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Abstract

A positive integer n is called perfect if σ(n) = 2n, where σ(n) denote the sum of
divisors of n. In this paper we study the ratio σ(n)

n . We define the Abundancy Index
I : N→Q with I(n) = σ(n)

n . Then we study different properties of Abundancy Index
and discuss the set of Abundancy Indices. Using this function we define a new class of
numbers known as superabundant numbers. Finally we study superabundant numbers
and their connection with the Riemann Hypothesis.

1 Introduction
Definition 1. A positive integer n is called perfect if σ(n) = 2n, where σ(n) denote
the sum of positive divisors of n.

The first few perfect numbers are 6,28,496,8128, ... (OEIS A000396), This is a well
studied topic in number theory. Euclid studied properties and nature of perfect numbers
in 300 BC. He proved that if 2p−1 is a prime, then 2p−1(2p−1) is an even perfect
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number(Elements, Prop. IX.36). Later mathematicians have spent years to study the
properties of perfect numbers. But still many questions about perfect numbers remain
unsolved. Two famous conjectures related to perfect numbers are

1. There exist infinitely many perfect numbers. Euler[13] proved that a number
is an even perfect number if and only if it can be written as 2p−1(2p−1) and
2p−1 is also a prime number. Primes number of the form 2p−1 are known as
Mersenne primes. Therefore this conjecture is equivalent to the conjecture that
there exist infinitely many Mersenne primes. Some good references on this topic
are [15], [9], [45].

2. There do not exist any odd perfect numbers. Computation of Lower Bounds for
the smallest perfect numbers have been done by many mathematicians. Kanold
(1957)[28] found the bound 1020, Tuckerman (1973) [46] found the bound 1036,
Hagis (1973) [19]found the bound 1050, Brent and Cohen (1989) [5] found the
bound 10160, Brent et al. (1991) [6] found the bound 10300. The best bound
till today is 101500 by Ochem and Rao (2012)[33]. The odd perfect numbers
if they exist must be of the form p4λ+1Q2, where p is a prime of the form
4n+ 1 as proven by Euler[8][49].Touchard[44] and Holdener[23] proved that
the odd perfect numbers if they exist must be of the form 12k+ 1 or 36k+ 1.
Stuyvaert[11] proved that the odd perfect numbers if they exist must be must be
a sum of two squares. Greathouse and Weisstein[17] alternatively write that any
odd perfect number must be of the form

N = pα q1
2β1 ...qr

2βr

where all the primes are odd. Also p ≡ α ≡ 1(mod4). Steuerwald[43] and
Yamada[51] proved that all the βis cannot be 1. Odd perfect numbers have a
large number of distinct prime factors. The odd perfect number if one exists
must have at least 6 distinct prime factors, as proved by Gradshtein[4]. This
was extended to 8 by Haggis[20]. If there are 8 the number must be divisible by
15, as proved by Voight [47]. Norton[32] proved that odd perfect numbers must
have at least 15 and 27 distinct prime factors if the number is not divisible by 3
or 5 and 3, 5, or 7 respectively. Nielsen[31] extended the bound by showing that
odd perfect numbers should have at least 9 distinct prime factors and if it is not
divisible by 3 it should have at least 12 distinct prime factors. Hare[22] shown
that any odd perfect number must have at least 75 prime factors. The method
used by Hare involves factorization of several large numbers[49][22].The best
lower bound is by Ochem and Rao (2012)[33], who prove that any odd perfect
number must have at least 101 prime factors. Odd perfect numbers must have
the largest prime factor very large. The first such lower bound was proved by
Haggis[21], who proved every odd perfect number has a Prime Factor which
exceeds 106. Iannucci[25][26], Jenkins[27], Goto and Ohno[16] proved that the
largest three factors must be at least 100000007, 10007, and 101[49].

