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A Word from the Editor

The editorial board is pleased to present our latest issue of the Mathematics
Exchange, a collection of six articles of interest to a broad audience at the undergraduate
level. We appreciate how authors inspire and motivate our readership to follow their
example in sharing their love of mathematics, and we hope you enjoy the fruits of their
labor. We believe that getting students involved in publishing mathematics is a true
milestone in helping them find their (permanent) place in the mathematical community,
and we are honored and proud to be a part of that endeavor.

Graph coloring is an important subfield of graph theory. The smallest number of
colors needed to color the vertices of a graph so that no two adjacent vertices share
the same color is referred to as the chromatic number of the graph. The first article
reviews the history of 4-chromatic unit-distance graph, and extends the ideas of the
Fish Graph (O’Donnell and Hochberg, 1996) to construct a 4-chromatic unit-distance
graph containing only 21 vertices, which is an improvement over a construction of
Hochberg and O’Donnell’s graph of the same type of 23 vertices.

The second article is a very clear, understandable, and well-written expository
paper on the famous Čebotarev Density Theorem. It provides all the details needed to
prove the density theorem, and lists important applications showing that the density
theorem has significant implications for primes in arithmetic progressions and binary
quadratic forms. In addition, the explanations of difficult number theory concepts
contained in this article, including L-series and density statements using Galois theory,
are masterfully written. Reading this article will be enjoyable for both advanced
undergraduate students and experts on Čebotarev densities.

The abundancy index of a positive integer is the ratio of the sum of its divisors
and itself. The third article is an interesting expository article on the abundancy index.
This is an accessible topic in elementary number theory, and it has some surprising
connection to the Riemann hypothesis.

John H. Conway’s Base-13 function is a nowhere-continuous, real-valued function
on R. It provides a counterexample to the converse of Intermediate Value Theorem on
any interval of finite length. The value of the Base 13-function f (x) can be described by
manipulating the digits of x′ s base-13 expansion. Although f (x) can be easily defined
in plain language, it is not trivial to formulate it in arithmetic alone. In the fourth article,
the author constructs a closed-form function comprising only of arithmetic and proves
that it is equivalent to the Base-13 function on integers.

The fifth article presents the application of mathematical modeling in financial
problems. To study the optimal balance between savings and consumption, the authors
apply Dynamic Programming and Optimal Control Theory in optimization models.



With the numerical simulation using the past data, they create an optimal monthly
savings and consumption plan for the given financial goal.

The final article is another article dealing with an accessible topic in elementary
number theory. It introduces a generalized definition of amicable numbers, discusses
some related questions, and shows that some integers are not feebly amicable with any
other integer. This article provides a good example of how an undergraduate research
project can be devised.

We hope that you will enjoy reading this issue of the Mathematics Exchange. As
always, we welcome and encourage ideas on how we can better serve our readers.

Ya¹�ua®� ��iao

10.30.2021
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Shaunak Bhandarkar . . . . . . . . . . . . . . . . . . . . . . 9

Measuring Abundance with Abundancy Index
Kalpok Guha, Sourangshu Ghosh . . . . . . . . . . . . . . . 28

Arithmetic Digit Manipulation and The Conway Base-13 Function
Lyam K. Boylan . . . . . . . . . . . . . . . . . . . . . . . . . 40

Dynamic Optimization in Building Personal Emergency Fund
Aqsa Ahad, Aylara Alleyne,Worku T. Bitew, Michael De Oliveira,
Courtney Schordine, Nicholas Seaton . . . . . . . . . . . . . 54

The Abundancy Index and Feebly Amicable Numbers
Jamie Bishop, Abigail Bozarth, Rebekah Kuss, Benjamin Peet 65



2 BSU Undergraduate Mathematics Exchange Vol. 15, No. 1 (Fall 2021)

Ball State Undergraduate Mathematics Exchange
https:// digitalresearch.bsu.edu/mathexchange
Vol. 15, No. 1 (Fall 2021)
Pages 2 – 8

A 21-Vertex 4-Chromatic Unit-Distance Graph
of Girth 4

Daniel Kiteck* , Kourtney Payne

Daniel Kiteck received his Ph.D. in mathematics from the University
of Kentucky in 2008. He has since enjoyed teaching at Indiana
Wesleyan University, where he loves working with undergraduates in
math research.

Kourtney Payne graduated Summa Cum Laude from Indiana Wes-
leyan University in 2017 with a Bachelor’s degree in mathematics.
She currently works as a senior physician compensation analyst at
Sullivan Cotter in Southfield, Michigan.

Abstract The race to find the smallest 4-chromatic unit-distance graph of girth 4 stalled
at 23 vertices in 1996. Using similar ideas to the 23-vertex graph, we constructed
a 21-vertex graph. Unknown to us, the smallest possible of 17 vertices had already
been created, but using a different approach. This paper carefully constructs our novel
21-vertex graph, while also comparing it to the 1996 23-vertex graph. We also give an
overview of the construction of the 17-vertex graph.

1 Introduction
What is the smallest number of colors needed to color the points on the plane so that
no two points at a unit-distance from each other have the same color? This smallest
number is referred to as the chromatic number of the plane. Finding its value is a
prominent open problem over a half-century old (search for Hadwiger-Nelson Problem).
The only possibilities are five, six or seven colors. Four colors was eliminated as an
option in 2018 when a unit-distance graph was found that is 5-chromatic, or, in other
words, requires 5 colors to keep two adjacent vertices from having the same color [1].
Seven colors can be seen as an upper bound by coloring a regular-hexagon tiling of the
plane in the following manner.

*Corresponding author: daniel.kiteck@indwes.edu
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Take a hexagon and its surrounding six hexagons and color them with seven different
colors. Cover the plane by repeating this seven-color block. Depending on the given
unit-distance, one can scale the colored tiling so that any two points a unit-distance
apart will be different colors.

In thinking on the chromatic number of the plane, in 1975, Paul Erdős (of “Erdős
number” fame) wondered if 4-chromatic unit-distance graphs without 3-cycles (or
“triangle-free” or “of girth 4”) exist:

Let S be a subset of the plane which contains no equilateral triangle of
size 1. Join two points of S if their distance is 1. Does this graph have
chromatic number three? [2]

When Erdős republished the problem in 1979, he said the “...chromatic number is
probably at most 3, but I do not see how to prove this.” [3] Uncharacteristic for Erdős,
he predicted incorrectly. In 1979, Nicholas Wormald showed that such a graph does
indeed exist by publishing a 4-chromatic unit-distance 6448-vertex graph without
3-cycles (and, in fact, without 4-cycles) [4].

Alexander Soifer felt like 6448 vertices were a lot. So, in 1992, Soifer informally
asked for the smallest example of a 4-chromatic unit-distance graph without 3-cycles
[5] (p. 41, 110). From 1994 to 1996, three mathematicians accepted the challenge.

Figure 1: 23-Vertex "Fish
Graph" (1996)

Soifer says “A true World Series played out on the pages
of Geombinatorics... ,” a new journal Soifer had recently
started [5] (p. 41, 42). First, the size was greatly reduced
to 56 vertices by Paul O’Donnell in 1994 [6]. O’Donnell
put two 5-pointed stars on a regular decagon, and then
carefully connected seven 5-cycles in his construction.
Next, Kiran Chilakamarri further reduced the size to 47
vertices in January 1995 [7], using a very different graph
than O’Donnell’s; Soifer called this the “Moth Graph” [5]
(p. 118). Rob Hochberg improved the record by one (to
46), but he did not publish this since he heard about an even
better result about to be published [5] (p. 125). The better
result was, in July 1995, O’Donnell regaining first place

with 40 vertices [8]. This graph has five-fold rotational symmetry. But then, O’Donnell
and Hochberg combined forces to make the “Fish Graph” with an impressive 23 vertices
in April 1996 [9] (Figure 1). This was the record for two decades. The details and
pictures of the graphs of this “World Series” are recorded in chapter 15 of Soifer’s book
The Mathematical Coloring Book: Mathematics of Coloring and the Colorful Life of
Its Creators [5]. (This book also states many related open problems.)

