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Abstract

Despite positional notation being the primary way we represent numbers, it’s not
trivial to perform a variety of digit-manipulation with arithmetic alone. The Conway
Base-13 Function is a prime example of a function who’s definition is easily said in
plain language, but difficult to formulate with arithmetic alone. To emphasize the
difficulty, we construct a closed-form function equivalent to the Base-13 function over
the integers, comprising only of arithmetic.

1 Introduction
Created by the great and late John H. Conway, the Conway Base 13 Function, f :R→R,
is a counterexample to the converse of the Intermediate Value Theorem. Despite f
being discontinuous everywhere, it satisfies that for any interval (a,b), f takes all
values between f (a) and f (b). In fact, f takes all values in R within every interval of
non-zero length. Such a function can be defined in plain language in terms of digit-
manipulation with relative ease, yet formulating f using arithmetic to perform such
digit-manipulation is more difficult. Hence, the purpose of this article is to emphasize
such difficulty by constructing a closed-form function equivalent to f over the integers,
comprising only of arithmetic.

Imperatively, a summary of a definition will be given. Hence, let the set of digits in any
base, b ∈ Z>1, be denoted

Ub = {0, . . . ,b−1}.
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Figure 1: Log-plot of f over a subset of Z[ 1
13 ].

Thus, the set of decimal and tridecimal digits are U10 = {0,1,2,3,4,5,6,7,8,9} and
U13 = {0,1,2,3,4,5,6,7,8,9,A,B,C}, respectively. The digits A, B, and C correspond
to their decimal equivalents 10, 11, and 12.

Suppose all x ∈ R≥0 have base-b expansions of the form

x = . . .d1d0.d−1d−2 . . .(b) s.t. ∑
k∈Z

bkdk = x

where dk ∈Ub are individual digits for all k ∈ Z. Note that dk corresponds to a digit
to the left of the radix point only when k ≥ 0. In reference to the position of a digit,
the term index is used. A digit at the kth index of an expansion refers to the digit k
positions to the left of the units’ column. Hence, a digit at index 0 is a digit in the units
column. If no digit appears at the kth index, the digit is assumed to be zero. Considering
that some values of x and b have two expansions (such as in the cases 0.9(10) = 1(10)

or 1.2AC(13) = 1.2B(13)), we’ll assume the terminating expansion is always preferred.
For brevity, we’ll introduce the notation d j→k(b) as shorthand for d jd j−1 . . .dk+1dk(b).
Furthermore, let d j→k(b) ⊆ x represent, disregarding sign and radix point, that the
sequence of digits d j→k(b) occurs in the base-b expansion of x. For example

ABC(13) ⊆−A.BC(13).

If x ∈ Z≥0, then k < 0 =⇒ dk = 0. Hence, for non-negative integer values, the base-b
expansion of x can simply be written dm→0(b), where m ∈ Z≥0 is the largest index such
that dm 6= 0 (assuming x 6= 0, otherwise m = 0).

Adapted from a definition by Greg Oman [1], the Base-13 function f is defined in plain
language as follows:

For any x ∈R, k ∈ Z, let dk represent the digit at index k in the tridecimal expansion of
|x|. A few cases are considered:



42 BSU Undergraduate Mathematics Exchange Vol. 15, No. 1 (Fall 2021)

• Case 1: Suppose there exists a digit A⊆ |x|, such that all digits to the right of
such do not contain A or B, and there exists exactly one C ⊆ |x| to the right of
such A. Let the digits between A and C be denoted d jA−1→ jC+1, where jA and
jC are the respective indices of such A and C. Let the digits after C be denoted
d jC−1→−∞. Let f (x) = +d jA−1→ jC+1.d jC−1→−∞(10).

• Case 2: Suppose there exists a digit B⊆ |x|, such that all digits to the right of
such do not contain A or B, and there exists exactly one C ⊆ |x| to the right of
such B. Let the digits between B and C be denoted d jB−1→ jC+1, where jB and
jC are the respective indices of such B and C. Let the digits after C be denoted
d jC−1→−∞. Let f (x) =−d jB−1→ jC+1.d jC−1→−∞(10).