Two other related concepts are abundant numbers and deficient numbers. A positive
integer n is called an abundant number if σ(n)> 2n. A positive integer n is called a
deficient number if σ(n)< 2n. To study these interesting properties of these beautiful
numbers we define Abundancy Index. That was defined by Laatsch[29]. For a
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positive integer n, the Abundancy Index I(n) is defined as I(n) = σ(n)
n . More generally

Abundancy Index can be considered as a measure of perfection of an integer. We
can easily observe a positive integer is perfect when I(n) = 2 and n is abundant or
deficient when I(n)> 2 or I(n)< 2 respectively. Positive integers with integer valued
Abundancy indices are called multiperfect numbers. In this article we study different
properties about Abundancy Index and to try generalize the Abundancy Index of any
positive integer n.

2 Properties
Theorem 2. The Abundancy Index function I(n) is a multiplicative function.

Proof. Let m,n be any two co-prime positive integers. Using the multiplicativity of σ

function as proved in Theorem 6.3 of [8],

I(mn) =
σ(mn)

mn
=

σ(m)σ(n)
mn

=
σ(m)

m
σ(n)

n
= I(m)I(n).

Theorem 3. (Laatsch[29]): I(kn)≥ I(n) for all k ∈ N. The equality condition holds
iff k = 1.

Corollary 4. Every proper multiple of a perfect number is abundant and every proper
divisor of a perfect number is deficient.

Corollary 5. There are infinitely many abundant numbers.

It is easy to see that there are infinitely many deficient numbers. Indeed, all prime
numbers are deficient, as σ(p) = p + 1 < 2p. We observe for future reference
that

I(n) =
σ(n)

n
=

1
n ∑

d|n
d =

1
n ∑

d|n

n
d
= ∑

d|n

1
d

(1)

Theorem 6. (Laatsch[29]): The I(n) is function is unbounded.

Proof. We discuss two proofs of this theorem. The first proof goes like this.

Let m be any real number. We know the series ∑
∞
i=1

1
i is divergent. Hence for a given m

there exist a natural number N such that ∑
N
i=1

1
i > m. Let us take n0 = lcm(1,2, · · · ,N).

Using (1) we get I(n0) = ∑d|n0
1
d ≥ ∑

N
i=1

1
i . Thus for any real m∃n0 ∈ N � I(n0)> m.

Therefore I(n) is not bounded above.

The second proof goes like this.

Let n0 = 2 ·3 · · · pk = ∏
k
i=1 pi i.e the product of first k primes. Therefore using Theorem

2.1 we have

I(n0) =
k

∏
i=1

(1+
1
pi
)>

k

∑
i=1

1
pi
.
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Now the series ∑prime
1
p is divergent, as proven by Euler[14]. Hence we can say I(n) is

not bounded above.

Theorem 7. For any r ∈ R there are infinitely many n such that I(n)> r.

Proof. By Theorem 2.3 we see for any r ∈ R∃n0 ∈ N such that I(n0) > r. By using
Theorem 2.2 we get I(kn0)≥ I(n0) for any positive integer k. Therefore I(kn0)> r for
all k ∈ N. As there are infinitely many choices for k, there are infinitely many n such
that I(n)> r.

Theorem 8. If n = ∏
k
i=1 pαi

i where the pi are distinct primes, then ∏
k
i=1

pi+1
pi
≤ I(n)≤

∏
k
i=1

pi
pi−1

Proof. Consider p to be a prime and α any positive integer. Now as proven earlier in
(1), we have

I(pα) = ∑
d|pα

1
d
= 1+

1
p
+

1
p2 + · · ·+ 1

pα

By using the inequality

1+
1
p
≤ 1+

1
p
+

1
p2 + · · ·+ 1

pα
≤

∞

∑
i=1

1
pi

We get
p+1

p
≤ I(pα)≤ p

p−1
(2)

Now since I is multiplicative function(Theorem 2.1)

I(n) = I(
k

∏
i=1

pαi
i ) =

k

∏
i=1

I(pαi
i ) (3)

Using the inequality (2) we get

k

∏
i=1

pi +1
pi
≤

k

∏
i=1

I(pαi
i )≤

k

∏
i=1

pi

pi−1

Using the identity mentioned in (3)

k

∏
i=1

pi +1
pi
≤ I(n)≤

k

∏
i=1

pi

pi−1

So we get our desired result.
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3 Set of Abundancy Indices
As we study the function I : N→ Q, many questions arise. For example, is every
rational q≥ 1 the Abundancy Index of some integer? Many mathematicians have tried
to study the set of Abundancy Indices, Laatsch [29] shown the set D = {I(n) : n≥ 2}
is dense in (1,∞). Later Weiner[48] showed there exists rationals which are not the
Abundancy Index of any integer. In 2007 Stanton and Holdener[42] defined Abundancy
Outlaw. An Abundancy Outlaw is a rational greater than 1 that is not an Abundancy
Index of integer, in other words it is not in the image map of the map I.

