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Abstract This note extends the invariant of metric spaces under bornologous
equivalences defined in [1] to the coarse category.

Introduction

Large scale geometry is the study of the large scale behavior of metric spaces
the behavior at infinity. We consider two metric spaces to be equivalent if they
have the same behavior at infinity. The standard example of two spaces that
are large scale equivalent are the integers Z and the real numbers R. We can see
that these spaces are equivalent by “zooming out.” At a certain time the space
between the integers becomes indistinguishable and the integers look exactly
like the real numbers.
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Figure 1: The integers and real numbers are large scale equivalent.

We work in the coarse category defined by Roe [2]. A coarse function
f: X =Y between metric spaces is a function that is bornologous and proper.
f is bornologous if for each N > 0 there is an M > 0 such that if d(z,y) < N,
d(f(x), f(y)) < M. In this setting we call f proper if inverse images of bounded
sets are bounded.

Notice bornology is dual to continuity. Thus bornology is a fundamental
concept of coarse (or large scale) geometry just as continuity is a fundamental
concept of topology (small scale geometry). We are studying the large scale
behavior of functions and large scale properties of spaces.

Two metric spaces X and Y are coarsely equivalent if there are coarse
functions f: X - Y and g:Y — X such that go f is close to idx and fog is
close to idy. Two functions f; and f2 are close if d(fi1(x), fa(x)) is uniformly
bounded. A standard reference for the preceding concepts and coarse geometry
in general is [2].

In [1] an invariant in the bornologous category is constructed. This note
extends the construction in [1] to the coarse category. Bornologous equivalence
is more strict than coarse equivalence. For bornologous equivalence f o g and
g o f are required to be the identity. Coarse equivalence can be viewed as
being in the category where, instead of considering functions, one considers
equivalence classes of functions. Two functions are equivalent if they are close.

The standard example of two coarsely equivalent spaces is R and Z (see
Example 5). Of course these spaces cannot be bornologously equivalent because
they do not have the same cardinality. We can explain interest in the coarse
category as opposed to the bornologous category as follows. Since we are
interested in large scale behavior, we should ignore all small scale behavior
including cardinality. We should not care whether the number of points in a
neighborhood is finite or infinite.

Previous construction

We recall the construction from [1]. Fix a basepoint zy € X. Given N > 0,
an N-sequence in X based at x( is an infinite list xg,x1,... of points in X
with d(z;,2;41) < N for each i > 0. Since we are interested in the large scale
structure of X, we are only interested in sequences that go to infinity. An
N-sequence xg,x1,... goes to infinity if d(xo,z;) — oo. Let Sy(X,x0) be the
set of all N-sequences in X based at xg that go to infinity.

We call two sequences s,t € Sy(X,zg) equivalent if there is a finite list
80y---58n € SN(X,x0) with sg = s, s, = ¢, and for each ¢ > 0, s;41 is either a
subsequence of s; or s; is a subsequence of s;,1. If s; is a subsequence of s;41
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we say $;41 18 a supersequence of s;. Let [s]y denote the equivalence class of
sin Sy (X, o) and let on (X, zg) be the set of equivalence classes.

The cardinality of the set on (X, xo) is the desired invariant. It essentially
determines the number of different ways of going to infinity in X. Since this
cardinality depends on N, we have the following definition. For each integer
N > 0 there is a function ¢y : on(X,20) = on+1(X, 20) that sends the equiv-
alence class [s]y to the equivalence class [s]ys+1. X is said to be o-stable if
there is a K > 0 for which oy is a bijection for each integer N > K. If X is
o-stable let o(X,xo) denote the cardinality of ok (X, z0).

It would be better to call X “o-stable with respect to z¢” since apparently
this definition depends on basepoint. In fact it does not; this issue is addressed
in the next section.

The following is the main theorem of [1]. It is the theorem that we wish to
extend to coarse equivalences.

Theorem 1 ([1], Theorem 3.2). Suppose f: X — Y is a bornologous equiva-
lence between metric spaces. Let xo be a basepoint of X and set yo = f(xo).
Suppose X and Y are o-stable. Then o(X,xz0) =0 (Y, 40).

