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Abstract The race to find the smallest 4-chromatic unit-distance graph of girth 4 stalled
at 23 vertices in 1996. Using similar ideas to the 23-vertex graph, we constructed
a 21-vertex graph. Unknown to us, the smallest possible of 17 vertices had already
been created, but using a different approach. This paper carefully constructs our novel
21-vertex graph, while also comparing it to the 1996 23-vertex graph. We also give an
overview of the construction of the 17-vertex graph.

1 Introduction
What is the smallest number of colors needed to color the points on the plane so that
no two points at a unit-distance from each other have the same color? This smallest
number is referred to as the chromatic number of the plane. Finding its value is a
prominent open problem over a half-century old (search for Hadwiger-Nelson Problem).
The only possibilities are five, six or seven colors. Four colors was eliminated as an
option in 2018 when a unit-distance graph was found that is 5-chromatic, or, in other
words, requires 5 colors to keep two adjacent vertices from having the same color [1].
Seven colors can be seen as an upper bound by coloring a regular-hexagon tiling of the
plane in the following manner.
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Take a hexagon and its surrounding six hexagons and color them with seven different
colors. Cover the plane by repeating this seven-color block. Depending on the given
unit-distance, one can scale the colored tiling so that any two points a unit-distance
apart will be different colors.

In thinking on the chromatic number of the plane, in 1975, Paul Erdős (of “Erdős
number” fame) wondered if 4-chromatic unit-distance graphs without 3-cycles (or
“triangle-free” or “of girth 4”) exist:

Let S be a subset of the plane which contains no equilateral triangle of
size 1. Join two points of S if their distance is 1. Does this graph have
chromatic number three? [2]

When Erdős republished the problem in 1979, he said the “...chromatic number is
probably at most 3, but I do not see how to prove this.” [3] Uncharacteristic for Erdős,
he predicted incorrectly. In 1979, Nicholas Wormald showed that such a graph does
indeed exist by publishing a 4-chromatic unit-distance 6448-vertex graph without
3-cycles (and, in fact, without 4-cycles) [4].

Alexander Soifer felt like 6448 vertices were a lot. So, in 1992, Soifer informally
asked for the smallest example of a 4-chromatic unit-distance graph without 3-cycles
[5] (p. 41, 110). From 1994 to 1996, three mathematicians accepted the challenge.

Figure 1: 23-Vertex "Fish
Graph" (1996)

Soifer says “A true World Series played out on the pages
of Geombinatorics... ,” a new journal Soifer had recently
started [5] (p. 41, 42). First, the size was greatly reduced
to 56 vertices by Paul O’Donnell in 1994 [6]. O’Donnell
put two 5-pointed stars on a regular decagon, and then
carefully connected seven 5-cycles in his construction.
Next, Kiran Chilakamarri further reduced the size to 47
vertices in January 1995 [7], using a very different graph
than O’Donnell’s; Soifer called this the “Moth Graph” [5]
(p. 118). Rob Hochberg improved the record by one (to
46), but he did not publish this since he heard about an even
better result about to be published [5] (p. 125). The better
result was, in July 1995, O’Donnell regaining first place

with 40 vertices [8]. This graph has five-fold rotational symmetry. But then, O’Donnell
and Hochberg combined forces to make the “Fish Graph” with an impressive 23 vertices
in April 1996 [9] (Figure 1). This was the record for two decades. The details and
pictures of the graphs of this “World Series” are recorded in chapter 15 of Soifer’s book
The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of
Its Creators [5]. (This book also states many related open problems.)

We, the authors of the article you are currently reading, thought we had found the
first improvement since the Fish Graph. But only after we had finished our research,
we realized that a 17-vertex graph (the smallest possible) had been found in 2016 by
Geoffrey Exoo and Dan Ismailescu [10] (Figure 4). The following presents a novel
approach to lower the 1996 record by two by extending the ideas of the Fish Graph.
The construction of the Fish Graph will also be reviewed. An overview of the smallest
graph possible, a 17-vertex graph, is given near the end of this article.
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2 Construction of the 21-Vertex Graph
We found a 22-vertex graph (Figure 2) but realized we could coincide the two high-
lighted vertices to make a 21-vertex graph. The construction of the 21-vertex graph
also shows how the 22-vertex graph is constructed.