• Otherwise: f (x) = 0 if x is not of either form.

Here, d jC−1→−∞ is shorthand for limk→−∞ d jC−1→k(13). It’s important to recognize that
the final result in cases 1 and 2 are decimal expansions, despite using digits from the
tridecimal expansion of |x|. This is possible because in either case, the result only uses
digits after the right-most A or B. Hence, the proceeding digits do not contain A or B.
There’s expectantly exactly one proceeding C, (the only other possible tridecimal digit
which isn’t also a decimal digit) however, which incidentally is excluded in the result.
Hence, all digits in the result are indeed decimal. Essentially, f is a recompilation of
some of the decimal digits in the tridecimal expansion of |x|, using a specific C (if it
exists) as a decimal point, and A or B as the sign. Here are a few examples that cover
all cases:

f (−B1A.3C1415 . . .(13)) = π

f (137(13)) = 0

f (0.B17C11(13)) =−17.11(10)

f (0.A1C1(13)) = 0

f (0.A1C1(13)) = 0

f (0.A999C9(13)) = 1000(10)

It may be easy to see why f passes through all values of R within every non-zero-length
interval. Regardless, proofs of its properties are not the purpose of this paper. Since
the digit manipulation in f is not trivial, the ability to define f using only standard
mathematical operations is not immediately clear.

Theorem 1. There exists a closed-form g : Z→ R such that g ⊆ f , where f is the
Conway Base-13 Function.

Understandably, such a prospect would benefit from quantifying its cases. The condition
of the existence of a digit A or B ⊆ |x|, such that all digits to the right of such do
not contain A or B can be quantified as ∃ jA

[
d jA = A∧ 6 ∃k < jA(dk ∈ {A,B})

]
or

∃ jB
[

d jB = B∧ 6 ∃k < jB(dk ∈ {A,B})
]

respectively. With the added condition that
there exists exactly one C ⊆ |x| to the right of such A or B, the cases become

case 1 ⇐⇒ ∃ jA
[

d jA = A∧ 6 ∃k < jA(dk ∈ {A,B})∧∃! jC < jA(d jC =C)
]

case 2 ⇐⇒ ∃ jB
[

d jB = B∧ 6 ∃k < jB(dk ∈ {A,B})∧∃! jC < jB(d jC =C)
]
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This gives rise to an equivalent piecewise formulation:

f (x) =


+d jA−1→ jC+1.d jC−1→−∞(10) : case 1
−d jB−1→ jC+1.d jC−1→−∞(10) : case 2
0 : otherwise

2 Closed Form Expressions
As indicated and motivated by Nate Eldredge [4], a construction of f using only
arithmetic functions is a possible procedure, albeit tedious and logic-heavy. It requires
quite the array of functions designed to arbitrarily manipulate digits and test for logical
conditions. This does not guarantee that the procedure will have a closed form over the
entirety of R, however it does give credence for a closed form over Z.

2.1 Closed Form Operations
As there is no universal definition for closed-form expressions, we assume a conserva-
tive definition.

Definition 2. Let an operation be considered closed-form if it can be equivalently
expressed in a finite number of operations, of which include addition, subtraction,
multiplication, division, exponentiation, principal roots, and the principal branch of the
logarithm.

This definition is restrictive so that operations that fulfill this conservative definition
expectantly fulfill more liberal ones [2]. As evident in following sections, a significant
number of arithmetic digit manipulation relies on the floor and ceiling operations.
These can be defined through the use of their relationship to the modulo operation in
floored division [3]:

bxc := x− (x mod 1),
dxe := x+((−x) mod 1).

