2

3
)⌋ + 3

≤ 6 ⌈log2 (n+2
8

)⌉ + 13⌊log2(3n − 2)⌋ + ⌊log2 ( 3n−2
4

)⌋ + 3

≤ 6 ⌈log2 (n + 2)⌉ − 5⌊log2(3n − 2)⌋ + ⌊log2 (3n − 2)⌋ + 1

≤ 6 ⌊log2 (3n − 2)⌋ − 5

2 ⌊log2(3n − 2)⌋ + 1

< 6 ⌊log2 (3n − 2)⌋
2 ⌊log2(3n − 2)⌋= 3.

Summary

Table 1 summarizes the number of ranks needed to produce a valid biranking on G3,n

using each of our methods. Numbers that are proven to be the optimal birank number
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are in bold. Numbers which represent our best known upper bound for bi(G3,n) are
indicated with an asterisk.

Note that the 3C method does well in the beginning, but is ultimately inefficient
for larger graphs since it will never use a rank more than twice. The Straight Cut
method gives us our best upper bounds at the moment, but the 3C method is still
interesting in that it provides a valid ranking which grows with the graph. For
example, the assignment of ranks to G3,12 and G3,13 are significantly different when
using the Straight cut method, while adding the extra row has no impact on most of
the graph using the 3C method.

Base 3C Straight Cut Lower
n Cases method method bound

2 5 5 - 5
3 7 7 - 6
4 8 8 - 7
5 10 10 10 8
6 11 11 11 9
7 12* 13 12* 9
8 13* 14 13* 9
9 - 16 14* 10
10 - 17 14* 10
11 - 19 16* 11
12 - 20 16* 11
13 - 22 17* 11
14 - 23 17* 11
15 - 25 18* 11

Table 1: Number of ranks needed to produce a valid biranking on G3,n with
each method. Bold numbers are proven to be optimal. An asterisk indicates
our best known upper bound for bi(G3,n).

Future work in this area might include either proving the optimality of the Straight
Cut method, or developing similar algorithms which cut the graph into smaller com-
ponents in different ways – perhaps with diagonal cuts instead of vertical ones. Po-
tentially, a more efficient algorithm might be found. Additionally, finding a tighter
lower bound would be of interest.
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