Begin with a unit square WXYZ (Figure 3a). Add on V1, S and T so two rhombuses
extend from the unit square (Figure 3b). Note that S has freedom to move while still
keeping the graph unit-distance.

Construct pentagon Q1-Q2-Q3-Q4-Q5 where all edges are unit-distance, except possi-
bly Q1-Q5, along with unit attachments Q1-V1, Q1-T, Q2-X, Q3-Z, Q4-X, and Q5-Z
(Figure 3c). Moving S keeps everything unit-distance while taking Q1-Q5 from less
than one unit to more than one unit. Fix S so that Q1-Q5 is unit-distance. This uses the
argument of the Intermediate Value Theorem; this argument can be found in greater
detail in [4] and [8].

The notation “X-Y→Z” is used to mean that Z is constructed to be unit-distance from
both X and Y, such that X-Y-Z-X is counter-clockwise.

Figure 2: 22-Vertex

Select U2 unit-distance from Y. Then do the following con-
struction, where the U’s are vertices of the first pentagon of
the Fish Graph (see below): U2-W→U3, Y-U3→U4, W-
U2→U1, and U4-U1→U5 (Figure 3d). This construction
gives U2 lots of freedom: the pentagon U1-U2-U3-U4-U5
is guaranteed to be unit-length with unit attachments for
a range of choices for U2.

We next construct the second pentagon of the Fish Graph
(see below), indicated with V’s. Start with V1 that is
already constructed. Then do V1-Y→V5, V5-U5→V4,
W-V4→V3, and U5-V3→V2. Finally, connect V2 to V1
to complete the pentagon, but V2-V1 may not be unit-
distance (Figure 3e). Thus, we need to make V2-V1 unit-distance. As U2 varies, the
length of V2-V1 goes from below one unit to above one unit. Thus, fix U2 so that
V2-V1 is one unit (again using the Intermediate Value Theorem). This finishes the
construction of the 21-vertex graph. (Figure 3f).

Now a note on the construction of the Fish Graph. The Fish Graph has the starting
square, but it does not have the two rhombuses or the Q-pentagon (the first pentagon
constructed). Instead, immediately from the starting square, the U-pentagon and
V-pentagon are constructed identically as given (except the vertex V1 will only be
in the V-pentagon, and not overlap a vertex since the Fish Graph does not have the
rhombuses). Then, to complete the Fish Graph, copies of the two pentagons (U and
V) are flipped about the horizontal line through the center of the starting square, and
the two pentagon copies are connected in the same way to the starting square as the
two pentagon originals, just now “upside-down.” This completes the construction of
the Fish Graph and explains its horizontal line of symmetry (Figure 1) [9]. One vertex
coincides with both pairs of pentagons, making 23 vertices instead of 24.

Here is a proof that the new 21-vertex graph is 4-chromatic. The proof uses elements
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Figure 3: Constructing 21-Vertex Graph

from the proof for the Fish Graph (see below). In any attempted 3-coloring of the
21-vertex graph, one pair of diagonal vertices of the starting unit square must be the
same color. Suppose W and Y are the same color, say green. It follows that U5 must
also be green. Regardless of how the remaining vertices are colored, every vertex of the
V-pentagon is now attached to a green vertex, so the V-pentagon can only be colored
with two colors different than green, say blue and red. But pentagons are 3-chromatic,
so a fourth color must be introduced.

Now suppose X and Z are the same color, say green. Let W be red and Y be blue. It
follows that at least one of V1 and T must be green since otherwise S would be adjacent
to three different colors with V1, Z, and T, so S would be forced to be a fourth color.



6 BSU Undergraduate Mathematics Exchange Vol. 15, No. 1 (Fall 2021)

Then all five vertices of the Q-pentagon are attached to green vertices, so green cannot
be used to color the Q-pentagon. But since pentagons are 3-chromatic, a fourth color
must be introduced.

For the Fish Graph, the two pairs of pentagons (original U and V and the copies of U
and V) work the same way on the vertices of the starting square as the U/V pair and Q
pentagon do in the 21-vertex graph, making the Fish Graph 4-chromatic as well.