We, the authors of the article you are currently reading, thought we had found the
first improvement since the Fish Graph. But only after we had finished our research,
we realized that a 17-vertex graph (the smallest possible) had been found in 2016 by
Geoffrey Exoo and Dan Ismailescu [10] (Figure 4). The following presents a novel
approach to lower the 1996 record by two by extending the ideas of the Fish Graph.
The construction of the Fish Graph will also be reviewed. An overview of the smallest
graph possible, a 17-vertex graph, is given near the end of this article.
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2 Construction of the 21-Vertex Graph
We found a 22-vertex graph (Figure 2) but realized we could coincide the two high-
lighted vertices to make a 21-vertex graph. The construction of the 21-vertex graph
also shows how the 22-vertex graph is constructed.

Begin with a unit square WXYZ (Figure 3a). Add on V1, S and T so two rhombuses
extend from the unit square (Figure 3b). Note that S has freedom to move while still
keeping the graph unit-distance.

Construct pentagon Q1-Q2-Q3-Q4-Q5 where all edges are unit-distance, except possi-
bly Q1-Q5, along with unit attachments Q1-V1, Q1-T, Q2-X, Q3-Z, Q4-X, and Q5-Z
(Figure 3c). Moving S keeps everything unit-distance while taking Q1-Q5 from less
than one unit to more than one unit. Fix S so that Q1-Q5 is unit-distance. This uses the
argument of the Intermediate Value Theorem; this argument can be found in greater
detail in [4] and [8].

The notation “X-Y→Z” is used to mean that Z is constructed to be unit-distance from
both X and Y, such that X-Y-Z-X is counter-clockwise.

Figure 2: 22-Vertex

Select U2 unit-distance from Y. Then do the following con-
struction, where the U’s are vertices of the first pentagon of
the Fish Graph (see below): U2-W→U3, Y-U3→U4, W-
U2→U1, and U4-U1→U5 (Figure 3d). This construction
gives U2 lots of freedom: the pentagon U1-U2-U3-U4-U5
is guaranteed to be unit-length with unit attachments for
a range of choices for U2.

We next construct the second pentagon of the Fish Graph
(see below), indicated with V’s. Start with V1 that is
already constructed. Then do V1-Y→V5, V5-U5→V4,
W-V4→V3, and U5-V3→V2. Finally, connect V2 to V1
to complete the pentagon, but V2-V1 may not be unit-
distance (Figure 3e). Thus, we need to make V2-V1 unit-distance. As U2 varies, the
length of V2-V1 goes from below one unit to above one unit. Thus, fix U2 so that
V2-V1 is one unit (again using the Intermediate Value Theorem). This finishes the
construction of the 21-vertex graph. (Figure 3f).

Now a note on the construction of the Fish Graph. The Fish Graph has the starting
square, but it does not have the two rhombuses or the Q-pentagon (the first pentagon
constructed). Instead, immediately from the starting square, the U-pentagon and
V-pentagon are constructed identically as given (except the vertex V1 will only be
in the V-pentagon, and not overlap a vertex since the Fish Graph does not have the
rhombuses). Then, to complete the Fish Graph, copies of the two pentagons (U and
V) are flipped about the horizontal line through the center of the starting square, and
the two pentagon copies are connected in the same way to the starting square as the
two pentagon originals, just now “upside-down.” This completes the construction of
the Fish Graph and explains its horizontal line of symmetry (Figure 1) [9]. One vertex
coincides with both pairs of pentagons, making 23 vertices instead of 24.

Here is a proof that the new 21-vertex graph is 4-chromatic. The proof uses elements
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(a)
(b)

(c)
(d)

(e) (f)

Figure 3: Constructing 21-Vertex Graph

from the proof for the Fish Graph (see below). In any attempted 3-coloring of the
21-vertex graph, one pair of diagonal vertices of the starting unit square must be the
same color. Suppose W and Y are the same color, say green. It follows that U5 must
also be green. Regardless of how the remaining vertices are colored, every vertex of the
V-pentagon is now attached to a green vertex, so the V-pentagon can only be colored
with two colors different than green, say blue and red. But pentagons are 3-chromatic,
so a fourth color must be introduced.

Now suppose X and Z are the same color, say green. Let W be red and Y be blue. It
follows that at least one of V1 and T must be green since otherwise S would be adjacent
to three different colors with V1, Z, and T, so S would be forced to be a fourth color.
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Then all five vertices of the Q-pentagon are attached to green vertices, so green cannot
be used to color the Q-pentagon. But since pentagons are 3-chromatic, a fourth color
must be introduced.

For the Fish Graph, the two pairs of pentagons (original U and V and the copies of U
and V) work the same way on the vertices of the starting square as the U/V pair and Q
pentagon do in the 21-vertex graph, making the Fish Graph 4-chromatic as well.

3 The Smallest Possible: a 17-Vertex Graph Found by
Exoo and Ismailescu (2016)
As mentioned, we, the authors, were initially unaware that the 1996 record of 23
vertices in the Fish Graph had already been bettered in 2016. In fact, the new record
of 17 vertices has been shown to be the smallest possible 4-chromatic unit-distance
graph without 3-cycles (Figure 4). The full construction by Geoffrey Exoo and Dan
Ismailescu is in [10]. The following gives an overview.

In a graph, a set of vertices is called independent if no two vertices in the set are
adjacent. For their starting strategy, Exoo and Ismailescu say “The crucial idea of our
approach is summarized in the two paragraphs below.”

Let G be a triangle-free 3-chromatic unit distance graph. For a given
proper 3-coloring of the vertices, and a given independent set I, we say
that I is monochromatic if all vertices of I receive the same color.

Let I be a collection of independent sets of size 3 such that for every
proper 3-coloring of G there exists a set I ∈I which is monochromatic.
It is then sufficient to attach 5-cycles only to the independent sets from I ,
and the resulting graph will still be 4-chromatic. [10](p. 52)

This is a generalization of the technique used in the Fish Graph and this paper’s 21
vertex graph: A set of pentagon(s) (“5-cycles”) is attached in a manner where any
proper coloring would have them attached to a monochromatic set, thus forcing another
color, so pushing the graph from 3-chromatic to 4-chromatic.

Exoo and Ismailescu then use this method to construct a desired 21-vertex graph
(distinctly different from the 21-vertex graph given in this paper– the 21-vertex graph
by Exoo and Ismailescu has no connection to the Fish Graph). They start with an
11-vertex graph, and using a computer program, show that there is the desired collection
of two independent sets (that at least one of the sets is monochromatic for any proper
coloring). Then, laying the 11-vertex graph on a coordinate plane, they use computation
technology to solve a system of non-linear equations that come from the restrictions
of the graph to find the proper 5-cycles to attach, and where to attach them. Since
two 5-cycles are attached, the graph is pushed up from 11 to 21 vertices. They then
immediately better the 21 vertices. They show that one can find a starting graph with
only one independent set that must be monochromatic regardless of coloring. The
starting graph has 14 vertices, so when the 5-cycle is attached, the resulting final graph
has only 19 vertices. This can be shown to be the smallest such graph using the strategy
of independent sets and attaching 5-cycles. Exoo and Imailescu then wondered if they
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could be close enough to use computation technology to find any smaller, even the
smallest.

They searched for graphs of order n that satisfy the following properties:

• 4-chromatic and edge critical, that is removal of any edge produces
a graph which is 3-colorable.

