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To obtain a Master’s or PhD in mathematics, or even to succeed in proof-
based courses in an undergraduate mathematics major, one must often be able
to construct original proofs, a common difficulty for students [18, 30]. This
process of proof construction is usually explicitly taught, if at all, to U.S. un-
dergraduates as a small part of a course, such as linear algebra, whose stated
goal is something else, or in a transition-to-proof or “bridge” course. Students
might also get discouraged when attempting a proof, perhaps due to the dif-
ferences between proving and prior exercises [15] asked of them. Students may
often complain about “getting stuck.” In this article, I attempt to address two
questions in proving: what extent does logic appear on the surface of student-
constructed proofs, and what do mathematicians do when they “get stuck.”

Part I - An Examination of Logic in Student-
Constructed Proofs

When universities do offer a transition-to-proof course, professors often teach
some formal logic (predicate and propositional calculus) as a background for
proving. But how much logic actually occurs in student-constructed proofs? I
begin to answer this question by first searching for uses of logic in a “chunk-by-
chunk” analysis of student-constructed proofs from a graduate “proofs course.”
If formal logic occurs a substantial amount, then teaching a unit on predicate
and propositional calculus might be a good idea; however, if formal logic occurs
infrequently, then teaching it in context, while teaching proving, may be more
effective.
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Background Literature

Currently, at the beginning of transition-to-proof courses, professors often in-
clude some formal logic, but how it should be taught is not so clear. In [9, p.895]
Epp stated that, “I believe in presenting logic in a manner that continually links
it to language and to both real world and mathematical subject matter”. How-
ever, some mathematics education researchers maintain that there is a danger
in relating logic too closely to the real world: “The example of ‘mother and
sweets’ episode, for instance, which is ‘logically wrong’ but, on the other hand,
compatible with norms of argumentation in everyday discourse, expresses the
sizeable discrepancy between formal thinking and natural thinking”, [4]. In the
mother and sweets scenario, the mother says to the child, “If you don’t eat,
you won’t get any sweets” and the child responds by saying, “I ate, so I de-
serve some sweets.” Other authors have noticed that the way logic is taught in
transition-to-proof courses is at variance with how it is actually used in proving:
“Beginning logic courses often seem to present logic very abstractly, in essence
as a form of algebra, with examples becoming a kind of applied mathematics”,
[22, p.8].

There are also those who think that logic does not need to be explicitly
introduced at all. For example, Hanna and de Villiers [13, p.311] stated, “It
remains unclear what benefit comes from teaching formal logic to students or
to prospective teachers, particularly because mathematicians have readily ad-
mitted that they seldom use formal logic in their research.” Selden and Selden,
in [24, p. 347] claimed that “logic does not occur within proofs as often as one
might expect . . . [but] [w]here logic does occur within proofs, it plays an impor-
tant role.” Taken together, these differing views suggest that it would be useful
for mathematics education researchers to further examine the role of logic and
logic-like reasoning within proofs in order to inform mathematics lecturers on
the ways they might best include logic in transition-to-proof courses. However,
to date, only a little such research has been conducted [5].

Another interesting idea that has been expressed about proofs in general is
that deduction occurs in proofs in a “systematic, step-by-step manner” [3]. In
fact, one professor quoted by Ayalon and Even [3, p.34] expressed the view that
a student “thinks about something, he draws a conclusion, which brings him
to the next thing. . . Logic is the procedural, algorithmic structure of things.”
Rips,[19] looked at proof in a slightly more sophisticated way: “At the most
general level, a formal proof is a finite sequence of sentences (s1, . . . , sk) in
which each sentence is either a premise, an axiom of the logical system, or
a sentence that follows from the preceding sentences by one of the system’s
rules.” Instead of sentences, I partition student-constructed proofs into usually
smaller “chunks” to begin to answer the question I posed earlier on logic.

Research Settings

The “proofs course,” Understanding and Constructing Proofs, was offered at a
large U.S. Southwestern state university, giving master’s and PhD’s in mathe-
matics. Students in the course were first-year mathematics graduate students
along with a few advanced undergraduate mathematics majors. For this course,
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the students were given professor-created notes with a sequence of definitions,
questions, and statements of 42 theorems dealing with topics such as sets, func-
tions, real analysis, algebra, and topology. For example, three theorems that
were proved by the students were: “The product of two continuous [real] func-
tions is continuous”; “Every semigroup has at most one minimal ideal”; and
“Every compact, Hausdorff topological space is regular.” The topics in the
course were of less importance than its focus on the construction of differing
kinds of proofs. All proofs analyzed in this study were student-constructed and
verified as being correct by the professors.