Here, mod is used as a binary operation as opposed to its use in congruence relations.
It can be defined though the use of the periodic nature of the principal branch of the
logarithm

x mod y :=
y

2πi
Log

(
e

2πix
y
)

assuming 0≤ 1
i Log

(
eiθ
)
< 2π ∀θ ∈ R. Hence, the floor, ceiling, and modulo opera-

tions will be considered closed-form. Similarly, the absolute value operation can be
defined closed-form through the use of the principal square root, |x| :=

√
x2.

2.2 Logical-Conditional Functions
Given the natural piecewise definition of the Base-13 function, a multitude of functions
that act for testing logical conditions are constructed. In particular, we construct func-
tions that check for equality and inequality relations between two real numbers.
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Definition 3. Let E, the “equivalence function”, be defined as

E(a,b) := b(1+ ε)−|a−b|c such that ε > 0, ∀a,b ∈ R.

It is easily shown that

E(a,b) =

{
1 : a = b
0 : a 6= b

For brevity, the “negation” of the equivalence function will also be used.

Definition 4. Let N, the “non-equivalence function”, be defined as

N(a,b) := 1−E(a,b) ∀a,b ∈ R.

Similarly,

N(a,b) =

{
1 : a 6= b
0 : a = b

Definition 5. Let GE , the “greater-than or equal-to function”, be defined as

GE(a,b) :=
⌊1

2
+

1
1+(1+ ε)b−a

⌋
such that ε > 0, ∀a,b ∈ R.

Although not as trivial as the equivalence function, it can be shown that

GE(a,b) =

{
1 : a≥ b
0 : a < b

Definition 6. Let M, the “minimum function”, be defined as

M(a,b) := aGE(b,a)+bGE(a,b)−aE(a,b), ∀a,b ∈ R.

By definition of GE , it is clear that

M(a,b) =

{
a : a≤ b
b : a > b

These functions enable the ability to arithmetically test for logical conditions. With
such, some digit manipulation that is naturally a more piecewise procedure, may instead
be done entirely arithmetically.

3 Digit Manipulation
Singling-out digits from an expansion is the most critical ability of digit manipulation.
As such, let us introduce the following closed-form functions:
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Definition 7. Let
←−
T , the “trailing-digit-truncation function”, be defined as

←−
T n

b(x) :=
⌊ x

bn

⌋
∀x ∈ Z≥0, for any base b ∈ Z>1, and any digit-index n ∈ Z≥0.

In essence,
←−
T removes the right-most n digits from a base-b expansion of x. More

formally, it removes digits with indices less than a given index n.

Lemma 8. x = dm→0(b) =⇒ ←−T n
b(x) = dm→n(b)

Proof: Suppose x = dm→0(b). By definition of positional notation, x = ∑
m
k=0 bkdk.

Plugging this into
←−
T yields

←−
T n

b(x) =

⌊
∑

m
k=0 bkdk

bn

⌋
=

⌊ m

∑
k=0

bk−ndk

⌋

which can be split into a whole and fractional part.

=

⌊ m

∑
k=n

bk−ndk +
n−1

∑
k=0

bk−ndk

⌋
=

m

∑
k=n

bk−ndk +

⌊n−1

∑
k=0

bk−ndk

⌋
=

m

∑
k=n

bk−ndk

We are left with a recompilation of the digits dm→n, such that dn is now directly to the
left of the radix point. In our notation, this is written dm→n(b). �

For example,
←−
T 2

10(123456(10)) = 1234(10). In conjunction, the selection of an arbitrary
digit at a given index is possible.

Definition 9. Let D, the “digit-selection function”, be defined as

Dn
b(x) :=

←−
T n

b(x)−b
←−
T n+1

b (x)

∀x ∈ Z≥0, for any base b ∈ Z>1, and any digit-index n ∈ Z≥0.

This grants the ability to retrieve a digit at the nth index of the base-b expansion of x
within a closed-form manner. This ability is most critical in construction of the Base-13
Function.

