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Introduction

A function, or a signal as electrical engineers like to call it, can be decomposed
as a sum, possibly infinite, of sines and cosines, called its Fourier series expan-
sion. The coefficients in this decomposition represent the various frequencies
that are present in the signal. However the Fourier expansion fails to give
information on what part of the function the frequencies come from. Thus if
a signal is a function of time, a Fourier analysis of this signal does not tell
us when various of its frequencies occurred. This poses a serious drawback in
many applications. A lot of effort has gone into a search for alternative mecha-
nisms, mechanisms whereby a signal can be decomposed into constituents that
bear information both on its frequencies and where these frequencies occur in
the signal. Luckily, the last 20 years has seen considerable progress due to the
discovery of various functions, called wavelets, that roughly speaking replace
the cosine and sine functions in the Fourier expansion scheme. Our objective
here is to provide the reader with the basics of wavelet construction for the
analysis of periodic functions on Z. In spite of the drawback that Fourier anal-
ysis has, we do not want to give the impression that it is an outdated method.
It has served mathematics and the applied sciences extremely well for over 4
centuries and it remains indispensable in various modern applications. In fact
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the construction of wavelets depends heavily on Fourier analysis and the prac-
ticality and usefulness of wavelets derives from features that are built into the
Discrete Fourier Transform, a concept we will look into first. I first came across
wavelets in the Student-Faculty Seminar. This is a seminar on wavelets that
was run by the department of Mathematical Sciences at Ball State during the
2003/2004 academic year. For this seminar, I was required to have had Linear
Algebra experience. Recommendations included Complex Analysis and minor
information from Real Analysis. Overall, seminars like these are very under-
graduate friendly, with the textbook going through many linear algebra, real
analysis, and complex ideas for the theorems needed. If ever the textbook is
not helpful, the professors are more than willing to help out with any questions
you have.

The Discrete Fourier Transform

Let N be an arbitrary but fixed positive integer. Complex-valued functions on
the set

ZN := {0, 1, . . . , N − 1}
will be denoted by `2(ZN ). It will be convenient to think of such functions as
being extended to the whole set of integers Z as N -periodic complex valued
functions. Thus if z ∈ `2(ZN ), then z(n + kN) = z(n) for all n ∈ ZN and all
k ∈ Z.

It is easy to see that `2(ZN ) is a vector space over the complex field with
respect to the usual addition of functions and multiplication of functions by a
scalar. In fact the following inner product turns `2(ZN ) into an inner product
space.

〈z, w〉 =

N−1∑

k=0

z(k)w(k), z, w ∈ ZN .

We define Fn ∈ `2(ZN ) as follows:

Fn(k) =
1

N
e2πikn/N , k ∈ ZN .

Then F := {F0, F1, . . . , FN−1} forms an orthogonal basis of `2(ZN ) called the
Fourier basis. Note that ‖Fn‖ = 1/

√
N. The coordinate vector of z ∈ ZN with

respect to the ordered basis F will be denoted by ẑ. Thus,

z = ẑ(0)F0 + ẑ(1)F1 + . . .+ ẑ(N − 1)FN−1.

Therefore

ẑ(n) = N〈z, Fn〉 = N
N−1∑

k=0

z(k)Fn(k) =
N−1∑

k=0

z(k)e−2πikn/N .

Definition 1. Given z ∈ `2(ZN ), we let

ẑ(n) =
N−1∑

k=0

z(k)e−2πikn/N .
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The mapping
ˆ: `2(ZN ) → `2(ZN ),

which takes z to ẑ, is called the discrete Fourier transform (or DFT, for
short). It is easily checked that ẑ is N -periodic.

The following theorem is useful.

Theorem 2 (Fourier Inversion Formula).

z(n) =
1

N

N−1∑

k=0

ẑ(k)e2πikn/N , n ∈ ZN , z ∈ `2(ZN ).

The above inversion formula shows that the DFT is a one-to-one linear
transformation on the inner product space `2(ZN ). The inverseˇ : `2(ZN ) →
`2(ZN ) of ˆ : `2(ZN ) → `2(ZN ), called the inverse discrete Fourier trans-
form or (IDFT for short), is the linear transformation defined explicitly as

w̌(n) =
1

N

N−1∑

k=0

w(k)e2πikn/N , n ∈ ZN , w ∈ `2(ZN ).

Definition 3.