Research Methodology

The 42 proofs from the “proofs course” were first subdivided into “chunks”
for coding. The “chunks” are similar to those in Miller’s article, [17] in which
he stated that chunks are a “meaningful unit” in thinking. In the analysis
described here, a chunk can refer to a sentence, a group of words, or even a single
word, but always refers to a unit in a proof. During several iterations of the
coding process, 13 categories, such as “Informal inference” and “Assumption,”
emerged.

The categories and the chunks sometimes co-emerged, that is, the categories
sometimes influenced the chunking. For example, “Then x ∈ A and x ∈ B”
might have been treated as a single chunk because it arose from x ∈ A∩B and
the definition of intersection. However, it could have been split into “Then
x ∈ A” and “and x ∈ B” because the two chunks seemed to follow from separate
warrants.

In this proposal, I discuss in detail just 5 of the 13 categories. The first two
of these deal with the question posed at the beginning of this paper, “Where is
the logic in student-constructed proofs?” The remaining three categories are
those that occurred most often.

The Categories

Informal Inference (II) is the category that refers to a chunk of a proof that
depends on common sense reasoning. While I view informal inference as being
logic-like, it seems that when one uses common sense, one does so automatically
and does not consciously bring to mind any formal logic. For example, given
a ∈ A, one can conclude a ∈ A∪B by common sense reasoning, without needing
to call on formal logic.

By Formal Logic (FL) in this paper I mean the conscious use of predicate
or propositional calculus going beyond common sense. The distinction is that
formal logic is the logic a university student does not normally possess before
entering a transition-to-proof course. Modus Tollens and DeMorgan’s Laws
are two examples of formal logic that are usually not common sense for such
students [1, 2]. For example, given x ∉ B ∪ C, one can conclude x ∉ B and
x ∉ C, a typical use of DeMorgan’s Laws that students often do not perform
automatically, or do perform automatically, but incorrectly.

Definition Of (DEF) refers to a chunk in a proof that calls on the definition
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of a mathematical term. For example, consider the line “Since x ∈ A or x ∈ B,
then x ∈ A ∪ B.” The conclusion “then x ∈ A ∪ B” implicitly calls on the
definition of union.

Assumption (A) is the code for a chunk that creates a mathematical object
or asserts a property of an object in the proof. The category is further divided
into two sub-categories: “Choice” and “Hypothesis.” Assumption (Choice)
refers to the introduction of a symbol to represent an object (often fixed, but
arbitrary) about which something will be proved – but not the assumption of
additional properties given in a hypothesis. In contrast, Assumption (Hypothe-
sis) refers to the assumption of the hypothesis of a theorem or argument (often
asserting properties of an object in the proof). An example to demonstrate the
difference between the two is provided by the theorem “For all n ∈ N if n > 5
then n2 > 25.” The chunk “Let n ∈ N” would be coded Assumption (Choice),
and the chunk “Suppose n > 5” would be coded Assumption (Hypothesis).

Interior Reference (IR) is the category for a chunk in a proof that uses
a previous chunk as a warrant for a conclusion. For example, if there were a
line indicating x ∈ A earlier in the proof, then a subsequent line stating “Since
x ∈ A. . . ” later in the proof would be an interior reference.

The Results

In the chunk-by-chunk analysis of the proofs in the “proofs course,” just 6.5%
(44 chunks) of the 673 chunks were Informal Inference, and just 1.9% (13
chunks) were Formal Logic. However, I found that 30% (203 chunks) were
Definition Of, 25% (166 chunks) were Assumption, and 16% (108 chunks) were
Interior Reference.