Change of basepoint in o-stable spaces

As mentioned above, the definition of o-stable depends on the choice of base-
point. We show that in fact a space being o-stable is independent of basepoint.

Lemma 2. Suppose zo,yo € X and n > d(xo,y0). Let z, : 0,(X,20) —
on(X,x1) be the function that sends the equivalence class of a sequence xq, 1, T2,
... to the equivalence class of yo,xo,x1,%2,.... Then z, is a bijection.

Proof. Let wy, : 0,(X,y0) = 0,(X,20) be the function that sends the equiva-
lence class of a sequence Yo, Y1, Y2, - - - to the equivalence class of zq, yo, Y1, Y2, - - .
We show that z,, and w,, compose to form the identities and thus z, must be
a bijection. Suppose [(2;)] € 0, (X, 20). Then (wy, © 2,)([(@i)]) is the equiv-
alence class of the sequence xg,yo, To,Z1,... which is a supersequence of (zg).
Similarly, z, o w,, is the identity on o, (X, y0)- O

Proposition 3. Suppose a metric space X is o-stable with respect to a base-
point xg € X. Let yo € X. Then X is o-stable with respect to yo and o(X, xz0) =

U(Xay())'

Proof. Let N € N be such that ¢, : 0,(X,z¢) = 0,:1(X, 20) is a bijection for
all n > N. Choose M € N such that M > max{N,d(xo,2z1)}. Suppose n > M.
Then the following diagram commutes.

Ons1 (X, 20) 225 0001 (X, 90)
Pn PYn
Un(vaO) . Un(XayO)

Since ¢, z,, and z,+1 are bijections, so is . O]
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The invariant

Theorem 4. Suppose X and Y are coarsely equivalent and o-stable. Then

o(X)=0(Y)

Proof. Suppose f: X - Y and g:Y — X are as in the definition of coarse
equivalence. Let zp be a basepoint in X and yo = f(x9) be a basepoint in
Y. Because go f is close to idx, we can say that there is a D such that
d(xz,g0o f(x)) < D for all x € X. Let K be the integer provided by X being
o-stable and K’ be the integer provided by Y being o-stable. We can assume
K > D. As f is bornologous, there is an M such that f sends K-sequences to M-
sequences in Y. We can assume M > K’. Similarly, because ¢ is bornologous,
there is an L such that g sends M-sequences to L-sequences in X. We can
assume L > K.

Let 2 : 0 (X,29) = or(X, g0 f(x0)) be the function that sends the equiv-

alence class of xg,x1,... to the equivalence class of go f(x¢),x0,21,.... Note
the latter is an L-sequence since L > K > D. By Lemma 2 we know 2z, is a
bijection.

Let fx be the function that sends an element[s]x € ox (X, z0) to the ele-
ment [f(s)]ar € oar (Y, f(z0)) and let gas be the function that sends an element

[s]v € onr (Y, f(20)) to the element [g(s)]. € o(X, g0 f(z0)).
We show the following diagram commutes:

or(X,g0 f(x0))

]

or(X,z0)

¢KL\

or (X, z0)

gm

om (Y, f(x0))

Let (z,,) be a K-sequence in X. Then gy o fx([(z,)]) is the equivalence
class of the sequence go f(xg),g0 f(x1),... and zr, o dxr([(2,)]) is the equiv-
alence class of the sequence g o f(xg),2o,21,.... Consider the sequence

go f(xo),aro,3:1,go f('rl):g Of(ﬂjg),xg,xg,go f($3),go f($4), s

There are three distances to consider: the distance between successive elements
of x,, the distance between successive elements of go f(z,), and the distance
between any x;, and its counterpart g o f(x;). Because d(z;,go f(x;)) < D,
d(@, 2441) < K, and d(go f(z;),g0 f(xir1)) < L, the unioned sequence is an L-
sequence. Further, because the two sequences {z,} and {go f(x,)} are visited
in order, we can say that x,, and go f(x,) are both subsequences of this union.
Thus, the diagram commutes.