1. For any w ∈ `2(ZN ) we define the conjugate reflection w̃ as the element
in `2(ZN ) given by

w̃(n) = w(−n), n ∈ Z.

2. For z, w ∈ `2(ZN ), the convolution of z and w, denoted by z ∗ w is an
element in `2(ZN ) defined as

z ∗ w(n) =
N−1∑

k=0

z(n− k)w(k), n ∈ Z.

One can easily check that the conjugate reflection and convolution opera-
tions transform as follows under the DFT:

ˆ̃w(n) = ŵ(n) and ẑ ∗ w(n) = ẑ(n)ŵ(n),

where the latter expression is componentwise multiplication. We now define
another useful linear transformation on `2(ZN ).

Definition 4. For each k ∈ Z we define Rk : `2(ZN ) → `2(ZN ) as

Rkz(n) = z(n− k), n ∈ Z, z ∈ `2(ZN ).

Rk is called the translation by k operator.

The following lemma will be useful.

Lemma 5. For all k, n ∈ Z we have

(i) R̂kz (n) = e−2πink/N ẑ(n), (ii) 〈z,R2ku〉 = z ∗ w̃(k).
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The Fast Fourier Transform

In carrying out operations, things can sometimes be arranged so that certain
features of the operation can be exploited cleverly in such a way that would
speed up the operation. In 1965, Cooley and Tukey took advantage of a useful
feature of the DFT that helped cut down on the time needed to compute
the Fourier transform. Their ideas essentially revolutionized the science of
computing.

Here we touch on this aspect of Fourier transform computation. It is called
the Fast Fourier Transform (FFT).We start by considering the simplest case
when N is even to highlight the basic idea behind the FFT.

Lemma 6. Suppose N = 2M . Given z ∈ `2(ZN ), define u, v ∈ `2(ZM ) by

u(k) = z(2k), and v(k) = z(2k + 1), k ∈ Z.

Then

ẑ(n) = û(n) + e−2πn/N v̂(n), n ∈ ZM , and

ẑ(n+M) = û(n) − e−2πn/N v̂(n), n ∈ ZM .

Notice that in the above lemma the same values of û(n) and v̂(n) are used
in computing both ẑ(n) and ẑ(n+M) for all n ∈ ZM . First we compute û and v̂
at n = 0, . . . ,M − 1. This requires M2 multiplications each. Then we compute
e−2πin/N v̂(n) for n = 0, . . . ,M which requires an additional M multiplications.
Thus, at most 2M2+M = N(N+1)/2 multiplications are required to compute
ẑ for z ∈ `2(ZN ), by this scheme. This is essentially N2/2 for large N , thus
cutting down the computation of ẑ by half of what would normally be needed
using direct methods. This procedure can be iterated if N is divisible by higher
powers of 2. The best situation for this scheme occurs when N is a power of
two. In this case, an iteration of the above argument leads to the following
lemma.

Lemma 7. Suppose N is a power of 2. Then the DFT of an element of `2(ZN )
can be computed with no more than 1

2N log2N complex multiplications.

The FFT can also be used to compute the IDFT fast (and hence convolu-
tions as well), since

w̌(n) =
1

N
ŵ(N − n), and z ∗ w = (ẑŵ)̌.

Wavelets in ZN - The First Stage

The idea here is to construct an orthonormal basis {ψk}N−1
k=0 of `2(ZN ) such

that each ψk is localized in space as well as frequency. That is, we would want
each ψk and its DFT ψ̂k to contain as many zeros as possible. This would
allow us to focus on local spacial or frequency features of a signal when it is
expressed in such a basis.

The FFT can be used efficiently to compute coefficients of signals in such
basis. (See Part (2) of Lemma 5.)
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Lemma 8. Let N = 2M , and w ∈ `2(ZN ). The set {R2kw}M−1
k=0 is an or-

thonormal set if and only if

|ŵ(n)|2 + |ŵ(n+M)|2 = 2 for all n = 0, . . . ,M − 1. (1)

We remark that if u ∈ `2(ZN ) satisfies (1) above, and if we define v ∈ `2(ZN )
to be

v(k) = (−1)ku(1 − k), k ∈ ZN , (2)

then one can show that the following relations hold for all n ∈ ZN .

|û(n)|2 + |û(n+M)|2 = 2, |v̂(n)|2 + |v̂(n+M)|2 = 2, (3)

û(n)v̂(n) + û(n+M)v̂(n+M) = 0. (4)

The above conditions force the set

{u,R2u, . . . , RM−1u} ∪ {v,R2v, . . . , RM−1v}

to be an orthonormal basis of `2(ZN ).
This lemma illustrates the fact that orthonormal bases depend on our DFT.