Theorem 9. (Laatsch[29]): D = {I(n) : n≥ 2} is dense in (1,∞).

A rational number q > 1 is said to be an Abundancy Outlaw if I(n) = q has no solution
in N.

Theorem 10. (Weiner[48]): If k is relatively prime to m and m < k < σ(m), then k
m

is an Abundancy Outlaw. Hence if r/s is an Abundancy Index with gcd(r,s) = 1, then
r ≥ σ(s).

Example of such outlaws given by Holdener and Stanton [42] are

5/4,7/6,9/8,10/9,11/6,11/8,11/9,11/10,13/8,13/10,13/12,15/14,16/15, ...

The previous theorem was also proven by Anderson[3]. The theorem implies that k+1
k

is an Abundancy Index if and only if k is prime; also k+2
k is an Abundancy Outlaw

whenever k is an odd composite number. This is a very important result shown by
Weiner, which concludes that there are rationals in (1,∞) which are the not Abundancy
Index of any integer. This can be proven using Theorem 3.2.

Theorem 11. (Wein[48]): The set of Abundacy outlaws is dense in (1,∞).

In the next three theorems we are giving few general forms of Abundancy Outlaw,
which were studied by Holdener and Stanton [42]. These are some particular cases of
proven results by Holdener [24]. For the original general results someone may look
into the original paper of Holdener [24]. Theorem 3.4 is really just the special case of
Theorem 3.5 with p = 2.

Theorem 12. For all primes p > 3,

σ(2p)+1
2p

is an Abundancy outlaw. If p = 2 or p = 3 then σ(2p)+1
2p is an Abundancy index.

For p = 2 or p = 3, it is easy to see that σ(2p)+1
2p is an Abundancy index since I(6) =

σ(4)+1
4 and I(18) = σ(6)+1

6 . Let us assume p > 3.By substituting σ(2p) = 3+3p we

can get an explicit expression. Note that σ(2p)+1
2p = 3p+4

2p is in lowest terms. Therefore

if I(N) = σ(2p)+1
2p , then 2p|N. Now since p > 3, we have I(4p)> (σ(2p)+1)/2p, so

4 6 |N. Hence we have, σ(2)|σ(N). Also note that since σ(2p)+1 is not divisible by
σ(2) = 3, 3 divides N. Therefore we can write

I(N)> I(6p)> 2 > (σ(2p)+1)/2p
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We hence arrive at a contradiction. Hence (σ(2p)+1)/2p is an Abundancy outlaw.
Example of such outlaws given by Holdener and Stanton [42] are

19
10

,
25
14

,
37
22

,
43
26

,
55
34

,
61
38

,
73
46

,
91
58

,
97
62

,
115
74

,
127
82

,
133
86

,
145
94

,
163
106

,
181
118

,
187
122

...

Theorem 13. For primes p,q with q > 3, q > p and gcd(p,q+2) = gcd(q, p+2) = 1,

σ(pq)+1
pq

is an Abundancy outlaw.

Note that if p and q = p+2 are twin primes then Theorem 3.5 does not hold true. We
get

σ(p(p+2))+1
p(p+2)

=
σ(p)+1

p
=

p+2
p

Abundancy index satisfying I(x) = p+2
p has been studied by Ryan[39]. It is still not

known whether any such example exist. The existence of such a solution is important
since if 5

3 = 3+2
3 is an Abundancy index then there must exist an odd perfect number.

We state a state an important result of Weiner which proves this.

Theorem 14. (Weiner[48]): If there is a positive integer n with I(n) = 5/3, then 5n is
an odd perfect number.

This theorem was further generalized by Ryan[40].