Lemma 10. x = dm→0(b) =⇒ Dn
b(x) = dn
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Proof: Suppose x = dm→0(b). Using Lemma 8, D becomes

Dn
b(x) =

m

∑
k=n

bk−ndk−b
m

∑
k=n+1

bk−n−1dk

=
m

∑
k=n

bk−ndk−
m

∑
k=n+1

bk−ndk

= dn +
m

∑
k=n+1

bk−ndk−
m

∑
k=n+1

bk−ndk

= dn

�

For example, D2
10(123456(10)) = 4(10). Not surprisingly, the number of digits in an

expansion can also be deduced arithmetically.

Definition 11. Let L, the “length function”, be defined as

Lb(x) := dlogb(x+1)e+E(x,0)

∀x ∈ Z≥0, for any base b ∈ Z>1.

This is variant of the usual method to count the number of digits: blogb(x)c+ 1.
However the latter is undefined for the case x = 0, whereas Lb(0) = 1. Otherwise both
methods are equivalent over the positive integers.

Lemma 12. x = dm→0(b)∧ x > 0 =⇒ Lb(x) = m+1

Proof : Suppose x = dm→0(b)∧ x > 0,

=⇒ Lb(x) =
⌈

logb

(
1+

m

∑
k=0

bkdk

)⌉
=⇒

⌈
logb(b

m)
⌉
< Lb(x)≤

⌈
logb(b

m+1)
⌉

=⇒ m < Lb(x)≤ m+1
=⇒ Lb(x) = m+1

�

For example, L10(10(10)) = L10(99(10)) = 2. If x ∈ Z≥0 and d ∈Ub, then functions
D,E,L can be used to count the occurrences of d in the base-b expansion of x.

Definition 13. Let O, the “digit-occurrence-counting function”, be defined as

Op
b(x) :=

Lb(x)−1

∑
k=0

E(Dk
b(x), p)

∀x ∈ Z≥0, for any base b ∈ Z>1, and any digit p ∈Ub.
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It should be evident that as O loops through all possible indices, k, for digits in the base-
b expansion of x, the summation increments by 1 iff the digit at index k is equivalent to
the given digit p, which we are looking to count the occurrences of. In other words, O
counts the number of occurrences of a digit p in the base-b expansion of x.

Less trivial is a method to deduce the a specific index of an occurrence of a given
digit.

Definition 14. Let I, the “digit-occurrence-index function”, be defined as

Ip
b (x) :=

Lb(x)

∑
k=1

E
(

Op
b

(←−
T k

b(x)
)
,Op

b(x)
)

∀x ∈ Z≥0, for any base b ∈ Z>1, and any digit p ∈Ub.

The purpose of I is to return the index of the right-most digit p in the base-b expansion
of x. If there isn’t such an index, then I returns Lb(x), which is by definition a number
higher than the maximum index of a nonzero digit.

Lemma 15.

x = dm→0(b) =⇒ Ip
b (x) =

{
j : ∃ j

[
d j = p∧∀k < j(dk 6= p)

]
Lb(x) : otherwise

Proof: Suppose x = dm→0(b). We’ll look at the case where there does exist a right-most
digit p in the base-b expansion of x.

Case 1: ∃ j
[
d j = p∧∀k < j(dk 6= p)]

Thus, with such a digit having index j, truncating off digits of x with indices less than
k for k ≤ j, yields a number with no occurrences of p removed. Likewise, truncating
for k > j yields a number with at least one less occurrence of p.

k ≤ j ⇐⇒ Op
b

(←−
T k

b(x)
)
= Op

b(x)

=⇒ E
(

Op
b

(←−
T k

b(x)
)
,Op

b(x)
)
=

{
1 : k ≤ j
0 : k > j

Thus, the summation can be split into

Ip
b (x) =

j

∑
k=1

1+
Lb(x)

∑
k= j+1

0 = j

Resulting in the index, j.

Case 2: @ j
[
d j = p∧∀k < j(dk 6= p)

]
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In the other case, since x is an integer of finite digits, there not being a right-most digit
p implies that there are no occurrences.