Table 1 below shows the chunk categories, complete with the rounded per-
centages:

Discussion

At first glance, these results may seem surprising. While the chunk-by-chunk
coding is a convenient tool for a surface analysis of a finished written proof,
there are underlying structures to, and within, proofs, such as proof by con-
tradiction. I see these as “logic-like structures” that are not often explained in
the predicate and propositional calculus discussed in most transition-to-proof
courses. For example, if one wishes to prove “For all x ∈ A, P (x)”, one starts
with “Let x ∈ A” and reasons towards “P (x)”. Structuring a proof in this way
has the effect of using logic.

The fact that from the “proofs course,” 30% of the chunks were definitions
and 25% were assumptions suggests that there is a need to teach undergradu-
ates how to introduce mathematical objects into proofs and how to read and
use definitions. Indeed, there have been documented instances of students’
struggle with definitions [8]. Another implication for teaching that stems from
this research is that because formal logic occurs fairly rarely, one might be able
to teach it in context as the need arises.
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“Proofs class” % of chunks
# of chunks 673

A 166 24.7
ALG 23 3.3
C 56 8.3

CONT 4 0.6
D 32 4.7

DEF 203 30.2
ER 17 2.5
FL 13 1.9
II 44 6.5
IR 108 16

REL 3 0.4
SIM 3 0.4
SI 4 0.6

Table 1: Distribution of the “proof chunks” by category.

Future Research

It would be interesting to examine whether the kinds of chunks used in proofs
varies by mathematical subject area. For example, would topology have a
different distribution of categories of chunks than abstract algebra? Indeed,
several mathematics professors have suggested that I code chapters of various
textbooks to see how much formal logic occurs in them. Also, it may be that
the kind of formal logic taught explicitly at the beginning of many transition-to-
proof courses is actually psychologically, and practically, disconnected from the
process of proving for students. This disconnect might lead to future difficulties
in many of the proof-based courses in students’ subsequent undergraduate and
graduate programs. An additional interesting question that arises from the
“proofs course” itself is: How many beginning graduate students need a course
specifically devoted to improving their proving skills?

In future research, one might also look for instances of logic-like struc-
tures and techniques in student-constructed proofs. Solow [26] and Velleman
[28] both discuss logic-like structures and techniques for proving, but many
other transition-to-proof books touch on this only very briefly, if at all. Can
one identify a range of logic-like structures that students most often need in
constructing proofs? Further, one might investigate the degree of a prover’s
automated behavioral knowledge of logic-like structures that could help reduce
the burden on his or her working memory. This might free resources to de-
vote to the problem-solving aspects of proofs. That this might be the case was
suggested by Selden, McKee, and Selden [23].

Finally, there may be additional logic that does not appear in a final written
proof, but that might occur in the actions of the proving process. This would
be interesting to investigate.
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Part II - What Do Mathematicians Do When
They Encounter an Impasse?

In examining mathematicians’ proof construction practices, the study reported
here focused on impasses and how the mathematicians overcame those im-
passes, including incubation and the resulting insight. An impasse is collo-
quially referred as “getting stuck” or “spinning one’s wheels.” These ideas
have been examined in the psychology and mathematics education literatures,
mainly in analyzing problem solving, but there has been little research on them
during proving. A brief discussion of this literature provides background for
my somewhat different use of these terms in examining and analyzing proof
construction.

Background Literature

In the psychology literature, Duncker [7] defined an impasse as a mental block
against using an object in a new way that is required to solve a problem. One
way problem solvers sometimes recover from impasses is through incubation.
Incubation, according to Wallas [29], is the process by which the mind goes
about solving a problem, subconsciously and automatically. It is the second of
Wallas’ four stages of creativity, which are:

● preparation (thoroughly understanding the problem),

● incubation (when the mind goes about solving a problem subconsciously and
automatically),

● illumination (internally generating an idea after the incubation process), and

● verification (determining whether that idea is correct).

While psychologists’ treatments of impasses, incubation, and insight may be
useful in investigating a number of instances of creativity and problem solving,
especially simpler instances, analyzing the construction of original proofs in
mathematics seems to call for some modification of them. For example, all
of the 117 experiments considered by Sio and Ormerod [24] in their meta-
analysis of incubation studies used incubation periods of just 1-60 minutes.
Mathematicians routinely take much more time to overcome impasses in their
research, and their proofs tend to be considerably longer and more complex.