Theorem 15. (Ryan[40]): If there exist positive integers m and n such that m is odd,
2m−1 is prime, 2m−1 does not divide n, and I(n) = (2m−1)/m, then n(2m−1) is
an odd perfect number.

He further showed that if m is even but not a power of 2 then (2m−1)/m is an Abun-
dancy Outlaw. Both of these results are further generalized by Holdener[24].

Theorem 16. (Holdener[24]): There is an odd perfect number if and only if there are
positive integers p,n, and k such that p is prime and does not divide n and also satisfies
p≡ k ≡ 1(mod 4), and

I(n) =
2pk(p−1)

pk+1−1

A similar example can be made about Theorem 3.5 as we have done earlier for
Theorem 3.4. For this we assume that the two odd primes p,q, satisfying q≡ 1(mod
p). Then p 6 |q+2 and q 6 |p+2 .Now by Dirichlet’s theorem on arithmetic progressions
of primes, we know that there are infinitely many such pairs of odd primes p,q.
Example of such outlaws given by Holdener and Stanton [42] are
For p = 5

73
55

,
193
155

,
253
205

,
373
305

,
433
355

,
613
505

,
793
655

,
913
755

,
1093
905

,
1153
955

,
1273
1055

,
1513
1255

,
1633
1355

1693
1405

,
1873
1555

,
1993
1655

,
2413
2005

,
2533
2105

, ..
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For p = 7

241
203

,
353
301

,
577
497

,
913
791

,
1025
889

,
1585
1379

,
1697
1477

,
1921
1673

,
2257
1967

,
2705
2359

,
3041
2653

,
3377
2947

,
3601
3143

3713
3241

,
3937
3437

,
4385
3829

,
4945
4319

..

For p = 11

289
253

,
817
737

,
1081
979

,
2401
2189

,
3985
3641

,
4249
3883

,
4777
4367

,
5041
4609

,
5569
5093

,
7417
6787

,
7945
7271

,
8209
7513

,
8737
7997

10321
9449

,
10585
9691

,
11377
10417

, ...

Theorem 17. If N is an even perfect number, then σ(2N)+1
2N is an abundancy outlaw.

4 Superabundant Numbers
A positive integer n is called superabundant if I(m)< I(n) ∀m < n.

The first few superabundant numbers are 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180.
Ramanujan [34][35][36] in 1915 first introduced the idea of superabundant numbers.
In 30 pages of Ramanujan’s paper "Highly Composite Numbers" Ramanujan defined
generalized highly composite numbers, which is a generalized case of superabundant
numbers. Ramanujan’s work remained unpublished till 1997 when it was published
in Ramanujan Journal. The idea of Superabundant numbers were also independently
defined by Alaoglu and Erdős [2] in 1944, who are unknown to the unpublished work
done by Ramanujan earlier in 1915. They proved that if n is superabundant, then there
exist a k and a1,a2, ...,ak satisfying a1 ≥ a2 ≥ ·· · ≥ ak ≥ 1 such that

n =
k

∏
i=1

(pi)
ai

where pi is the i-th prime number, and

Theorem 18. There are infinitely many superabundant numbers.

Proof. Let us assume there are finitely many superabundant numbers and n is the
largest superabundant number. So I(m)< I(n) for all m < n. Now let us consider the
integer 2n. By Theorem 2 we know I(2n)> I(n). So I(m)< I(2n). But 2n cannot be
a superabundant number. So ∃n0 � I(n0)> I(2n) and n < n0 < 2n. Let us consider the
least n0. We know

I(n0)> I(2n)> I(n)> I(m) for all m < n

n0 cannot be a superabundant number. Hence there exist a real number n1 such that
I(n0) > I(n1) and n < n1 < n0. It is easy to see I(n1) > I(2n) and n < n1 < 2n. But
we had assumed n0 to be least such integer. Hence we get a contradiction.
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So we can conclude there are infinitely many superabundant numbers. This type of
numbers can be further generalized as colossally abundant numbers.

