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Introduction

This thesis explores a finite version of the Radon transform, an integral trans-
form achieved by integrating a function over a set of lines in its domain (see
[6]). We define the finite Radon transform R : C(X)→ C(Y ) as:

Rf(y) =
∑
x∈y

f(x),

where X is a finite set, Y is a collection of subsets of X, and C(X) and C(Y )
denote complex-valued functions on X and Y , respectively. The main purpose
of this thesis is to investigate the injectivity and bijectivity of this transform.

The (continuous) Radon transform has found application in tomography,
whose objective is to see what is inside an object without opening it up, e.g.,
the interior structures of the human body, rocket motors, rocks, snow packs
on the Alps, and violins (see [5]). The tomography objective is similar to a
classic problem in mathematics: determine an unknown using given informa-
tion. In tomography, the given information is a set of x-ray projections of some
unknown object, and the solution is a representation of the unknown object.
Mathematically, the collection of x-ray projections of an object through all
possible lines is analogous to an image Rf of the Radon transform, where f is
an unknown density function defined on the interior of the object. The inverse
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problem of determining an object via its x-ray projections can be described as:
Given a Radon image Rf , when can we invert R to recover f?

In order to answer this question we would like to determine when R is
injective and when R is bijective. This thesis investigates conditions under
which the finite Radon transform is injective, and then, for certain instances
of the Radon transform (the k-set transform and the affine k-plane transform),
presents conditions for bijectivity. In other words, we want to describe situa-
tions where every element in the co-domain C(Y ) of the finite Radon transform
can be used to recover an element of the domain. Since the Radon transform
is linear, one can use basic linear algebra to recover f from Rf in the case that
R is injective.

Examples and Point-Line Incidence Matrices

In this section we present some specific examples of the finite Radon transform
and we introduce their matrix representations.

The k-set transform

Let X = {x1, . . . , xn} be a finite set and Y be the set of all subsets of X that
contain exactly k elements. The corresponding Radon transform R : C(X) →
C(Y ) is called the k-set transform. When k = 2 we can identify the pair (X,Y )
with the complete graph Kn on n vertices.

Example 1. For the set X = {x1, x2, x3, x4} we have Y = {{x1, x2}, {x1, x3},
{x1, x4}, {x2, x3}, {x2, x4}, {x3, x4}}. Note that X is the set of vertices and Y
is the set of edges of the graph K4 shown in Figure 1.

x2

x4

x1

x3

Figure 1: K4

The connection with graphs allows us to express results about the 2-set
transform in graph theoretic terms and to use knowledge about graph theory
(e.g., counting p-trees and cycles) to obtain the results that will be stated later.

The affine k-plane transform

Let F denote a finite field, X = F d = {(a1, a2, . . . , ad)| aj ∈ F} a d-dimensional
vector space over F , and Y denote the set of all affine k-dimensional spaces in
X, i.e., Y = {−→a + V : −→a ∈ X and V is a k-dimensional subspace of X}. The
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corresponding finite Radon transform R : C(X) → C(Y ) is called the affine
k-plane transform.

Example 2. If F = Z3, d = 2, and k = 1, we get X = Z2
3 = {(0, 0), (1, 0), (2, 0),

(0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)} and Y = {y1, y2, . . . , y12}, where

y1 = {(0, 0), (1, 0), (2, 0)}, y7 = (1, 0) + y2

y2 = {(0, 0), (0, 1), (0, 2)}, y8 = (2, 0) + y2

y3 = {(0, 0), (1, 1), (2, 2)}, y9 = (0, 1) + y3

y4 = {(0, 0), (2, 1), (1, 2)}, y10 = (0, 2) + y3

y5 = (0, 1) + y1, y11 = (0, 1) + y4

y6 = (0, 2) + y1, y12 = (0, 2) + y4.

To illustrate the transform, we consider f defined by f((i, j)) = i + j and see
Rf(y3) = 0 + 2 + 4 = 6.

We are particularly interested in the case where Y consists of hyperplanes
in X because we can present conditions guaranteeing bijectivity of the finite
Radon transform in this special case (see Theorem 6).

Point line incidence matrices

The definition of the finite Radon transform implies that the transform is linear.
We now define a matrix that can be used to represent the transform.

Definition 1. When X = {x1, . . . , xn} and Y = {y1, . . . , ym} is a collection
of subsets of X, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, put

aij =
{

0 xj /∈ yi
1 xj ∈ yi

.

The m× n matrix A = (aij) is called the point-line incidence matrix.

Point-line incidence matrices corresponding to the specific sets X and Y
given in Example 1 and Example 2 above are


1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

 and



1 1 1 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 1 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
0 0 1 1 0 0 0 1 0
0 1 0 0 0 1 1 0 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0



,

respectively.
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Injectivity and Block Conditions

We now introduce conditions under which the finite Radon transform is injec-
tive. Recall that injectivity of the Radon transform is important because it
allows us to reconstruct a function f from an image element Rf .

First set Gx = {y ∈ Y |x ∈ y}. In other words, Gx is the set of all elements
of Y that contain a fixed x. Given X and Y , Bolker [1] declares the ‘block’
conditions to be satisfied if there exist positive numbers α and β such that
α 6= β and

|Gx| = α ∀x ∈ X
|Gx ∩Gx′ | = β ∀x, x′ ∈ X with x 6= x′.