• triangle-free and contain no forbidden subgraph of order up to 7
inclusive [10] (p. 61)

Figure 4: 17-Vertex: a smallest possible triangle-free 4-chromatic unit-distance graph,
by Exoo and Ismailescu in 2016; picture from [10] p. 63

They did not elaborate on how they searched for these graphs. From these graphs,
they then determined which could be unit-distance. They found none with less than 16
vertices. They found one with 16 vertices, but it did not work because there were two
places where there was a unit-distance between a pair of vertices, and when the edges
were filled in, it caused triangles. There were no others with 16 vertices. But they found
one with 17 vertices. To show that a unit-distance embedding existed, they solved a
non-linear polynomial system of six equations and six unknowns. “This system has 48
real solutions...which translates into 12 different embeddings discounting symmetries”
[10] (p. 61). Since any smaller graphs would have shown up in their exhaustive list, 17
vertices must be the smallest possible.

The question still remains of what is the smallest 4-chromatic unit-distance graph with
no 3-cycles and no 4-cycles. The smallest known 4-chromatic unit-distance graph with
no 3- or 4-cycles is with 45 vertices [9]. But is this the smallest? This can be extended
for larger cycles. It is hoped that considerations along these lines might help solve the
chromatic number of the plane problem.

The authors thank Robert Hochberg for pointing us in the right direction going from 22
vertices to 21 vertices.
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On the Density Theorem of Čebotarev
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Shaunak Bhandarkar wrote the following expository paper when
he was a junior at Homestead High School in California. He has
currently begun his undergraduate studies at Stanford University and
is excited to explore fields like algebraic number theory in greater
depth.

Abstract

In this paper, we do exactly what the title implies: prove the Čebotarev Density
Theorem. This is an extremely valuable theorem because it is a vast generalization of
Dirichlet’s Theorem on primes in an arithmetic progression, which states that for any
a,n ∈+ relatively prime, there are infinitely many primes that are ≡ a (mod n). Our
theorem goes even further to the case of other number fields; we will show that the
prime ideals in an imaginary quadratic field K are virtually equidistributed among the
conjugacy classes of Artin symbols in the Galois group of a Galois extension L over K.
Note that L need not be abelian over K.

1 Introduction
We start by introducing the L-functions. This will familiarize us with the most basic
definitions as well as important functions. Then, we talk about convergence of L-
functions, which will be especially important in later sections.

Next, we briefly visit some character theory. Specifically, the study of Dirichlet charac-
ters will help us prove important statements regarding partial zeta functions that will aid
us in our journey to the Density Theorem. We then return to our study of L-functions
and incorporate some of the theory that we have built up to this point. In particular, we
derive an important theorem regarding where an L-function is analytic.

At this point, we introduce the notion of density. Starting with polar density, we explore
various density-related properties and go on to prove some powerful results, such as
the Artin map being surjective.

*Corresponding author:shaunakb@stanford.edu
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Then, we move on to Dirichlet density (and briefly introduce natural density). We prove
that if polar density exists, then so does Dirichlet density, and that the two are equal.
This nicely connects these two forms of density. We also explore some properties of
Dirichlet density.

In the next section, we deepen our treatment of L-functions. We introduce several of
the concepts in class field theory that allow us to derive preliminary density results.
Most importantly, we prove that for a nontrivial Dirichlet character of the ray class
group, the corresponding L-function does not vanish at s = 1.

By generalizing our arguments in the study of L-functions, we establish the theory
needed to prove the main theorem in the case of an abelian extension L⊃ K. At this
point, we finally arrive at the main theorem, and prove it in the case of non-abelian
extensions by cleverly connecting it to the abelian case.

Finally, we come to what is arguably the most important section: applications of the
Čebotarev Density Theorem. This theorem has prolific applications, ranging from the
theory of binary quadratic forms to the first main theorem of complex multiplication,
although we just list a few. We then part with some concluding remarks.

2 A Review of L-Series
In this paper, we follow largely follow arguments presented in Milne [5] (i.e. most of
the definitions, lemmas, propositions, and theorems we prove originate from there).
For the enthusiastic reader interested in learning class field theory, Milne’s notes are
an excellent resource! We start by introducing basic notions needed to prove the
main theorem. The first big topic is L-Series. These sums carry valuable information
pertaining to prime density, which we will see later on. We assume prior knowledge
of group theory (see Artin [3]) as well as basic knowledge of number fields and
algebraic number theory. For a refresher of some of the assumed knowledge, check out
Bhandarkar[7].

Definition 1. A Dirichlet series is a sum of the form

f (s) = ∑
n≥1

a(n)
ns

where a(n) ∈ and s = σ + it ∈. An Euler product belonging to a number field K is a
product of the form

g(s) = ∏
p

1
(1−θ1(p)Np−s) · · ·(1−θd(p)Np−s)

where θi(p) ∈, s ∈, and p runs over all but finitely many prime ideals of the ring of
integers, OK . Also, N over here denotes the norm function.

Let us look at two important examples of Dirichlet series.

1. The Riemann zeta function is

ζ (s) = ∑
n≥1

1
ns = ∏

p

1
1− p−s
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Notice that the sum is equal to the product because of unique factorization in .

2. More importantly, we will explore the Dedekind zeta function,

ζK(s) = ∑
a≥0

1
Nas = ∏

p

1
1−Np−s

The sum is over the integral ideals of OK while the product is over the prime
ideals of OK . Furthermore, the sum above is equal to the product because of
unique factorization of ideals into prime ideals in the ring of integers OK (because
it is a Dedekind domain).

Definition 2. Let ImK denote the set of fractional ideals in OK that are coprime to the
modulus m. Define a Dirichlet character χ to be a homomorphism

χ : ImK −→×

that is trivial over the principal class PK,1 of the ray class group Cm = ImK /PK,1. In other
words, χ is a character over the ray class group.

Notice that χ somewhat resembles the Artin map (which we will explicitly characterize
in Theorem 20), though it is not quite the same. Still, characters are especially useful
when dealing with L-functions.

Definition 3. A Dirichlet L-series for a given character χ is

L(s,χ) = ∑
a⊂OK ,(a,m)=1

χ(a)

Nas = ∏
(p,m)=1

1
1−χ(p)Np−s

Once again, we can turn the sum into the product because of unique factorization of
ideals in OK .

3 Convergence of L-series
In this section, we list some analytic statements regarding the convergence of Dirichlet
series. We omit the proof of most theorems in this section; they generally reduce to
extensive computation. Still, they make good exercises for the reader.

Let

f (s) = ∑
n≥1

a(n)
ns

be a Dirichlet series and let S(x) = ∑n≤x a(n), and suppose there exist constants a and
b such that |S(x)| ≤ axb for all large x. Then, f (s) converges uniformly for s in

D(b,δ ,ε) = {ℜ(s)≥ b+δ ,arg(s−b)≤ π/2− ε}

for all δ ,ε ≥ 0, and it converges to an analytic function on the half plane ℜ(s) > b.
(Note that ℜ(s) denotes the real part of s.)

Lemma 4. The Riemann zeta function ζ (s) has a meromorphic continuation to the
half plane ℜ(s)> 0 with a simple pole at s = 1.
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Lemma 5. For s real and s > 1,

1
s−1

≤ ζ (s)≤ 1+
1

s−1

Hence, ζ (s) has a simple pole at s = 1 and

ζ (s) =
1

s−1
+ function holomorphic near 1

Proof. This is left as an exercise to the reader. (Hint: Look at the graph of y = x−s and
relate ζ (s) to the area under the curve.)

Armed with this fact, we can look at other interesting Dirichlet series.

Let f (s) be a Dirichlet series for which there exists constants C, a, and b < 1 such
that |S(x)−ax| ≤Cxb. Then, f extends to a meromorphic function on ℜ(s)> b with a
simple pole at s = 1 with residue a.

Proof. For the Dirichlet series f (s)− aζ (s), |S(x)| ≤ Cxb, so by Proposition , this
series converges for ℜ(s)> b. The result readily follows.

Before we move on, we encounter one last lemma that will prove to be useful
soon.

Lemma 6. Let u1,u2, · · · be a sequence of real numbers ≥ 2 for which

f (s) =
∞

∏
j=1

1
1−u−s

j

is uniformly convergent on each region D(1,δ ,ε) (with δ ,ε > 0). Then,

log f (s)∼∑
1
us

j

as s→ 1+ (i.e. s→ 1 with ℜ(s)> 1).