Problem solving and incubation in mathematics and mathematics
education

To date, research on problem solving and incubation in the mathematics ed-
ucation literature has been sparse and primarily anecdotal. Creativity and
incubation are rarely captured in research: “[S]tudying a mathematician’s or
student’s creativity is a very difficult enterprise because most traditional op-
erationalized instruments fail to capture extra cognitive traits, such as beliefs,
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aesthetics, intuitions, intellectual values, self-imposed subjective norms, spon-
taneity, perseverance standards, and chance” (Freiman & Sriraman, [10, p.
23]). Some instruments that have been used to capture creativity or incu-
bation in mathematics education include video interviews, written work, or
problem/proving sessions in front of a camera, [11].

In his investigation of mathematicians’ practices, Hadamard [12] mailed
surveys to mathematicians around the world to collect information on what
mathematicians do. Nicolle, one of the mathematicians that responded to
his survey, concluded that “contrary to progressive acquirements, such an act
[discovery of a solution after an impasse] owes nothing to logic or to reason.
The act of discovery is an accident,” [12, p.19]. While discovery may be an
“accident,” the actions taken to allow the mind to have such an accident might
be quite deliberate.

How incubation can help mathematicians is still somewhat of a mystery.
Sriraman [27, p.30] conjectured that “the mind throws out fragments (ideas)
which are products of past experience.” Those fragments are brought to light
as insights. Hadamard, Liljedahl, and Sriraman uncovered, through interviews
with mathematicians, some evidence that mathematicians use incubation and
then experience insights when solving problems. I hope to add to this literature,
partly by narrowing the focus to theorem proving, making observations in a
realistic setting, and supplying notes on an unfamiliar, but accessible, algebraic
topic for mathematicians to work on. I will also focus on describing reportable
or observable events, as opposed to speculating on complex mental activity
outside of consciousness.

Research Questions

According to the research described above, the creative process often includes
impasses and incubation, but previous researchers have had trouble capturing
the proving process in a realistic setting in real time (Liljedahl, [15]; Freiman,
and Sriraman, [10]). Also, studying mathematicians could help with teaching
students (Weber, [31]). In this vein, I investigated the following two questions:

1. Can researchers capture much of the proving process without time and
place constraints?

2. What do mathematicians do when they reach a proving impasse and is
what they do helpful?

Impasses and Incubation in Proving

The above meanings for impasse and incubation used in describing results in
psychology seem not to “fit” the proving process well. Thus I introduce some-
what altered meanings.

By a (proving) impasse, I mean a period of time during the proving process
when a prover feels or recognizes that his or her argument has not been pro-
gressing fruitfully and that he or she has no new ideas. What matters is not the
exact length of time, or the discovery of an error, but the prover’s awareness
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that the argument has not been progressing and requires a new direction or new
ideas. Mathematicians themselves often colloquially refer to impasses as “be-
ing stuck” or “spinning one’s wheels.” This is different from simply “changing
directions,” when a prover decides, without much hesitation, to use a different
method, strategy, or key idea, and the argument continues.

I mean by incubation a period of time, following an attempt to construct
at least part of a proof, during which similar activity does not occur. After
incubation, a prover might have an insight, that is, the generation of a new
idea. That insight might be helpful, and it might move the argument forward.
For some of the major incubations described here, resulting insights occurred,
they were helpful, and they moved the argument forward. However, in future
studies, in which the participants might be less skilled or the proofs might be
more difficult, incubation might be less fruitful. Also, all but one of the major
incubations described here were purposeful, but with future studies in mind,
I do not include purposefulness in the meaning of incubation. A long proving
process might entail several impasses and a number of incubation periods (and
subsequent insights), only some of which ultimately contribute to the final
proof.

Research Methodology

Nine PhD mathematicians (three algebraists, three topologists, two analysts,
and one logician) agreed to participate in this study on proving. All math-
ematicians were given pseudonyms, Drs. A-I, in order of participation. The
mathematicians were selected by the author to participate based on conve-
nience and rapport (seven of the nine were the author’s past professors). All
were from one southwestern PhD-granting university and eight of the nine
mathematicians were currently active in their research. They were provided
with a set of slightly modified notes (Savic, [20]; Selden, McKee, and Selden,
[23]) on semigroups, containing ten definitions, seven requests for examples,
four questions to answer, and 13 theorems to prove. The topic, semigroups,
was selected because the mathematicians would hopefully find the material eas-
ily accessible, and because there are two theorems towards the end of the notes
(Theorems 1 and 2 of the Appendix) that have caused substantial difficulties
for beginning graduate and upper-level undergraduate students. During their
exit interviews, two mathematicians offered that the choice of semigroups had
been judicious, because they had been able to grasp the definitions and con-
cepts quickly, and because at least one of the theorems had been somewhat
challenging to prove.