Since zp, o ¢k is a bijection, fx must be one-to-one.

Symmetrically we can see that the following diagram commutes where S' is
chosen so that d(y, fog(y)) <S for all y e Y and d(f(x), f(y)) < S whenever
d(x,y) < L.
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os(Y, fege f(xo))

.|

os(Y, f(x0))

st[

or(X,go f(z0)) R ou (Y, f(x0))

fL

Thus gps must be one-to-one which forces fx to be onto. Then we have
that fx is a bijection.
O

Some examples

We begin with the standard example of a coarse equivalence.

Example 5. [2] Consider R and Z as metric spaces under the usual metric.
Let f : R > 7Z be the floor function, x — |z|. Let g:Z — R be the inclusion,
n—n. It is easy to see that [ and g are coarse and that go f and fog are close
to the identities (go f is the identity). Corollary 15 in [1] says that o(R) = 2.
Since Z is coarsely equivalent to R we must have o(Z) = 2 also. Of course we
can see these two sequences in 7.

Next we give another way to calculate o(V') where V is the vase from |1,
Example 3]. We first give a basic lemma.

Lemma 6. Suppose f: X =Y is any function and g:Y — X is bornologous.
Suppose that go [ is close to the identity on X. Then f is proper.

Proof. Suppose A c Y is bounded, say d(x,y) < N for all x,y € A. Since g is
bornologous there is an M > 0 so that if d(z,y) < N, d(g(z),g(y)) < M. Since
go [ is close to the identity there is an R > 0 so that d(go f(x),z) < R for all
zeX.

Suppose z,y € f~1(A). Then f(z),f(y) € A so d(f(z),f(y)) < N and
d(ge f(x),90°f(y)) < M. Thus d(z,y) <d(z,g0 f(z)) +d(ge f(x),g0° f(y)) +
d(go f(y),y) < M +2R. O

Example 7. Let V = {(-1,y) :y > 1} u{(z,1): -1 <ax <1} u{(Ly):y >
1} ¢ R?. Following [1] we will use the tawicab metric which is bornologously
(and therefore coarsely) equivalent to the standard metric. We show that V is
coarsely equivalent to the ray [1,00) and therefore o(V) = o[1,00).

First let us note that o[1,00) is fairly easy to calculate. Suppose N > 1. By
[1, Lemma 2.4] an N-sequence s = {s;} in [1,00) goes to infinity if and only if
lim;, e 8; = 00. In particular [(i)] € on[1,00). Also, given [s] € on[1,00), since
lim,,, 0 s; = 00 we see that s is equivalent to an increasing N -sequence t and if
we put t and (i) together using the order on R we obtain the desired equivalence
between s and (i). We have shown that on[1,00) = {[(¢)]} so o[1,00) =1.
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Now we define a coarse equivalence between V and [1,00). Define f:V —
[1,00) to send a point (z,y) € V to y € [0,00). Let g : [1,00) = V send
ye[l,00) to (1,y) € V. We have that fog(y) =y for all y € [1,00) s0 fog is
the identity. Given (x,y) €V, d(go f(z,y),(x,y)) =|r-1|+|y-y|<2 so go f
is close to the identity.

By the lemma we need only to check that f and g are bornologous. Suppose
N >0, (z1,9y1), (x2,92) €V, and d((z1,y1), (x2,92)) < N. Then

d(f(z1,91), f(22,92)) = [y1 — v2|
=d((z1,91), (v2,92)) — &1 — 22| < N.
Now suppose y1,y2 € [1,00) and |y1 —y2| < N. Then

d(g9(y1),9(y2)) = d((1,91), (1,y2)) = [1 = 1| +|y1 — y2| < N.

Proposition 8. Let V' be the vase from the previous example. Then V is not
coarsely equivalent to R.

Proof. According to the previous example o(V') = 1 and according to [1, Corol-
lary 15] o(R) = 2. O
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