Proof. This is a simple exercise in manipulating sums. (Hint: use the Maclaurin series
for log(1− x) and then break the double sum apart.)

4 haracters and Partial Zeta Functions
Now, we introduce some basic character theory. In particular, knowing certain state-
ments about characters - namely, the orthogonality relations - will aid us in our study
of L-functions.

Definition 7. A one-dimensional representation of a group G, i.e. χ : G −→× is a
character of G. Note that this map is a homomorphism.
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For a character χ of G, we have that ∑a∈G χ(a)=

{
|G| if χ = χ0 (the trivial character)
0 otherwise

Proof. The first part is obvious. If we have a nontrivial character χ , then for some
g ∈ G, χ(g) 6= 1. Then,

χ(g) ∑
a∈G

χ(a) = ∑
a∈G

χ(ga) = ∑
a∈G

χ(a),

meaning ∑a∈G χ(a) = 0, as desired.

Suppose the group G is abelian. Fix some a ∈ G. Then,

∑
χ∈Ĝ

χ(a) =

{
|G| if a = 1
0 otherwise

Here, Ĝ = (G,C×) is the character group of G.

Proof. Using the fact that G is noncanonically isomorphic to Ĝ, this proof becomes
identical to that of the previous proposition.

Before we introduce some new tools, let us provide some motivation to our treatment
of L-functions. Let K be a number field and m be some modulus. Begin with the
Dedekind zeta function, ζK(s). For some class t ∈Cm (i.e., the class group), define the
partial zeta function to be

ζ (s, t) = ∑
a6=(0),a∈t

1
Nas

Note that for every character χ of the class group,

ζK(s) = ∑
t∈Cm

ζ (s, t) and

L(s,χ) = ∑
t∈Cm

χ(t)ζ (s, t)

In other words, knowing about ζ (s, t) can tell us about the Dedekind zeta function as
well as the corresponding L-function.

Theorem 8. The partial zeta function ζ (s, t) is analytic for ℜ(s)> 1− 1
[K:] except for

a simple pole at s = 1. If we let gm denote the residue at s = 1, then gm is independent
of t.

Proof. We omit the proof of this theorem, mainly because it relies on the famous
class number formula; to see a detailed derivation, refer to Janusz [4]. It allows us to
determine exactly what gm is.

Corollary 9. If χ is not the trivial character, the L-function L(s,χ) is analytic for
ℜ(s)> 1− 1

[K:] .



14 BSU Undergraduate Mathematics Exchange Vol. 15, No. 1 (Fall 2021)

Proof. Near s = 1,

L(s,χ) = ∑
t∈Cm

χ(t)ζ (s, t) =
∑t∈Cm

χ(t)gm
s−1

+ holomorphic function

and Proposition shows us that the numerator of the first term is 0.

5 Polar Density
At last, we come across one type of density. We assume the reader is familiar with
notions such as the inertial degree and ramification index that are used to study the
decomposition of prime ideals over number fields; to learn these topics in algebraic
number theory (and more), see Marcus [2]. For a set T of prime ideals of K, we define
ζK,T (s) = ∏p∈T

1
1−Np−s .

Definition 10. If some positive integral power ζK,T (s)n of ζK,T (s) extends to a mero-
morphic function on a neighborhood of 1 having a pole of order m at 1, we say that T
has polar density δ (T ) = m

n .

[Properties of Polar Density]

We have the following assertions:

1. The set of all prime ideals of K has polar density 1.

2. The polar density of every set is nonnegative.

3. If T is the disjoint union of T1 and T2, and two of the three polar densities exist,
then so does the third, and we have δ (T ) = δ (T1)+δ (T2).

4. If T ⊂ T ′, then δ (T )≤ δ (T ′).

5. A finite set has density zero.

Proof.

1. In this case, the set T is the set of all prime ideals of K, so ζK,T (s) = ζK(s),
which extends to a neighborhood of 1, where it has a simple pole. Thus m

n = 1,
as desired.

2. Having a negative polar density means m < 0, i.e., ζK,T (s) is holomorphic in a
neighborhood of s = 1 and zero there. However, ζK,T (1) = ∏p∈T

1
1−Np−1 > 0,

meaning polar density is nonnegative.

3. Observe that ζK,T (s) = ζK,T1(s) ·ζK,T2(s). Suppose ζK,T (s)n and ζK,T1(s)
n1 ex-

tend to meromorphic functions with poles of order m and m1, respectively; the
other two cases are identical. Then

ζK,T2(s)
nn1 =

ζK,T (s)nn1

ζK,T1(s)nn1

extends to a meromorphic function in a neighborhood of s = 1 and has a pole
there of order mn1−m1n. Thus, δ (T2) =

mn1−m1n
nn1

= m
n −

m1
n1

= δ (T )−δ (T1), as
desired.
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4. This follows readily from 3.

5. This is obvious; m = 0 because ζK,T (s) is finite and positive. Moreover, there is
no pole at s = 1.

If T contains no primes p for which Np is prime (in ), then δ (T ) = 0.

Proof. Let p be a prime in T . Since Np= p f (where p lies under p in and f denotes the
inertial degree of p), we must have f ≥ 2; if f = 1, Np would be prime. Moreover, for
any given prime p∈, there are at most [K :] primes of K lying over p. Thus, ζK,T (s) can
be decomposed into a product ∏1≤i≤[K:] gi(s) of [K :] infinite products over the prime
numbers, with each factor of gi being either a 1 or a 1

1−p− f s (for every prime p). Thus,

for any i, gi(1) ≤ ∏p
1

1−p− fp ≤ ∏p
1

1−p−2 = ζ (2) = π2

6 . Thus, gi(s) is holomorphic
at s = 1, meaning that the order of the pole there must be 0 (recall that polar density
cannot be negative). We conclude that δ (T ) = 0.

Corollary 11. Let T1 and T2 be sets of prime ideals in K. If the sets differ only by
primes p for which Np is not prime and one of the two sets has polar density, then so
does the other, and the densities are equal.

At last, the time has come to exploit the power of polar density. It turns out we can
derive some important analytic results.

Theorem 12. Let L ⊃ K be a field extension of finite degree and let M be its Galois
closure. Then the set of prime ideals of K that split completely in L has density 1

[M:K] .

Proof. The first thing to notice is that a prime ideal p of K splits completely in L if and
only if it splits completely in M. One direction is easy: if it splits completely in M, it
must split completely in the subfield L. If it splits completely in L, then it also splits
completely in every conjugate field L′. All of these conjugate fields must lie under the
decomposition field (the fixed field of the decomposition group of (M/K)), and so their
compositum is a field lying under the decomposition field as well. This field is just M!
p splits completely only up to and including the decomposition field, so we conclude
that it splits completely in M as well.

Thus, it suffices to prove this theorem with the assumption that L is Galois over K. Let
S be the set of prime ideals of K that split completely in L and let T be the primes of
L lying over a prime ideal in S. For each p ∈ S, there are exactly [L : K] prime ideals
P ∈ T , and for each of them, NL

K(P) = p (where NL
K denotes relative norm). Thus,

NP= Np (where N denotes norm over ). This tells us that ζL,T (s) = ζK,S(s)[L:K]. Also,
T contains every prime ideal of L that is unramified over K and for which NP is prime
(in ). Thus, T differs from the set of all prime ideals in L by a set of polar density 0
(using Corollary 11), and so T has density 1. Moreover, this shows that ζK,S has the
property signifying that S is a set of polar density 1

[L:K] , as desired.

Corollary 13. If f (x)∈K[x] splits into linear factors modulo p for all but finitely many
prime ideals p of K, then f splits into linear factors in K.
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Proof. If L is the splitting field of f , then L is Galois over K. Now, use Theorem 12 on
L/K. For more interesting details, see Bhandarkar[7], Section 4.

Corollary 14. For every abelian extension L/K and every finite set S of primes of K
including those that ramify in L, let IS

K denote the fractional ideals that are prime to all
ideals in S. Then, the Artin map(

L/K
.