The data collection began with four mathematicians writing proofs on tablet
PCs, and later five mathematicians wrote their proofs with a LiveScribe pen
and special paper. The switch from tablet PC to LiveScribe pen was done
for several reasons. First, tablet PCs are relatively more expensive than Live-
Scribe pens and the corresponding paper. Second, the size of a “movie file” for
a tablet PC screen capture of 16 minutes is one gigabyte, whereas an almost
five hour proving session on a LiveScribe pen is just 60 megabytes. Third, the
mathematicians were much more comfortable with pen and paper than with
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the tablet PC and stylus. Fourth, there were no visual or auditory quality dif-
ferences between the data collected using the two techniques. This allowed for
a smooth transition of data collection techniques to one that I felt was the most
comfortable for the participants, and provided all the real-time data collection
that I needed. One or two days after this initial analysis of each mathemati-
cian’s work, I conducted an exit interview, during which I asked about their
proofs and proof-writing. I also conducted two separate focus groups with both
the Tablet PC group and the LiveScribe pen group of mathematicians where
they could discuss and reminisce about the notes and their work.

Results

Summary data

Four of the nine mathematicians that participated in the study had difficulty
with the technology and thus did not produce “live” data. Difficulties included
not loading certain programs correctly, not remembering to press the record
button, and computer error with installing CamStudio software. However, all
four provided good written data, whether it was with the tablet PC on OneNote
or with writing on the LiveScribe paper without audio/video recording. From
this data I could still conclude that some mathematicians had impasses be-
cause they were candid in writing all their work, including crossing out failed
attempts, while also providing descriptions of their thought processes (when
prompted) during the follow-up interview.

The average total work time on the technology per mathematician was two
hours and five minutes. This time was calculated by adding the durations of
their actual work, obtained from the date and time stamps. The average time
from the first “clocked in” time-and-date stamp until the last “clocked out”
time-and-date stamp was 19 hours, 56 minutes. The average number of pages
written was slightly under 13. These three statistics allow one to conclude
that the mathematicians expended considerable effort on proving the theorems
and producing examples. Six of the nine mathematicians had impasses when
proving one of the final two theorems (Theorems 1 and 2 of the Appendix).
Most mathematicians correctly proved most of the theorems very quickly until
they got to those final two theorems. Some actions to overcome impasses were
common with most mathematicians in the study, other actions were unique to
those individuals.

Case study of a mathematician’s proving process

Below are descriptions of an impasse, an incubation period, and an insight
leading to a proof for Dr. A, an applied analyst. Dr. A used a tablet PC and
part of his work is described below using the time-and-date stamps.

Dr. A

In proving Theorem 2 of the Appendix, namely “If S is a commutative semi-
group with minimal ideal K, then K is a group,” Dr. A experienced an impasse,
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an incubation period, and a resulting insight – these are indicated in bold in
Table 2 of the Appendix. The abbreviated, interpreted timeline in Table 2 of
the Appendix illustrates this.

Dr. A indicated in his exit interview where he had had an impasse, noting
“One has to show there aren’t any sub-ideals of the minimal ideal itself, consid-
ered as a semigroup, and that’s where I got a little bit stuck.” This is because
the concept of ideal really depends on the containing semigroup, here S or K.
Dr. A also indicated how he deliberately generally recovers from impasses: he
prefers to get “un-stuck” by walking around, but distractions caused by his
departmental duties also help. That is, he often takes a break from his creative
work by purposely doing something unrelated. In this case, Dr. A took several
such breaks (e.g., 11:18 AM – 11:32 AM, 12:01 PM – 12:22 PM, 12:28 PM –
12:55 PM) to prove one proof, but only the last one yielded a useful new idea.