Op
b

(←−
T k

b(x)
)
= Op

b(x) = 0 ∀k

=⇒ E
(

Op
b

(←−
T k

b(x)
)
,Op

b(x)
)
= 1

=⇒ Ip
b (x) =

Lb(x)

∑
k=1

1

= Lb(x).

As such, the sum is trivially the bound, Lb(x).

Therefore x = dm→0(b) =⇒ Ip
b (x) =

{
j : ∃ j

[
d j = p∧∀k < j(dk 6= p)

]
Lb(x) : otherwise

�

In parody to
←−
T , we’ll define a function that virtually removes the left-most n digits

from a base-b expansion of x.

Definition 16. Let
−→
T , the “leading-digit-truncation function”, be defined as

−→
T n

b(x) :=
Lb(x)−n−1

∑
k=0

bkDk
b(x)

∀x ∈ Z≥0, for any base b ∈ Z>1, for any digit-index n ∈ Z≥0

Clearly,
−→
T reassembles the digits in the base-b expansion of x into their original

position, save for the last n digits.

Definition 17. Let K, the “cut-to-index function”, be defined as

K p
b (x) :=

Ip
b (x)

∑
k=0

bkDk
b(x)

∀x ∈ Z≥0, for any base b ∈ Z>1, for any digit p ∈Ub.

Similar to
−→
T , K reassembles the digits in the base-b expansion of x into their original

position, save for the last digits with indices greater than Ip
b (x). For the case where

p * x, we find that Ip
b (x) = Lb(x), which implies that Kd

b (x) = x.

4 Assembling The Conway Base-13 Function
Perhaps the most daunting of tasks to replicate in the Conway Base-13 Function is
recompiling digits in an expansion from one base to another, and replacing a digit with
a radix-point.



Arithmetic Digit Manipulation and The Conway Base-13 Function 49

Definition 18. Let X , the “base-to-base re-radix function”, be defined as

X p
b1,b2

(x) :=
Lb1 (x)−1

∑
k=0

N(Dk
b1
(x), p)Dk

b1
(x)b

k−Ip
b1
(x)−GE (I

p
b1
(x),k)

2

∀x ∈ Z≥0, for any bases b1,b2 ∈ Z>1, and any digit p ∈Ub1 .

X removes a specific digit p, with index j in the base-b1 expansion of x. This position
will be virtually used as a new radix-point. Digits to the left of p (with indices k > j)
are placed directly to left of this new radix, and digits to the right of p (with indices
k < j) are placed directly to the right. The final result is treated as a base-b2 expansion.
For the instances where there are multiple occurrences of p, such a case is evidently
disregarded in further construction of the Base-13 function.

Lemma 19.

x = dm→0(b1)∧∃! j(d j = p) =⇒ X p
b1,b2

(x) = dm→ j+1.d j−1→0(b2) ∀b2 ∈ Z≥b1

Proof : Suppose x = dm→0(b1) and ∃! j(d j = p). Thus the index, j, is given by Ip
b1
(x) = j.

A digit at index k is given by Dk
b1
(x) = dk. Hence ∀b2 ∈ Z≥b1 , substituting for our

positional notation,

N(Dk
b1
(x), p)Dk

b1
(x)b

k−Ip
b1
(x)−GE (I

p
b1
(x),k)

2 =


dkbk− j

2 if k < j
0 if k = j
dkbk− j−1

2 if k > j

which can be used to split the sum into

X p
b1,b2

(x) =
j−1

∑
k=0

dkbk− j
2 +

m

∑
k= j+1

dkbk− j−1
2

We are left with two recompilations of digits from base-b1 to base-b2, with the digits to
the left of p directly to left of the radix, and digits to the right of p to the right. In our
positional notation, this is equivalent to dm→ j+1.d j−1→0(b2).