)
: IS

K −→ (L/K)

is surjective.

Proof. Let H be the image of the Artin map; it is some subgroup of (L/K). If its
fixed field is LH , then we see that H = (L/LH) is the image. For all p 6∈ S,

(
LH/K
p

)
=(

L/K
p

)
|LH= 1, which implies that p splits completely in LH . Thus, all but finitely many

prime ideals of OK split completely in LH , so Theorem 12 tells us that [LH : K] = 1; in
other words, the Artin map is surjective.

6 Dirichlet Density
Define two functions f (s) and g(s) for s > 1 and real. We write f (s)∼ g(s) as s→ 1+

if lims→1+
f (s)
g(s) = 1. Then, f (s)∼ δ log 1

s−1 as s→ 1+ means

lim
s→1+

f (s)
log 1

s−1

= δ .

When f and g are holomorphic in a neighborhood of s = 1 except for possibly poles at
s = 1, then f ∼ g if and only if f and g differ by a function that is holomorphic in a
neighborhood of s = 1.

Definition 15. Let T be a set of primes of K. If there exists a δ such that

∑
p∈T

1
Nps ∼ δ log

1
s−1

as s→ 1+

then we say that T has Dirichlet density δ .

Definition 16. If the limit

lim
x→∞

number of p ∈ T with Np≤ x
number of p with Np≤ x

exists, then we call it the natural density of T .

Natural density is much more intuitive than the other types of density, and one might
wonder if at all natural density is ever equal to Dirichlet density or polar density. The
answer, though reassuring, is somewhat surprising:
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1. If polar density exists, then so does Dirichlet density, and the two are equal.

2. If natural density exists, then so does Dirichlet density, and the two are equal.

Proof. We only prove the first part. If T has polar density m
n , then

ζK,T (s)n =
a

(s−1)m +
g(s)

(s−1)m−1

where g is holomorphic near s = 1. Furthermore, a > 0 because ζK,T (s)> 0 for s > 1
and real. Taking logs and applying Lemma 6 gives us

n ∑
p∈T

1
Nps = m log

1
s−1

In other words, T has Dirichlet density m
n , as desired.

A set can have a Dirichlet density without having a natural density. For example, let
T be the set of prime numbers with leading digit 1. Then, T does not have a natural
density, but it has a Dirichlet density, namely log10 2. Thus, it is a stronger statement to
say that a set has natural density.

Also, notice that polar densities are rational numbers. Thus, every set having a natural
density that is irrational will not have a polar density! For a more detailed discussion
on natural and Dirichlet density, check out Conrad [9].

Now, we shall see that Dirichlet density has similar properties to those of polar den-
sity:

[Properties of Dirichlet Density]

1. The set of all prime ideals of K has Dirichlet density 1.

2. The Dirichlet density of any set is nonnegative.

3. If T is the disjoint union of T1 and T2, and two of the three Dirichlet densities
exist, then so does the third, and δ (T ) = δ (T1)+δ (T2).

4. If T ⊂ T ′, then δ (T )≤ δ (T ′).

5. If T is finite, then δ (T ) = 0.

Proof.

1. The set of prime ideals of K even has polar density 1, which is stronger.

2. For s > 0 and real, 1
Nps > 0 and for s→ 1+, log 1

s−1 > 0, so Dirichlet density
must be nonnegative.
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3. Clearly,

∑
p∈T

1
Nps = ∑

p∈T1

1
Nps + ∑

p∈T2

1
Nps

so long as ℜ(s)> 1. Thus, if

∑
p∈T1

1
Nps ∼ δ1 log

1
s−1

and ∑
p∈T2

1
Nps ∼ δ2 log

1
s−1

then

∑
p∈T

1
Nps ∼ (δ1 +δ2) log

1
s−1

The other two cases are virtually identical to this one.

4. This readily follows from 3.

5. When T is finite, ∑p∈T
1

Nps is holomorphic for all s and thus bounded near any
point. In particular, as s→ 1+, the Dirichlet density must go to 0.

Let T be the set of prime ideals of K having degree 1 over , i.e., for which the inertial
degree f (p|p) = 1. Then, δ (T ) = 1.

Proof. Proposition tells us that the complement of T has polar density equal to 0, and
thus, Dirichlet density equal to 0 as well.

Corollary 17. Let T be as in the proposition. Then, for every set S of primes in K
having Dirichlet density,

δ (T ∩S) = δ (S)

Proof. The complement T ′ of T has Dirichlet density 0, so δ (S) = δ (S∩T )+δ (S∩
T ′) = δ (S∩T ), since δ (S∩T ′)≤ δ (T ′) = 0.

7 Making Magic out of L-functions
At last, it is time to put together some of our basic results. We can do this by playing
around with L-functions. The value of L-functions, especially as s→ 1+ is crucial to
our discussion surrounding the Čebotarev Density Theorem.

Definition 18. Recall that for a number field K and a modulus m, we say that a
subgroup H ⊂ ImK is a congruence subgroup for m if it satisfies PK,1 ⊂ H ⊂ ImK . In this
case, the quotient ImK /H is called a generalized ideal class group for m.

Let m be a modulus for K and let H be a congruence subgroup for m:

PK,1 ⊂ H ⊂ ImK

Then, if L(1,χ) is nonzero for all nontrivial characters χ of the ray class group ImK /H,
δ ({p ∈ H}) = 1

(ImK :H) ; otherwise, it is 0.
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Proof. Let h = (ImK : H) and χ be a character of ImK trivial on H, and as usual, let

L(s,χ) = ∏
p-m

1
1−χ(p)Np−s

Lemma 6 tells us that

logL(s,χ)∼ ∑
p-m

χ(p)

Nps as s→ 1+

But Proposition (note that ImK /H is abelian) gives us

∑
χ

χ(p) =

{
h if p ∈ H
0 if p 6∈ H

Thus, summing over all χ , we get

∑
χ

logL(s,χ)∼ h ∑
p∈H

1
Nps as s→ 1+

Now, if χ 6= χ0, then L(s,χ) is holomorphic near s = 1, ie. L(s,χ) = (s−1)m(χ)(g(s)),
where m(χ) ≥ 0, g(1) 6= 0, and g(s) is holomorphic near s = 1. Thus, logL(s,χ) ∼
m(χ) log(s−1) =−m(χ) log 1

s−1 . If χ = χ0, then

L(s,χ) =
ζK(s)

∏p|m
1

1−Np−s

which means that
logL(s,χ0)∼ logζK(s)∼ log

1
s−1

Thus, we find that

h ∑
p∈H

1
Nps ∼ (1− ∑

χ 6=χ0

m(χ)) log
1

s−1

and hence

δ ({p ∈ H}) =
1−∑χ 6=χ0

m(χ)

h

This shows that δ ({p∈H}) = 1
h if L(1,χ) 6= 0 for every χ 6= χ0; otherwise, the density

must be 0 (i.e. exactly one of the m(χ) must be equal to 1, meaning at most one L(s,χ)
can have a zero at s = 1 since Dirichlet density is nonnegative, and it must be a simple
zero).

Now, we visit an inequality that will give us useful information about L-functions:

Theorem 19 (The Second Inequality). For every Galois extension L of K and modulus
m of K,

(ImK : PK,1 ·NL
K(I

m
L ))≤ [L : K]

Note that here, ImL denotes the set of fractional ideals of L (lying above ideals of ImK )
prime to m.
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Proof. Let H = PK,1 ·NL
K(I

m
L ). If p splits in L, then f (P|p) = 1 for all P⊂ OL lying

over p⊂OK , in which case p is the norm of any prime ideal of OL lying over it. Thus,
{p ∈ H} contains the set of prime ideals splitting completely in L. Then, Theorem 12
tells us that

δ ({p ∈ H})≥ [L : K]−1 > 0

Moreover, Proposition tells us that if δ ({p ∈ H})> 0, it must be equal to (ImK : H)−1.
This only occurs if for all nontrivial characters χ of ImK /H, L(1,χ) 6= 0. Finally, we
have

(ImK : H) = δ ({p ∈ H})−1 ≤ [L : K]

This theorem is particularly important because it tells us that if H is of the form as
in Proposition , then L(1,χ) 6= 0 for all nontrivial characters χ of ImK /H. But when
we are given a Galois extension L⊃ K, how do we know this hypothesis is satisfied?
Lucky for us, Artin Reciprocity comes to the rescue!