Mathematicians’ Actions to Recover from Impasses

From an analysis of data from Tablet PC or LiveScribe pens, exit interviews,
and the focus group sessions, I was able to gather actions that the participating
mathematicians used to recover from impasses. Some actions to recover from
an impasse were observed in the proving processes of the mathematicians in
the data collected while they worked alone, whereas other actions were first
mentioned during the exit interviews or focus group discussions. Most of the
actions that the mathematicians took to overcome their proving impasses were
enacted more or less automatically and were not mentioned during their proving
sessions. However, the mathematicians did acknowledge these actions either
during their exit interviews or during the focus group discussions.

Impasse recovery actions that use mathematics

(a) Using methods that occurred earlier in the proving session: Some of the
mathematicians in this study tried to use a proving technique that they
had used earlier in the proving session to overcome an impasse.

“It would be fairly easy to prove ⋯ it’s likely an argument, kind of like the
one I already used ⋯.” (Dr. H)

(b) Using prior knowledge from their own research: There were mathemati-
cians in this study who tried to use ideas from their own research to over-
come an impasse.

“I’m trying to think if there’s anything in the work that I do that ⋯ I mean
some of the stuff I’ve done about subspaces of, umm ⋯ there are things
called principal shift invariance spaces that the word principal comes into
play.” (Dr. A)

(c) Using a (mental) database of proving techniques: One of the mathemati-
cians, Dr. F, stated that she had a (mental) database of proving techniques
in her head.
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“Your brain is randomly running through arguments you’ve seen in the
past ⋯ standard techniques that keep running through my head, sort of
like downloading a whole bunch at the same time and figuring out which
way to go.” (Dr. F)

(d) Doing other problems in the problem set and coming back to the impasse:
Five of the nine mathematicians in the study approached their proving
impasses by moving forward to consider the rest of the problems in the
notes.

“I moved on because I was stuck ⋯ maybe I was going to use one of those
examples [Question 22] ⋯ I might get more information by going ahead.”
(Dr. B)

(e) Generating examples or counterexamples: Three of the mathematicians in
the study attempted to construct counterexamples to some of the theorems
when they felt they had not been correctly stated.

“At first I thought, ‘How could I prove [Theorem 20]?’ And I didn’t imme-
diately think of a proof. Then I thought, ‘what about a counterexample?’
and pretty quickly I came up with a counterexample, of course which turns
out not to be right.” (Dr. G)

(f) Doing other mathematics: Some mathematicians indicated that they might
go to another project to help them overcome proving impasses.

“What I try to do is to keep three projects going ⋯ I make them in different
areas and different difficulty levels ⋯.” (Dr. E)

Impasse recovery actions that are non-mathematical

(a) Taking a break : Some mathematicians indicated that sometimes they may
choose to walk around to overcome a proving impasse. This action is the
first listed that is non-mathematical.

“When I’m stuck, I often feel like taking a break. And indeed, you come
back later and certainly for a mathematician you go off on a walk and you
think about it.” (Dr. G)

(b) Doing tasks unrelated to mathematics: This is the second non-mathematical
action unrelated to an impasse. This action was also perhaps the most un-
usual, and Dr. E seemed slightly embarrassed when he reported the action
to me.

“Yeah I’ll do something else, and I’ll just do it, and if there’s a spot where
I get stuck or something, I’ll put it down and I’ll watch TV, I’ll watch
the football game, or whatever it is, and then at the commercial I’ll think
about it and say, ‘yeah that’ll work’ ⋯.” (Dr. E)

(c) Going to lunch/eating: This action was shown to be effective above with
Dr. B.

“So I had spent probably the last 30 minutes to an hour on that time
period working on number [Theorem] 1 going in the wrong direction. Ok,
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so I went to lunch, came back, and while I was at lunch, I wasn’t writing or
doing things, but I was just standing in line somewhere and it [an insight]
occurred to me the ⋯ (laughs) ⋯ how to solve the problem.” (Dr. B)

(d) Sleeping on it: The final action to overcome an impasse seems to be the
easiest for a mathematician. Proving can involve mental exhaustion, so
resting can help one’s exploration for new ideas.

