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The Distribution of Primes

Dr. John Lorch

To understand the natural numbers, we
must first understand the primes. Yet the be-
havior of the primes remains for the most part
a mystery. For example, despite the efforts of
many great mathematicians over hundreds of
years, we still know very little about how the
primes are distributed (scattered) throughout
the natural numbers.

The results and conjectures pertaining to
the distribution of the primes, known as prime

distribution theory, was the topic chosen for the fall 2004 student-faculty sem-
inar. With such a challenging topic, the group experienced both the heights
of inspiration and the depths of confusion. What follows is a description of
various aspects of the seminar, including both highlights and ‘lowlights.’

Highlight: connections

One way to get a feeling for where the primes are within the natural numbers
is to count the number of primes π(n) less than or equal to a given number n.
There is no real hope for finding a simple rule for π(n), but the Prime Num-

ber Theorem1 (PNT) says that π(n) can be approximated by the logarithmic
integral function

Li(n) :=

∫ n

2

1

log t
dt.

More specifically, PNT says that

lim
n→∞

Li(n)

π(n)
= 1. (1)

1The Prime Number Theorem was first proved in 1896 by Hadamard and Valleé-Poussin
(see [1]). Fifty years earlier, Chebyshev [2] proved that if the limit in PNT exists, its value
must be one. Fifty years later, Erdös [4] and Selberg [9] gave ‘elementary’ proofs of PNT
that bypassed the zeta function.
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The Prime Number Theorem is the hallmark theorem of prime distribution
theory, and much of the seminar was devoted to investigating why PNT is
true. Our path to PNT highlighted a beautiful and powerful connection with
analysis. The starting point is the fact (due to the Fundamental Theorem of
Arithmetic and known to Euler) that if s = σ + it is a complex number and
σ > 1 then

∞
∑

n=1

1

ns
=

∏

p

(

1 −
1

ps

)

−1

, (2)

where the product (called an Euler product2) is taken over all prime numbers p.
Equation (2) defines a complex differentiable function on the half-plane σ >
1. Through the miracle of complex analysis, this function can be extended
uniquely to a function ζ(s) (called the Riemann zeta function) which is complex
differentiable3 for s 6= 1. An intimate connection emerged between the zeros
of ζ(s) and the Prime Number Theorem. In particular, we discovered that the
Prime Number Theorem is a consequence of the fact that ζ(s) has no zeros
on the line σ = 1. (The first proofs of PNT by Hadamard and Valeé-Poussin
employed this method.)

We saw that there are further fascinating and surprising applications of
the zeta function. Let pn be the n-th prime. If the logarithmic integral Li(x)
did a perfect job of counting primes, then Li(pn) would be n on the nose.
However, Li(x) is merely an approximation, and the Riemann Hypothesis (first
formulated by Riemann in 1859) is principally a conjecture about the growth
of the associated error term Li(pn) − n. The Riemann Hypothesis4 asserts

Li(pn) = n + O(n1/2+ε) for every ε > 0. (3)

Just as in the proof of PNT, there is a connection between the Riemann Hy-
pothesis (3) and the zeros of the zeta function ζ(s). Specifically, except for
zeros at s = −2,−4,−6, . . . , all other zeros of ζ(s) must lie in the ‘critical
strip’: {s = σ + it | 0 < σ < 1}. If it is further true that if all of these critical
zeros lie on the line σ = 1/2, then the Riemann Hypothesis (3) will hold, and
vice versa5.

Lowlight: difficulty and details

The book [5] we used for the seminar was a small, well-written paperback
measuring approximately seven millimeters in thickness. This book was both

2We used the Euler product in the earliest stages of the seminar to show that
∑

1
p

diverges.

From a probabilistic standpoint, if we set s = 1 then the reciprocal partial Euler products
over p <

√
n can be viewed as the probability that n is prime.

3Since
∑

1
n

diverges, we can deduce from (2) that ζ(s) is badly behaved at s = 1, but the
behavior isn’t too awful: one can show that (s− 1)ζ(s) → 1 as s → ∞. We say that ζ(s) has
a simple pole at s = 1.

4Regarding the ‘O’ notation in the Riemann Hypothesis: let f, g be real-valued functions
on R. We say f = O(g) if there is a positive constant C satisfying |f(x)| 6 C|g(x)| for all
x ∈ R.

5Showing that all the critical zeros of the zeta function lie on the line σ = 1/2 is a holy
grail for number theorists. The Clay Mathematics Institute is currently offering a million
dollars for a correct proof of the Riemann Hypothesis.
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good and bad for us: good, in that it contained only important, overarching
ideas (including lucid, motivating descriptions), and bad, in that many hard
details were swept under the rug. Since we had no resident prime distribution
specialist, the lack of details and relative difficulty of the material often plunged
us into darkness and confusion. Sometimes, however, even the grinding details
could be inspiring. For example, when interchanging the order of two Riemann-
Stieltjes integrals as a part of the proof of Mertens’ Theorem6, the faculty could
primly point out the value of Maths 472!

Finale: probabilistic models

Our difficulties with prime distribution theory served as a perfect backdrop
to a latter portion of the seminar, which was devoted to probabilistic models
for the primes. Models, which ideally provide an approximation of reality
which is simple enough to understand, often come to our aid when the original
phenomenon is overly complex.

In the 1930’s, Harald Cramér [3] introduced a simple (and today widely
known) model for the primes in which a natural number n is declared to be
‘prime’ with probability 1

log n , and the ‘primality’ of n is independent of the ‘pri-

mality’ of previous numbers7. Cramér’s model is featured in the famous heuris-
tic argument in favor of the Twin Primes Conjecture8: by independence, a pair
n, n+2 of natural numbers are both prime with probability [log n·log(n+2)]−1,
so the number of pairs of twins less than n is approximately

∫ n

2

1

log t · log(t + 2)
dt. (4)

Since the integral (4) tends to infinity as n → ∞, this argues in favor of the
existence of infinitely many twin prime pairs9.

In counterpoint to the Cramér model, David Hawkins [7] introduced an ele-
gant probabilistic model (not discussed in the seminar) based on a randomized
version of the sieve of Eratosthenes. Over the past fifty years, the Hawkins
model has been used to predict the truth, in the strongest probabilistic sense,
of results (both established and conjectured) concerning the distribution of
the prime numbers, including the Twin Primes Conjecture and the Riemann
Hypothesis (e.g., see [8]).

6As I’m sure you recall from the seminar, Mertens’ Theorem states that∏
p6x

(1 − 1/p)−1 ∼ eγ log x, where γ is Euler’s constant and ∼ is asymptotic equivalence.

7The Prime Number Theorem is the basis for this modeling assumption: PNT asserts

that

∫ n

2

1

log t
dt does a reasonably good job of counting the primes less than n, so, viewing

1
log t

as an approximate density function for the primes, we conclude that 1
log n

is more or

less the probability that n is prime.
8Successive primes pn and pn+1 are twins if pn+1 −pn = 2. The Twin Primes Conjecture

asserts that there are infinitely many pairs of twin primes.
9Integration by parts in (4) suggests that the number of twin prime pairs less than n is

asymptotically equivalent to n
log2n

. This essentially matches the conjecture made by Hardy

and Littlewood [6] without appealing to probability.
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