Theorem 20 (Reciprocity Law). Let L be a finite Abelian extension of K, and let S be
the set of primes of K ramifying in L. Then, the Artin map(

L/K
.

)
: IS

K −→ (L/K)

admits a modulus m such that a prime of K (finite or infinite) ramifies if and only if it
divides m and induces the isomorphism

ImK /(PK,1 ·NL
K(I

m
L ))

∼−→ (L/K)

This theorem is literally the very foundation of class field theory. To use this theorem,
we also introduce another important theorem of class field theory: the Existence
Theorem.

Theorem 21 (Existence Theorem). For every congruence subgroup H modulo m, there
exists a finite Abelian extension L/K such that H = PK,1 ·NL

K(I
m
L ).

This theorem is nice because it complements Artin Reciprocity in a way that allows us
to construct an important bijection. Notice that for H and L as in the theorem, Artin
Reciprocity allows us to construct the isomorphism

ImK /H ∼−→ (L/K)

In particular, there is a field Lm known as the ray class field modulo m for which the
Artin map defines an isomorphism

Cm = ImK /(PK,1 ·NL
K(I

m
L ))

∼−→ (Lm/K)

For a field L⊂ Lm, set

NL
K(Cm,L) = (PK,1 ·NL

K(I
m
L )) (mod PK,1)

Thus, the Existence Theorem provides the following beautiful corollary:
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Corollary 22. For a modulus m, the map L 7→ NL
K(Cm,L) is a bijection from the set of

Abelian extensions of K contained in Lm to the set of subgroups of Cm.

Proof. This is a rather neat result of applying the Galois correspondence.

Thus, class field theory shows us that the hypothesis of Proposition is satisfied: every
congruence subgroup H is of the form PK,1 ·NL

K(I
m
L ) for a unique Abelian extension

L⊃ K. For our particular discussion, we obtain the following corollary:

Corollary 23. For any modulus m of K and any nontrivial Dirichlet character χ :
Cm −→×, L(1,χ) 6= 0.

8 Proof of the Cebotarev Density Theorem
At last, we have the tools necessary to prove our main theorem. We will start by
handling the abelian case and cleverly use that to tackle the nonabelian case.

Theorem 24. Let m be a modulus for K, and let H be a congruence subgroup for m.
For any class t ∈ ImK /H, the set of prime ideals in t has Dirichlet density 1

(ImK :H) .

Proof. It suffices to prove a more general version of Proposition . Consider some class
t ∈ ImK /H and let a be a coset representative of this class. Also, let h = (ImK : H). Much
like we considered the sum ∑χ logL(s,χ), we now consider the sum

∑
χ

χ(a)−1 logL(s,χ)∼∑
χ

χ(a)−1
∑
p-m

χ(p)

Nps = ∑
p-m

∑
χ

χ(a−1p)

Nps = h ∑
p∈t

1
Nps

where we obtain the last equality by applying our character orthogonality relations.

Now, Corollary 23 shows us that L(1,χ) 6= 0 for any nontrivial χ . Thus, using the
terminology of Proposition , we see that if L(s,χ) = (s−1)m(χ)g(s) near s = 1, then
in fact m(χ) = 0. Thus, density-wise, logL(s,χ)∼−m(χ) log 1

s−1 = 0 as s→ 1+, so
L(s,χ) for nontrivial characters χ do not contribute to the Dirichlet density.

However, if χ = χ0, then as we found before, logL(s,χ0)∼ log 1
s−1 . Thus, by summing

logL(s,χ) across all χ in the character group, we see that

h ∑
p∈t

1
Nps ∼ log

1
s−1

or δ ({p ∈ t}) =
∑p∈t

1
Nps

log 1
s−1

=
1
h

as desired.

Corollary 25. Let L⊃K be a finite Abelian extension and let σ ∈ (L/K). Then, the set

of prime ideals p of K that are unramified in L and for which
(

L/K
p

)
= σ has Dirichlet

density 1
[L:K] .
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Proof. Artin Reciprocity gives us the isomorphism ImK /H ∼−→ (L/K) for some modulus
m and congruence subgroup H. Thus, the inverse image of σ is one entire class t of
ImK /H. At this point, we may apply Theorem 24 to obtain the result.

Voilà! We have just proven the Čebotarev Density Theorem for Abelian extensions L⊃
K! At this point, we may extend to the general (not necessarily abelian) case:

Theorem 26 (Čebotarev). Let L be a finite Galois extension of the field K and suppose
σ ∈ (L/K). Moreover, denote C by the conjugacy class of σ in (L/K). Then, the set

T = {p a prime ideal in OK | p unramified in L,
(

L/K
p

)
=C}

has Dirichlet density

δ (T ) =
|C|
|(L/K)|

=
|C|

[L : K]
.

Proof. Since (L/K) is not necessarily abelian, we try to cleverly reduce to this case. Let
σ ∈ (L/K) have order f and let M = L〈σ〉 be the fixed field of the set of automorphisms
〈σ〉 (subgroup of automorphisms generated by σ ). Then, L is a cyclic extension of M
of degree f , and the Artin map gives us an isomorphism

Cm/H ∼−→ 〈σ〉

for some modulus m of M and H = PM,1 ·NL
M(ImL ).

Now, let p be a prime of OK , q be prime lying above p in OM , and P be a prime lying
above q in OL. If we let c = |C| and d = [L : K], we must show that δ (T ) = c

d . Also,
we must note that in this proof, we ignore the finitely many primes that are not prime
to m (i.e. primes that ramify).

Let

TM,σ = {q⊂ OM |
(

L/M
q

)
= σ , f (q|p) = 1}

By Corollary 25, we know that the set of primes satisfying the first condition (i.e.(
L/M
q

)
= σ ) of TM,σ has density 1

f , and thus, TM,σ has density 1
f (using Corollary 17).

Now, let

TL,σ = {P⊂ OL |
(

L/K
P

)
= σ}

We aim to relate TM,σ and TL,σ .

Lemma 27. We have the following two assertions:

1. The map P 7→ q=P∩OM defines a bijection TL,σ → TM,σ .

2. The map P 7→ p=P∩OK : TL,σ → T sends exactly d
c f primes of TL,σ to each

prime of T .

Proof.
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1. Take some P ∈ TL,σ and let q=P∩OM and p=P∩OK . Then, the Decomposi-
tion Group D(P|p)∼= (OL/P / OK/p) is generated by σ but σ fixes the residue
field OM/q (because it fixes M). Thus, OM/q= OK/p, meaning that f (q|p) = 1.
This means that q ∈ TM,σ , so we have a map

P 7→ q=P∩OM : TL,σ → TM,σ

This map is injective because f (P|q) = f (q|p)−1 f (P|p) = 1 · f = f , so P is the
only prime of OL lying over q. Moreover, this map is surjective because for any
prime P lying over q ∈ TM,σ ,(

L/K
P

)
=

(
L/K
P

) f (q|p)
=

(
L/M
q

)
= σ

and so P lies in TL,σ . Thus, our map is a bijection.