“It often comes to me in the shower ⋯ you know you wake up, and your
brain starts working and somehow it [an insight] just comes to me. I’ve
definitely gotten a lot of ideas just waking up and saying ‘That’s how I’m
going to do this problem’.” (Dr. F)

Advantages of Incubation

A majority of the nine mathematicians in this study exhibited impasses and
recoveries from those impasses, including some due to incubation. Furthermore,
there were a number of instances in which impasses and recoveries from them,
that is, incubations, might have occurred in a way that could not be easily
observed. For example, all of the mathematicians reported that when they
first received the notes they immediately read them to estimate how long the
proofs might take, but none started proving right away. In addition, there were
periods during the proving sessions when nothing was recorded, and there were
also substantial gaps between the “clock in” and “clock out” times during the
proving sessions. Furthermore, when the mathematicians next “clocked in”
after having left a proof attempt without finishing it, they almost always had
a new idea to explore.

In the focus groups, the mathematicians also discussed methods of impasse
recovery and what amounts to incubation (that can occur independent of an
impasse). They all did this in a relaxed, assured way, not like someone dis-
cussing something unfamiliar, but rather like someone discussing practices built
up over some time. They described a remarkable number of ways of recovering
from an impasse. Furthermore, they mentioned general benefits that appear to
go beyond just restarting an argument, such as clearing the mind or developing
more understanding of the theorem. During one focus group interview, Dr. G
stated: “When we are working on something, we are usually scribbling down
on paper. When you go take a break, ⋯ you are thinking about it in your head
without any visual aids ⋯ [walking around] forces me to think about it from a
different point of view, and try different ways of thinking about it, often global,
structural points of view.”

He stated that there is no “scribbling on paper.” Doing this, that is, think-
ing more generally, he believed, might assist in understanding the structure of
a problem or even of an area of mathematics. In a somewhat similar vein, Dr.
F offered the following in her exit interview: “You just come back with a fresh
mind. [Before that] you’re zoomed in too much and you can’t see anything
around it anymore.” Her perspective is more of “freshness” which may allow
for different ideas instead of Dr. G’s “lack of visual aids” approach. But both
encourage going away from the proof or problem for the generation of newer
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ideas. Dr. A stated, “I do have a belief that if I walk away from something and
come back it’s more likely that I’ll have an idea than if I just sit there.” These
remarks indicate that some mathematicians take deliberate actions to overcome
impasses and also to improve the breadth or quality of their perspectives.

Deliberate incubation has been shown in the psychology literature to re-
sult in a greater incubation effect than merely being interrupted during the
problem-solving process. “Individuals who took breaks at their own discretion
(a) solved more problems and (b) reached fewer impasses than interrupted in-
dividuals” (Beeftink, van Eerde, and Rutte, [6]). Ironically, interruption seems
to have been useful in the case of Dr. B who said that he would have worked
non-stop if he had not been interrupted for lunch with his family. This also
agrees with the psychology literature: “It was also found that interrupted in-
dividuals reached fewer impasses than individuals who worked continuously on
problems” (Beeftink, van Eerde, and Rutte, [6]). Finally, in their meta-analysis
of the incubation literature, Sio and Ormerod, [24] stated that “low-demand
tasks” done in the incubation period yielded positive incubation effects. When
compared to high-demand tasks, they stated: “There remains a possibility,
of course, that a sufficiently light load might allow additional covert problem
solving compared with a heavier task load” (p.107). One mathematician, Dr.
E, stated that he had different projects in different difficulty levels and rotated
among them, which corresponds well with the positive effect Sio and Ormerod
found in the incubation literature.

Education Implications

Similar experiences to the mathematicians can probably be provided to un-
dergraduate mathematics students who are not yet familiar with constructing
proofs by considering the problem-solving literature. A problem that is likely
to generate impasses is probably close to what Schoenfeld, [26] has described
as a “rich” problem:

● The problem needs to be accessible. That is, it is easily understood, and
does not require specific knowledge to get into.

● The problem can be approached from a number of different ways.

● The problem should serve as an introduction to important mathematical
ideas.