Definition 9. Let N = 2M for some positive integer M . An orthonormal
basis of `2(ZN ) of the form

{R2ku, R2kv}M−1
k=0

for some u, v ∈ `2(ZN ) is called a first–stage wavelet basis for `2(ZN ).

It is important to note that given z ∈ `2(ZN ), the coefficients 〈z,R2ku〉 =
z ∗ ũ(k) can be computed via the FFT scheme, since z ∗ w = (ẑŵ)ˇ. The same
remark applies to the coefficients 〈z,R2kv〉.

Theorem 10. Elements u, v ∈ `2(ZN ) generate a first–stage wavelet if and

only if their system matrix

A(n) =
1√
2

[
û(n) v̂(n)
û(n+M) v̂(n+M)

]

is a unitary matrix for all n ∈ Z.

In more explicit terms, the above theorem states that u, v and their trans-
lates form a basis of `2(ZN ) if and only if

|û(n)|2 + |û(n+M)|2 = 2, |v̂(n)|2 + |v̂(n+M)|2 = 2,

û(n)v̂(n) + û(n+M)v̂(n+M) = 0.

Now that we have established the u and v wavelet basis, we can now get
into how we compress. We now define a helpful operation.
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Definition 11. Suppose N = 2M for some positive integer M . Define U :
`2(ZM ) → `2(ZN ) by setting

U(z)(n) =

{
z(n/2) if n is even

0 if n is odd,

for z ∈ `2(ZM ) and n = 0, 1, ...,M−1. We call the operator U the upsampling
operator. We denote U by ↑ 2.

We can now use all these definitions, lemmas, and theorems to define a
wavelet basis and figure out a wavelet filter sequence with repeated filters. This
scheme will show how we can reconstruct a signal using wavelet compression.

Wavelets in ZN - The Iteration Stage

Suppose we would like to determine the presence of an object through a radar or
sonar search. In analyzing the signal from such search our initial concern is to
get enough information from the signal to decide whether the object of interest
(e.g., oil deposit) is present. At this stage, details are less relevant. Another
scenario would be the transmission of data via a data line. Compression of
the data to an acceptable level before transmission could save a lot of money
or time (or both). Therefore the signals that come from such situations could
be analyzed using a basis that gives less detailed information about the signal.
Thus to obtain only crude information about the signal, we need to obtain
wavelet basis at scales higher than 2, in the sense to be explained below. We
suppose that N is divisible by 2p for some fixed p > 1. We start out with
u = u1 and v = v1 in `2(ZN ) whose system matrix is unitary. We obtain a
pth-stage wavelet filter sequence u`, v` ∈ `2(ZN/2`−1), ` = 1, 2, . . . , p, as
follows. Let

u`(n) =
2`−1

−1∑

k=0

u1

(
n+

kN

2`−1

)
and v`(n) =

2`−1
−1∑

k=0

v1

(
n+

kN

2`−1

)
.

We then define from u` and v`, elements whose translates will provides us
with particular basis elements. They are defined as follows:

f1 = v1 and g1 = u1,

f` = g`−1 ∗ U `−1(v`) and g` = g`−1 ∗ U `−1(u`).

Now we let
ψ
−j,k = R2jk fj and φ

−j,k = R2jk gj

for j = 1, . . . , p and k = 0, . . . , (N/2j) − 1.
Then,

{ψ
−1,k}(N/2)−1

k=0 ∪ {ψ
−2,k}(N/4)−1

k=0 ∪ · · · ∪ {ψ
−p,k}(N/2p)−1

k=0 ∪ {φ
−p,k}(N/2p)−1

k=0

is an orthonormal basis for `2(ZN ), called a pth-stage wavelet basis.
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We observe that for any m = 1, . . . , p,

{ψ
−1,k}(N/2)−1

k=0 ∪ {ψ
−2,k}(N/4)−1

k=0 ∪ · · · ∪ {ψ
−m,k}(N/2m)−1

k=0 ∪ {φ
−m,k}(N/2m)−1

k=0

is an mth-stage wavelet basis. We now introduce a sequence of subspaces of
`2(ZN ) as follows:

V
−j := Span{φ

−j,k}(N/2j)−1
k=0 , W

−j := Span{ψ
−j,k}(N/2j)−1

k=0 .