A number n is colossally abundant if and only if there is an ε > 0 such that for all
k > 1,

σ(n)
n1+ε

≥ σ(k)
k1+ε

Therefore all colossally abundant numbers are also superabundant numbers, but all
superabundant numbers may not be a colossally abundant number. For every ε > 0 the
function σ(n)

n1+ε has a maximum and that these maxima will increase as ε tends to zero.
Thus there are infinitely many colossally abundant numbers [30].

Now we draw a connection between superabundant numbers and well known Riemann
Hypothesis[37], which is considered as one of the most important unsolved problems
in Mathematics. The Riemann Hypothesis conjectures that the Riemann zeta function
defined as

ζ (s) =
∞

∑
n=1

1
ns =

1
1s +

1
2s +

1
3s +

1
4s + ...

valid when the real part of s exceeds 1 has non-trivial zeros only at the complex numbers
with real part 1

2 . This conjecture is of significant interest to number theorists since this
result has direct consequences in the distribution of prime numbers.

In 1984 Robin [38] proved a surprising result. He showed an equivalence between
Riemann Hypothesis and a bound to the Abundancy Index.

Theorem 19. (Robin[38]): For n≥ 3 we have I(n)< eγ log logn+ 0.6483
loglogn .

Theorem 20. (Robin[38]): The Riemann Hypothesis is true if and only if I(n) <
eγ log logn for all n≥ 5041.

Note: Here γ denotes Euler’s Gamma Constant(also known as Euler–Mascheroni
constant). It is the limiting difference between the the natural logarithm and harmonic
series.

γ = lim
x→∞

(− lnx+
x

∑
k=1

1
k
)

The value of Euler’s Gamma Constant is approximately 0.57721[41]. Theorem
4.3(Robin’s Inequality) is the most striking result here, it gives an alternative ap-
proach to prove or disprove Riemann’s Hypothesis, one of the greatest problems in
Number Theory.

This result by Robin’s inequality is supported by many other findings. Gronwall [18]
found that

limsup
n→∞

I(n)
eγ log logn

= 1

Wojtowicz[50] further showed that the values of f (n) = I(n)
eγ log logn are close to 0 on a

set of asymptotic density 1. An alternate version of Robin’s inequality equivalent to
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Riemann Hypothesis was found by Lagarias[30], who showed the equivalence of the
Riemann hypothesis to an sequence of elementary inequalities involving the harmonic
numbers Hn, the sum of the reciprocals of the integers from 1 to n:

σ(n)≤ eHn logHn +Hn for all n≥ 1

Another alternate version of Robin’s inequality is by Choie et.al [10] who have shown
that the RH holds true if and only if every natural number divisible by a fifth power
greater than 1 satisfies Robin’s inequality. Briggs[7] describe a computational study
of the successive maxima of I(n). They found that the maxima of this function occur
at superabundant and colossally abundant numbers and studied the density of these
numbers. He then compared this with the known maximal order of f (n) and found out
a condition equivalent to the Riemann Hypothesis using these data.

Theorem 21. (Akbary[1]): If there is any counterexample to Robin’s inequality then
the least such counterexample is a superabundant number.

Let S(x) be the number of superabundant numbers not exceeding x.

From the proof of Theorem 4.1, we get the inequality S(x)≥ logx, since the spacing
grows at most exponentially. This gives logx as the lower bound to the counting
function S(x). Note that Theorem 4.4 helps us find a counterexample of the Robin’s
inequality by limiting our attention to only superabundant numbers. Unfortunately
there is no algorithm find superabundant numbers except finding it using Definition
4.1. Some results in the distribution of the superabundant numbers are therefore very
helpful. We now state two results in that regard.

Theorem 22. (Alaoglu[2]): S(x)> c logx log logx
(log loglogx)2

Erdős and Nicholas [12] proved a more stronger inequality.

Theorem 23. (Nicholas[12]): S(x)> (logx)1+δ (x > x0) f or every δ < 5/48.

So we finally see that abundancy index and superabundant numbers have a very close
connection with Riemann Hypothesis. One may try to prove or disprove Riemann
Hypothesis with the help of Theorem 4.3. To disprove Riemann’s Hypothesis it enough
to get a counterexample to Robin’s inequality. One might try to find it computationally
and Theorem 4.4 will definitely make his or her job easier.
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