● The problem should serve as a starting point for rich mathematical explo-
ration and lead to more good problems. (as cited by Liljedahl, [15, pp.187-
188])

According to Mann, [16], “if mathematical talent is to be discovered and
developed, changes in classroom practices and curricular materials are neces-
sary. These changes will only be effective if creativity in mathematics is allowed
to be part of the educational experience” (p.237). Using Schoenfeld’s “rich”
problems, a teacher might introduce a mathematical experience quite like a
mathematician, or perhaps an AHA! moment, to a student.
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Furthermore, students may need to experience successes in order to acquire
confidence in their proving ability, and telling them what mathematicians do
when they “get stuck” might help them when they have “no idea what to do
next.” Moreover, there is support from the psychology literature about the
positive effects of incubation in the classroom. Sio and Ormerod,[24] cited four
articles where “educational researchers have tried to introduce incubation peri-
ods in classroom activity, and positive incubation effects in fostering students’
creativity have been reported” (p.94).

Future Research

Using LiveScribe pens and the corresponding paper provides a naturalistic
setting for provers while gathering real-time data. Since one can observe what
a mathematician does during the proving process, those same techniques might
be used with undergraduate mathematics students in a transition-to-proof or
proof-based course. In particular, how can we use this data collection technique
in the classroom? Would it benefit students to have LiveScribe pens with which
to do their homework so that teachers can analyze their proving processes?
This study gave the mathematicians unlimited time for proving the theorems
in the notes. However, some “breaks” could have been because of other factors
instead of coming to an impasse. How can we gain additional information
on when and how incubation benefits mathematicians or students? Finally,
mathematicians seem to know in some cases that they need to take a break for
generating ideas. How can we encourage students to take some of the actions
demonstrated by the mathematicians in this study to recover from their proving
and problem-solving impasses?

Appendix

Theorem 1. If S is a commutative semigroup with no proper ideals, then S
is a group.

Theorem 2. If K is a minimal ideal of a commutative semigroup S, then K
is a group.

34 B.S. Undergraduate Mathematics Exchange, Vol. 9, No. 1 (Fall 2014)



7/13/11
At this time Dr. A first attempted a proof of Theorem 21. He stopped and

moved on to Question 22.
3:48PM
9 min

Break 3:57 PM - 4:01 PM

7/13/11 Continuing later, when he had finished Question 22, Dr. A scrolled up to his
first proof attempt. He looked at his answer to Question 22, and at the ten
minute mark, erased his first proof attempt. He then scrolled back to his
proof of Theorem 20, viewed it for one minute, and wrote “the argument
above proves that K has a multiplicative identity in S.” There was a brief
pause, after which he scrolled up to the proof of Theorem 20 again for the
final 30 seconds. Proving ended for the day at 4:17.

4:01PM

16 min

Break 4:17 PM, July 13th - 11:07 AM, July 14th

7/14/11 The next day Dr. A again started attempting to prove Theorem 21. But

this time he used a mapping φ−1that multiplied each element by a fixed k0
(an idea from his own research). He struggled with some computations until
the end of this “clocked in” period.

11:07 AM

11 min

Break 11:18 AM - 11:32 AM

7/14/11 When he “clocked in” again, Dr. A again worked with the mapping idea
and then wrote “I don’t know how to prove that K itself is a group. For
example,I don’t know how to show that there is an element of K that fixes
k0,” acknowledging that he was at an impasse.

11:32 AM

5 min

7/14/11
However, Dr. A continued trying unsuccessfully to use his mapping idea.11:38 AM

23 min

Break 12:01 PM - 12:22 PM

7/14/11 When Dr. A “clocked in” again, he continued trying unsuccessfully to use
his mapping idea. For example, he wrote, “To prove φ is well-defined, let
tk0 = x, tk1 = k2. Let v be any other element of S such that vk0 = x. Choose
any w ∈ S s.t. wx = k2. Then vk1 = vwx = vwtk0 = twx = tk1. So φ(t) is
determined once tk0 is determined.”

12:22 PM

6 min

Break 12:28 PM - 12:55 PM

7/14/11 Later on, when he “clocked in” again, after a 33-minute gap (which might

be considered an incubation period), Dr. A proved Theorem 21 writing
“Proof of theorem: We just need to show that K itself has no proper
subideals. But K is principally generated, i.e., fix any k0 ∈K and
K = {sk0 ∶ s ∈ S} since K is [a] minimal [ideal]. If L were a proper ideal of K
. . .” Notice that this idea (an insight) for proving Theorem 21 differs from
the idea he had tried 33 minutes earlier.

12:55 PM

5 min

Table 2: Timeline for Dr. A showing an impasse and an insight
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