One can show that for all j = 1, . . . , p, the spaces V
−j and W

−j are subspaces
of V

−j+1 and that

V
−j ⊕W

−j = V
−j+1, (5)

where we let V0 stand for `2(ZN ).
We have found our orthonormal basis and we can send the signal through

to compress it. We have to use our ψ’s and φ’s to reproduce this signal. We
want to have a raw estimation of z, so we project z onto the basis that we
found. We will call this projection

P
−j(z) =

(N/2j)−1∑

k=0

〈z, φ
−j,k〉φ−j,k.

Similarly, we define

Q
−j(z) =

(N/2j)−1∑

k=0

〈z, ψ
−j,k〉ψ−j,k.

From the relation in (5) we immediately see that for any z ∈ `2(ZN ),

P
−j+1(z) = P

−j(z) +Q
−j(z), j = 1, 2, 3, . . . , p.

Here we have used P0 for the identity operator P0(z) = z, z ∈ `2(ZN ).
These equations can be interpreted as follows. Given a signal z, the projection
P
−j+1(z) gives its (−j+1)th approximation (a compression of the signal), and
Q

−j(z) contains the “details at level (−j + 1)” that one could use to obtain a
better approximation P

−j+1(z) from its (−j)th level approximation P
−j(z).

Wavelet Construction - An Example

To give the reader a flavor of the general construction of wavelets discussed in
the previous section, we look at a particular example. The example we give
below belongs to a class of wavelets first constructed by Ingrid Daubechies.
We will assume that N > 64. We want to construct u ∈ `2(ZN ) such that its
system matrix is unitary and u has only four nonzero components. For this we
let

b(n) = cos6
( π
N
n
)

+ 3 cos4
( π
N
n
)

sin2
( π
N
n
)
.
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Then note that

b(n+ 8) = 3 cos2
( π
N
n
)

sin4
( π
N
n
)

+ sin6
( π
N
n
)
.

Moreover

b(n) + b(n+ 8) =
(
cos2

( π
N
n
)

+ sin2
( π
N
n
))3

= 1. (6)

If we now define u ∈ `2(ZN ) such that

|û(n)|2 = 2b(n), (7)

then Equation (6) leads to

|û(n)|2 + |û(n+ 8)|2 = 1, n = 0, 1, 2, 3.

While there are many ways to pick u ∈ `2(ZN ) such that (7) holds, to ensure
that such a u has only 4 nonzero components we proceed as follows. We rewrite
b(n) as

b(n) = cos2
( π
N
n
) [

cos4
( π
N
n
)

+ 3 cos2
( π
N
n
)

sin2
( π
N
n
)]
.

We now let

û(n) =
√

2e−3πin/N
[
cos

( π
N
n
)
− i

√
3 cos

( π
N
n
)

sin
( π
N
n
)]

=

√
2

2
e−3πn/N

(
eiπn/N + e−iπn/N

)[1

2

(
1 + cos

(
2πn

N

))
+ i

√
3

2
sin

(
2πn

N

)]

=
(
e−2πin/N + e−4πin/N

)
×

×
[√

2

4
+

√
2

8

(
e2πin/N + e−2πin/N

)
+

√
6

8

(
e2πin/N − e−2πin/N

)]
.

Since

û(n) =

3∑

k=0

u(k)e−2πikn/N ,

direct computation leads to

(u(0), u(1), u(2), u(3)) =

√
2

8
(1 +

√
3, 3 +

√
3, 3 −

√
3, 1 −

√
3)

and u(n) = 0 for n = 4, . . . , N − 1.
Starting with u ∈ `2(ZN ) as above and defining v according to (2) the

associated a first stage wavelet basis of `2(ZN ) is provided by

u1 =

√
2

8
(1 +

√
3, 3 +

√
3, 3 −

√
3, 1 −

√
3, 0, 0, . . . , 0)

v1 =

√
2

8
(3 +

√
3, −1 −

√
3, 0, . . . , 0, 1 −

√
3, −3 +

√
3),
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and their even translates.
The recipe described in Section 5 then leads to the construction of the

desired p-th stage Daubechies’ wavelet basis of `2(ZN ) for any p for which 2p

divides N and N/2p > 4. We refer the reader to [1] and [2] for more details on
wavelets.
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