�

For example, XC
13,10(1C3(13)) = 1.3(10). Lastly, we’ll introduce a method to detect

whether one of two given digits are contained within a base-b expansion. This will act
as the step in determining if the final expansion of Conway’s Base-13 function will be
positive or negative.

Definition 20. Let S, the “resulting-sign function”, be defined as

Sp1,p2
b (x) := E

(
Op1

b (x),1
)
−E

(
Op2

b (x),1
)

∀x ∈ Z≥0, for any base b ∈ Z>1, for any digits p1, p2 ∈ {0, . . . ,b−1}.
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Unlike the previous function, S is much simpler in description. If there exists exactly
one p1 ⊆ x, and not exactly one p2 ⊆ x (assuming a base-b expansion), then Sp1,p2

b (x) =
1. Similarly, Sp1,p2

b (x) = −1 if there exists exactly one p2 ⊆ x, and not exactly one
p1 ⊆ x. Otherwise the result is zero.

Lemma 21.

x = dm→0(b) =⇒ Sp1,p2
b (x) =


+1 : ∃! j1(d j1 = p1)∧@! j2(d j2 = p2)

−1 : @! j1(d j1 = p1)∧∃! j2(d j2 = p2)

0 : otherwise

Proof : Suppose x= dm→0(b). With the definitions of E and O, the values of S, defined by
E
(
Op1

b (x),1
)
−E

(
Op2

b (x),1
)
, in the following case-table are straightforward.

cases ∃! j1(d j1 = p1) @! j1(d j1 = p1)

∃! j2(d j2 = p1) Sp1,p2
b (x) = 1−1 = 0 Sp1,p2

b (x) = 0−1 = −1
@! j2(d j2 = p2) Sp1,p2

b (x) = 1−0 = 1 Sp1,p2
b (x) = 0−0 = 0

�

With an arsenal of closed-form logical-conditional and digit manipulating functions,
the Conway Base-13 Function can be constructed.

Theorem 2 There exists a closed-form g : Z→ R such that g ⊆ f , where f is the
Conway Base-13 Function.

Proof. Let f1(x) = M
(

KA
13|x|,KB

13|x|
)
. After applying f1 to an integer x, digits directly

to the left of the rightmost A or B in the tridecimal expansion of x are truncated. As
the sign of the input is disregarded in the Base-13 Function, the absolute value of x is
taken for each instance of x in f1. For any k ∈ Z, let dk represent the digit at index k in
the tridecimal expansion of |x|. Let the rightmost-index of A be written as IA

13|x|= jA
and the rightmost-index of B be written as IB

13|x|= jB. Note that by our definitions of I
and K,

A * x =⇒ jA = L13|x| =⇒ KA
13|x|= |x|

B * x =⇒ jB = L13|x| =⇒ KB
13|x|= |x|

Since L is monotonically increasing, the inequality relation between jA and jB implies

jA ≤ jB ⇐⇒ L13

(
KA

13|x|
)
≤ L13

(
KB

13|x|
)
⇐⇒ KA

13|x| ≤ KB
13|x|

jB ≤ jA ⇐⇒ L13

(
KB

13|x|
)
≤ L13

(
KA

13|x|
)
⇐⇒ KB

13|x| ≤ KA
13|x|

Therefore, they determine the value of M by

jA ≤ jB ⇐⇒ M
(

KA
13|x|,KB

13|x|
)
= KA

13|x|

jB ≤ jA ⇐⇒ M
(

KA
13|x|,KB

13|x|
)
= KB

13|x|
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Consequently f1 becomes

f1(x) =


KA

13|x| : jA < jB
KB

13|x| : jB < jA
|x| : otherwise

And by definition of K, the function f1 can be represented

f1(x) =


Ad jA−1→0(13) : A⊆ x∧ jA < jB
Bd jB−1→0(13) : B⊆ x∧ jB < jA
|x| : otherwise

Next, let f2(x) = f1(x)E
(

OC
13

(
f1(x)

)
,1
)