2. Fix a p0 ∈ T and let P0 ∈ TL,σ lie over p0. Then, for τ ∈ (L/K),(
L/K
τP0

)
= τ

(
L/K
P0

)
τ
−1

and so

τ

(
L/K
P0

)
τ
−1 = σ ⇐⇒ τ ∈CG(σ)

where CG(σ) denotes the centralizer of σ in (L/K). Therefore, the map τ 7→ τP0
gives us a bijection

C(σ)/D(P0|p0)−→ {P ∈ TL,σ |P∩OK = p0}

where D(P0|p0) denotes decomposition group. The decomposition group is 〈σ〉,
which has order f and CG(σ) has order d

c because there is a bijection

τ 7→ τστ
−1 : (L/K)/CG(σ)→C

Therefore, (CG(σ) : D(P0|p0)) =
d
c f . Thus, we have shown that for each p ∈ T ,

there are exactly d
c f primes P ∈ TL,σ lying over p. This completes part 2.

Returning to our proof, we can combine statements 1 and 2 to obtain the map

q 7→ p= q∩OK

which is a d
c f : 1 map TM,σ → T . For such a q, NM

K (q) = p, so Nq= Np. Hence

∑
p∈T

1
Nps =

c f
d ∑

q∈TM,σ

1
Nqs ∼

c f
d
· 1

d
log

1
s−1

=
c
d

log
1

s−1

which completes the proof of the Čebotarev Density Theorem.
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Interestingly enough, the prime number theorem generalizes nicely to general number
fields; it is called the Landau Prime Ideal Theorem. Using this theorem and keeping
the notation we used above, if we set

πC(x) = {p is a finite, unramified prime ideal of OK |
(

L/K
p

)
=C,Np≤ x}

then we can obtain the following effective form of the Density Theorem:

πC(x)∼
c
d

x
logx

.

9 Applications of the Density Theorem
The Density Theorem has many applications throughout number theory. By no means
do we provide a full treatment of its applications; rather, we focus on a few rather
elegant examples. We start by pointing out a simple yet special case: Dirichlet’s
Theorem on Primes in Arithmetic Progression (we follow the argument presented in
Triantafillou [6]).

Corollary 28 (Dirichlet). For any positive integers a and m, with gcd(a,m) = 1, there
are infinitely many primes p for which p≡ a (mod m).

Proof. Using the Čebotarev Density Theorem, we will prove an even stronger result:
that the set of primes ≡ a (mod m) has Dirichlet density 1

φ(m) in the set of primes (of
), where φ denotes the totient function.

Now, let ζm be an mth root of unity. Let K = and L = (ζm) be a cyclotomic extension.
We know that L/K is Galois and that (L/K)∼= (/m)×. This isomorphism can be made
explicit by taking some a ∈ (/m)× and mapping it to the unique automorphism that
takes ζ k

m to ζ ak
m .

For a prime number p ∈, N(p) = p. If P ⊂ OL is a prime lying over p such that
σ ∈ (L/K) satisfies σ(α)≡ αN(p) (mod P), we must have σ(ζ k

m) = ζ
pk
m for all k. As

long as p - m, p does not ramify in L, in which case
(

L/K
p

)
= p̄ ∈ (L/K), where p̄ is

the class of p modulo m. Thus,
(

L/K
p

)
= a if and only if p≡ a (mod m). At this point,

the Density Theorem states that the density of primes p of such that
(

L/K
p

)
= a is

1
|(L/K)| =

1
φ(m) , as desired.

So being able to prove Dirichlet’s theorem with a snap of our fingers is a sign of
just how powerful the Čebotarev Density Theorem is! Now, we move on to another
interesting application, which explores primes that split completely in number fields. In
particular, these primes can characterize a given extension L⊃ K. First, we introduce
some terminology.

Definition 29. Given two sets S and T , we say S ⊂̇T if S ⊂T up to a finite set
of elements. We also say S =̇T if S ⊂̇T and T ⊂̇S .
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Definition 30. Given an extension L⊃ K, we set

SL/K = {p is a finite prime ideal of K | p splits completely in L}.

Also, let

S̃L/K = {p is a finite prime ideal of OK | p unramified in L, f (P|p)= 1 for some prime

P of L lying over p}.

Using this terminology, we can effectively state the following powerful theorem:

Theorem 31. Let L and M be finite extensions of K. Then:

1. If M is Galois over K, then L⊂M⇐⇒SM/K⊂̇SL/K .

2. If L is Galois over K, then L⊂M⇐⇒ S̃M/K⊂̇SL/K

Proof. We begin with the proof of 2. When L ⊂ M, we easily have S̃M/K⊂̇SL/K ;
indeed, for p ∈ S̃M/K , f (P|p) = 1 for some P lying over p in OM . Thus, if q is a
prime of OL lying over p and under P, then we must have f (q|p) = 1. But since
inertial degrees of all conjugates of a prime ideal are the same in a Galois extension,
we conclude that p has inertial degree f = 1 in L. Moreover, since it is unramified, we
conclude that p splits completely in L, and thus p ∈SL/K as well.

Conversely, suppose that S̃M/K⊂̇SL/K , and let N be a Galois extension of K containing
both L and M; it suffices to show that (N/M)⊂ (N/L). Thus, given σ ∈ (N/M), we
need to prove that σ |L= 1. By the Čebotarev Density Theorem, there is a prime p

in K, unramified in N such that
(

N/K
p

)
is the conjugacy class of σ . Thus, there is

some prime P of N for which
(

N/K
P

)
= σ . We claim that p ∈ S̃M/K . To see this, let

P′ =P∩OM . Then, for α ∈ OM ,

α ≡ σ(α)≡ α
N(p) (mod P′)

where the first congruence follows from σ |M= 1 and the second from the definition of
the Artin symbol. Thus, the Artin symbol is trivial, meaning that f (P′|p) = 1 (since
f is the order of the decomposition group generated by the Artin symbol, which is
trivial). This means p ∈ S̃M/K , as desired. The Density Theorem implies that there are

infinitely many such p’s. Thus, S̃M/K⊂̇SL/K tells us that p ∈SL/K , i.e.,
(

L/K
p

)
= 1,

meaning that σ |L=
(

N/K
P

)
|L=

(
L/K
p

)
= 1, as desired.

Now, to prove 1, note that L ⊂M easily implies SM/K⊂̇SL/K using the exact same
reasoning as in the proof of part 2 above. To show the other direction, let L′ be the
Galois closure of L over K. Using the reasoning from Theorem 12, we see that a prime
of K splits completely in L if and only if it splits completely in L′. Thus, SL/K =SL′/K .
Thus, our hypothesis SM/K⊂̇SL/K may be rephrased as SM/K⊂̇SL′/K . By part 2, we
obtain L′ ⊂M, so L⊂M, and we are done.



26 BSU Undergraduate Mathematics Exchange Vol. 15, No. 1 (Fall 2021)

Why did we bother to prove all of that? For one, it tells us about the relationship
between field extension and the prime ideals contained in them. Moreover, it allows us
to formulate the following corollary:

Corollary 32. Let L and M be Galois extensions of K. Then:

1. L⊂M⇐⇒SM/K⊂̇SL/K .

2. L = M⇐⇒SM/K=̇SL/K .

Proof. Notice first that 1 immediately implies 2, so it suffices to prove just 1. Now,
observe that if M is Galois over K, then S̃M/K reduces to SM/K , so applying Theorem
31 immediately proves part 1 of this corollary.

Now, we introduce one last application, which is to the theory of binary quadratic
forms. Although we do not prove it here, it points out a beautiful interplay between
binary quadratic forms and ideals in number fields.

Theorem 33. Let f (x,y) = ax2 + bxy+ cy2 be a primitive positive definite binary
quadratic form of discriminant D < 0. Moreover, let S be the set of primes represented
by f . Then, the Dirichlet density δ (S ) exists and is equal to

δ (S ) =

{
1

2h(D) if f is properly equivalent to its opposite
1

h(D) otherwise

where h(D) is the famous class number. In particular, f represents infinitely many
prime numbers!

Proof. We omit the proof because it relies on developing a theory of ideals in orders of
imaginary quadratic fields. Still, we refer the reader to Cox[1].