Observe that if the block conditions are in place then α is the sum of the
entries in any given column of the corresponding point-line incidence matrix
while β is the dot product of any two distinct columns.

Theorem 2 ([1]). When the block conditions are satisfied, the corresponding
Radon transform R is injective.

Theorem 3 ([1]). If X admits a doubly transitive group action which induces
a group action on Y, then the block conditions are satisfied.

In this thesis, Theorem 2 is proved by showing that ATA is invertible, where
A is the corresponding point-line incidence matrix. This is a different method
than Bolker uses in [1]. Further, one can show that both the k-set and affine k-
plane transforms admit doubly transitive group actions, yielding the following
corollary:

Corollary 4 ([1]). The k-set transform, as well as the affine and projective
k-plane transforms, are injective.

Admissibility

Now we go a step further and ask: When is R both one-to-one and onto? In
order for an injective R : C(X) → C(Y ) to be bijective, we need the vector
spaces C(X) and C(Y ) to have the same dimension. Therefore, if |X| = n, then
|Y | must be n as well. To meet this condition we throw out some elements of
Y (which is often larger than X) to obtain Y ′ ⊆ Y with |Y ′| = |X|. However,
one cannot simply throw out arbitrary elements because it is possible that the
resulting transform will no longer be injective. In this section we show, in some
special cases, how to choose subsets of Y so that the corresponding finite Radon
transform is bijective. Such Y ′ are called admissible subsets of Y . Note that
when Y ′ is admissible, every element of C(Y ′) is Rf for some f ∈ C(X), so f
can be reconstructed from Rf .

The affine k-plane transform and admissibility

In order to determine what subsets of Y are admissible for the affine k-plane
transform, we first need to define a spread.
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Definition 5. A spread is a subset of Y that determines a partition of X.

Example 3. If X = Z2
3 and Y = {y1, y2, . . . , y12} are as in the Example 2,

then each of {y1, y5, y6}, {y2, y7, y8}, {y3, y9, y10}, and {y4, y11, y12} are spreads.
All of these spreads are formed by translates of a 1-dimensional subspace.

Theorem 6 ([3]). Let R : C(X) → C(Y ) be an affine k-plane transform
with k = d − 1, and let {w1, w2, . . . , wk} be the set of spreads in Y . The set
{w1, ŵ2, ŵ3, . . . , ŵk} is an admissible subset of Y , where ŵj is formed by casting
out one element from wj for each j with 2 ≤ j ≤ k. All admissible subsets of
Y are formed in this way.

An application of Theorem 6 shows that Y ′ = {y1, y5, y6, y2, y7, y3, y9, y4, y11}
is an admissible set for the affine k-plane transform determined by X = Z2

3 and
Y = {y1, y2, . . . , y12} as in Example 2.

A key step in the proof of Theorem 6 is to show that if Y ′ is formed by
casting out hyperplanes as described in the theorem, then the corresponding
point-line matrix A′ is a square matrix and the rank of A′ equals the rank of
A. But by Corollary 4 we know that A has full rank, so we are able to conclude
that A′ has full rank and hence Y ′ is admissible.

When k 6= d−1, characterizing admissible subsets for the k-plane transform
is an open problem.

The 2-set transform and admissibility

In the k-set transform R : C(X) → C(Y ) when k = 2, we recall that (X,Y )
can be identified with the complete graph Kn on n vertices, where |X| = n. In
order to characterize admissible subsets of Y , we first introduce terminology
that will be used when describing complete graphs.

Let Y ′ be a subset of Y . A Y ′-path is a sequence of points in X such that
consecutive points are joined by an edge in Y ′. A Y ′ path is a Y ′-cycle if it
begins and ends at the same point. A point x ∈ X lies on an odd Y ′-cycle if
there is a Y ′-cycle α such that

(i) α begins and ends with x, and

(ii) α has an even number of points (connected by an odd number of edges).

Two Y ′-cycles are equivalent if their edges form the same set. For example,
let X = {x1, . . . , x4} and Y = {y1, . . . , y6} as shown in Figure 2, with Y ′ =
{y1, y2, y4, y5}. An example of a Y ′-path is (x1, x2, x3, x2) and an odd Y ′-cycle
is (x3, x2, x4, x1, x2, x3).

Theorem 7 ([4]). Let (X,Y ) = Kn and with |Y | = |X|. The set Y ′ is admis-
sible for the corresponding 2-set transform if and only if each x ∈ X lies on an
odd cycle.

Knowing how to form admissible subsets in the 2-set transform, one may
ask how many such admissible subsets exist. Results from graph theory about
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Figure 2: A Y ′-path and an odd Y ′-cycle

p-trees found in [2] are used to develop a counting method. This counting
method is explored further in this thesis. Below is a table of values of numbers
of admissible subsets given |X| = n:

n Number of admissible subsets
3 1
4 12
5 162
6 2530
7 45615
8 937440
9 2.1685135 ×107

10 5.58360144 ×108

11 1.5850436805 ×1010

12 4.9202966692 ×1011

13 1.658522958675 ×1013

14 6.03402126941952 ×1014
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