. In f2, we are checking if after such an A or
B, there exists exactly one C leftover in the tridecimal expansion of f1(x). If there does
not exist exactly one such C,

OC
13
(

f1(x)
)
6= 1 =⇒ E

(
OC

13
(

f1(x)
)
,1
)
= 0 =⇒ f2(x) = 0

Otherwise, let the index of such be denoted IC
13

(
f1(x)

)
= jC. Therefore

f2(x) =


Ad jA−1→ jC+1Cd jC−1→0(13) : A⊆ f1(x)∧OC

13( f1(x)) = 1
Bd jB−1→ jC+1Cd jC−1→0(13) : B⊆ f1(x)∧OC

13( f1(x)) = 1
f1(x) : A,B * f1(x)∧OC

13( f1(x)) = 1
0 : OC

13( f1(x)) 6= 1

Lastly, let f3(x) = SA,B
13

(
f2(x)

)
XC

13,10

(−→
T 1

13
(

f2(x)
))

. This final function determines
the sign of the final result, truncates off the leftover A or B, recompiles the tridecimal
expansion into decimal, and essentially replaces C with a decimal point (assuming
C ⊆ f2(x)). By the definition of S and f2, we find that

SA,B
13

(
f2(x)

)
=


+1 : A⊆ f2(x)
−1 : B⊆ f2(x)
0 : otherwise

and by our definition of
−→
T ∗,

−→
T 1

13
(

f2(x)
)
=


d jA−1→ jC+1Cd jC−1→0(13) : A⊆ f1(x)∧OC

13( f1(x)) = 1
d jB−1→ jC+1Cd jC−1→0(13) : B⊆ f1(x)∧OC

13( f1(x)) = 1
dL13|x|−2→0(13) : A,B * f1(x)∧OC

13( f1(x)) = 1
0 : OC

13( f1(x)) 6= 1
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Hence, by definition of X ,

XC
13,10

(−→
T 1

13
(

f2(x)
))

=
d jA−1→ jC+1.d jC−1→0(10) : A⊆ f1(x)∧OC

13( f1(x)) = 1
d jB−1→ jC+1.d jC−1→0(10) : B⊆ f1(x)∧OC

13( f1(x)) = 1
dL13|x|−2→ jC+1.d jC−1→0(10) : A,B * f1(x)∧OC

13( f1(x)) = 1
0 : OC

13( f1(x)) 6= 1

Therefore, the final result is of form

f3(x) =


+d jA−1→ jC+1.d jC−1→0.(10) : A⊆ f2(x)∧C ⊆ f2(x)
−d jB−1→ jC+1.d jC−1→0.(10) : B⊆ f2(x)∧C ⊆ f2(x)
0 : otherwise

It should be seen that when x is an integer, the result for each case in f3 is equivalent
to f , the Base-13 function. Furthermore, as the cases from our original quantification
from the plain-language definition hold equivalently, we find that f3 ⊆ f , directly
satisfying that f3 is a closed-form representation of the Conway Base-13 Function over
the integers.

5 Concluding Remarks
Due to the fractal-like symmetry of f , such that f (13nx) = f (x)∀n ∈ Z, it’s possible
to extend f3 : Z→ R to f3 : Z[ 1

13 ]→ R by imposing that if x = y
13n ∀y ∈ Z, ∀n ∈ Z≥0,

then f3(x) = f3(y). This was done in the creation of Figure 1. It may be possible to
extend f3 to even larger sets of numbers whose distribution of digits are known, but
a closed-form for f over the entirety of R is impossible, as the digit-distribution for
every real number is not computable [4].

It is no doubt that the computational efficiency of these algorithms is far from optimal. A
computer can perform a variety of digit manipulation tasks directly and quite efficiently,
without the use of arithmetic closed-form functions such as these. The purpose, rather,
was to fulfill the recreational endeavor of finding the first equation for Conway’s Base-
13 Function, based solely on finite arithmetic. This work was inspired by the recent
passing of John H. Conway (1937→2020).
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