3 The Smallest Possible: a 17-Vertex Graph Found by
Exoo and Ismailescu (2016)
As mentioned, we, the authors, were initially unaware that the 1996 record of 23
vertices in the Fish Graph had already been bettered in 2016. In fact, the new record
of 17 vertices has been shown to be the smallest possible 4-chromatic unit-distance
graph without 3-cycles (Figure 4). The full construction by Geoffrey Exoo and Dan
Ismailescu is in [10]. The following gives an overview.

In a graph, a set of vertices is called independent if no two vertices in the set are
adjacent. For their starting strategy, Exoo and Ismailescu say “The crucial idea of our
approach is summarized in the two paragraphs below.”

Let G be a triangle-free 3-chromatic unit distance graph. For a given
proper 3-coloring of the vertices, and a given independent set I, we say
that I is monochromatic if all vertices of I receive the same color.

Let I be a collection of independent sets of size 3 such that for every
proper 3-coloring of G there exists a set I ∈I which is monochromatic.
It is then sufficient to attach 5-cycles only to the independent sets from I ,
and the resulting graph will still be 4-chromatic. [10](p. 52)

This is a generalization of the technique used in the Fish Graph and this paper’s 21
vertex graph: A set of pentagon(s) (“5-cycles”) is attached in a manner where any
proper coloring would have them attached to a monochromatic set, thus forcing another
color, so pushing the graph from 3-chromatic to 4-chromatic.

Exoo and Ismailescu then use this method to construct a desired 21-vertex graph
(distinctly different from the 21-vertex graph given in this paper– the 21-vertex graph
by Exoo and Ismailescu has no connection to the Fish Graph). They start with an
11-vertex graph, and using a computer program, show that there is the desired collection
of two independent sets (that at least one of the sets is monochromatic for any proper
coloring). Then, laying the 11-vertex graph on a coordinate plane, they use computation
technology to solve a system of non-linear equations that come from the restrictions
of the graph to find the proper 5-cycles to attach, and where to attach them. Since
two 5-cycles are attached, the graph is pushed up from 11 to 21 vertices. They then
immediately better the 21 vertices. They show that one can find a starting graph with
only one independent set that must be monochromatic regardless of coloring. The
starting graph has 14 vertices, so when the 5-cycle is attached, the resulting final graph
has only 19 vertices. This can be shown to be the smallest such graph using the strategy
of independent sets and attaching 5-cycles. Exoo and Imailescu then wondered if they
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could be close enough to use computation technology to find any smaller, even the
smallest.

They searched for graphs of order n that satisfy the following properties:

• 4-chromatic and edge critical, that is removal of any edge produces
a graph which is 3-colorable.

• triangle-free and contain no forbidden subgraph of order up to 7
inclusive [10] (p. 61)

Figure 4: 17-Vertex: a smallest possible triangle-free 4-chromatic unit-distance graph,
by Exoo and Ismailescu in 2016; picture from [10] p. 63

They did not elaborate on how they searched for these graphs. From these graphs,
they then determined which could be unit-distance. They found none with less than 16
vertices. They found one with 16 vertices, but it did not work because there were two
places where there was a unit-distance between a pair of vertices, and when the edges
were filled in, it caused triangles. There were no others with 16 vertices. But they found
one with 17 vertices. To show that a unit-distance embedding existed, they solved a
non-linear polynomial system of six equations and six unknowns. “This system has 48
real solutions...which translates into 12 different embeddings discounting symmetries”
[10] (p. 61). Since any smaller graphs would have shown up in their exhaustive list, 17
vertices must be the smallest possible.

The question still remains of what is the smallest 4-chromatic unit-distance graph with
no 3-cycles and no 4-cycles. The smallest known 4-chromatic unit-distance graph with
no 3- or 4-cycles is with 45 vertices [9]. But is this the smallest? This can be extended
for larger cycles. It is hoped that considerations along these lines might help solve the
chromatic number of the plane problem.

The authors thank Robert Hochberg for pointing us in the right direction going from 22
vertices to 21 vertices.
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