10 Some Parting Remarks
The Čebotarev Density Theorem is elegant and powerful. It is at a crossroads between
algebraic and analytic number theory, and has various applications across number
theory. In this paper, we presented a formulation and proof of the density theorem in
the language of class field theory to illustrate the connection between the two. However,
it is interesting to note that when Čebotarev first proved this theorem, he did not make
use of class field theory; rather, it was the density theorem that motivated much of
the formulation of class field theory! To learn about the history of the Čebotarev
Density Theorem and read Čebotarev’s original proof, we refer the reader to Lenstra
and Stevenhagen [8]. We sincerely hope the reader has taken away something useful
from this paper and is inclined to learn more about related topics.
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Abstract

A positive integer n is called perfect if σ(n) = 2n, where σ(n) denote the sum of
divisors of n. In this paper we study the ratio σ(n)

n . We define the Abundancy Index
I : N→Q with I(n) = σ(n)

n . Then we study different properties of Abundancy Index
and discuss the set of Abundancy Indices. Using this function we define a new class of
numbers known as superabundant numbers. Finally we study superabundant numbers
and their connection with the Riemann Hypothesis.

1 Introduction
Definition 1. A positive integer n is called perfect if σ(n) = 2n, where σ(n) denote
the sum of positive divisors of n.

The first few perfect numbers are 6,28,496,8128, ... (OEIS A000396), This is a well
studied topic in number theory. Euclid studied properties and nature of perfect numbers
in 300 BC. He proved that if 2p−1 is a prime, then 2p−1(2p−1) is an even perfect
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number(Elements, Prop. IX.36). Later mathematicians have spent years to study the
properties of perfect numbers. But still many questions about perfect numbers remain
unsolved. Two famous conjectures related to perfect numbers are

1. There exist infinitely many perfect numbers. Euler[13] proved that a number
is an even perfect number if and only if it can be written as 2p−1(2p−1) and
2p−1 is also a prime number. Primes number of the form 2p−1 are known as
Mersenne primes. Therefore this conjecture is equivalent to the conjecture that
there exist infinitely many Mersenne primes. Some good references on this topic
are [15], [9], [45].

2. There do not exist any odd perfect numbers. Computation of Lower Bounds for
the smallest perfect numbers have been done by many mathematicians. Kanold
(1957)[28] found the bound 1020, Tuckerman (1973) [46] found the bound 1036,
Hagis (1973) [19]found the bound 1050, Brent and Cohen (1989) [5] found the
bound 10160, Brent et al. (1991) [6] found the bound 10300. The best bound
till today is 101500 by Ochem and Rao (2012)[33]. The odd perfect numbers
if they exist must be of the form p4λ+1Q2, where p is a prime of the form
4n+ 1 as proven by Euler[8][49].Touchard[44] and Holdener[23] proved that
the odd perfect numbers if they exist must be of the form 12k+ 1 or 36k+ 1.
Stuyvaert[11] proved that the odd perfect numbers if they exist must be must be
a sum of two squares. Greathouse and Weisstein[17] alternatively write that any
odd perfect number must be of the form

N = pα q1
2β1 ...qr

2βr

where all the primes are odd. Also p ≡ α ≡ 1(mod4). Steuerwald[43] and
Yamada[51] proved that all the βis cannot be 1. Odd perfect numbers have a
large number of distinct prime factors. The odd perfect number if one exists
must have at least 6 distinct prime factors, as proved by Gradshtein[4]. This
was extended to 8 by Haggis[20]. If there are 8 the number must be divisible by
15, as proved by Voight [47]. Norton[32] proved that odd perfect numbers must
have at least 15 and 27 distinct prime factors if the number is not divisible by 3
or 5 and 3, 5, or 7 respectively. Nielsen[31] extended the bound by showing that
odd perfect numbers should have at least 9 distinct prime factors and if it is not
divisible by 3 it should have at least 12 distinct prime factors. Hare[22] shown
that any odd perfect number must have at least 75 prime factors. The method
used by Hare involves factorization of several large numbers[49][22].The best
lower bound is by Ochem and Rao (2012)[33], who prove that any odd perfect
number must have at least 101 prime factors. Odd perfect numbers must have
the largest prime factor very large. The first such lower bound was proved by
Haggis[21], who proved every odd perfect number has a Prime Factor which
exceeds 106. Iannucci[25][26], Jenkins[27], Goto and Ohno[16] proved that the
largest three factors must be at least 100000007, 10007, and 101[49].

Two other related concepts are abundant numbers and deficient numbers. A positive
integer n is called an abundant number if σ(n)> 2n. A positive integer n is called a
deficient number if σ(n)< 2n. To study these interesting properties of these beautiful
numbers we define Abundancy Index. That was defined by Laatsch[29]. For a
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positive integer n, the Abundancy Index I(n) is defined as I(n) = σ(n)
n . More generally

Abundancy Index can be considered as a measure of perfection of an integer. We
can easily observe a positive integer is perfect when I(n) = 2 and n is abundant or
deficient when I(n)> 2 or I(n)< 2 respectively. Positive integers with integer valued
Abundancy indices are called multiperfect numbers. In this article we study different
properties about Abundancy Index and to try generalize the Abundancy Index of any
positive integer n.

2 Properties
Theorem 2. The Abundancy Index function I(n) is a multiplicative function.

Proof. Let m,n be any two co-prime positive integers. Using the multiplicativity of σ

function as proved in Theorem 6.3 of [8],

I(mn) =
σ(mn)

mn
=

σ(m)σ(n)
mn

=
σ(m)

m
σ(n)

n
= I(m)I(n).

Theorem 3. (Laatsch[29]): I(kn)≥ I(n) for all k ∈ N. The equality condition holds
iff k = 1.

Corollary 4. Every proper multiple of a perfect number is abundant and every proper
divisor of a perfect number is deficient.

Corollary 5. There are infinitely many abundant numbers.

It is easy to see that there are infinitely many deficient numbers. Indeed, all prime
numbers are deficient, as σ(p) = p + 1 < 2p. We observe for future reference
that

I(n) =
σ(n)

n
=

1
n ∑

d|n
d =

1
n ∑

d|n

n
d
= ∑

d|n

1
d

(1)

Theorem 6. (Laatsch[29]): The I(n) is function is unbounded.

Proof. We discuss two proofs of this theorem. The first proof goes like this.

Let m be any real number. We know the series ∑
∞
i=1

1
i is divergent. Hence for a given m

there exist a natural number N such that ∑
N
i=1

1
i > m. Let us take n0 = lcm(1,2, · · · ,N).

Using (1) we get I(n0) = ∑d|n0
1
d ≥ ∑

N
i=1

1
i . Thus for any real m∃n0 ∈ N � I(n0)> m.

Therefore I(n) is not bounded above.

The second proof goes like this.

Let n0 = 2 ·3 · · · pk = ∏
k
i=1 pi i.e the product of first k primes. Therefore using Theorem

2.1 we have

I(n0) =
k

∏
i=1

(1+
1
pi
)>

k

∑
i=1

1
pi
.
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Now the series ∑prime
1
p is divergent, as proven by Euler[14]. Hence we can say I(n) is

not bounded above.

Theorem 7. For any r ∈ R there are infinitely many n such that I(n)> r.

Proof. By Theorem 2.3 we see for any r ∈ R∃n0 ∈ N such that I(n0) > r. By using
Theorem 2.2 we get I(kn0)≥ I(n0) for any positive integer k. Therefore I(kn0)> r for
all k ∈ N. As there are infinitely many choices for k, there are infinitely many n such
that I(n)> r.

Theorem 8. If n = ∏
k
i=1 pαi

i where the pi are distinct primes, then ∏
k
i=1

pi+1
pi
≤ I(n)≤

∏
k
i=1

pi
pi−1

Proof. Consider p to be a prime and α any positive integer. Now as proven earlier in
(1), we have

I(pα) = ∑
d|pα

1
d
= 1+

1
p
+

1
p2 + · · ·+ 1

pα

By using the inequality

1+
1
p
≤ 1+

1
p
+

1
p2 + · · ·+ 1

pα
≤

∞

∑
i=1

1
pi

We get
p+1

p
≤ I(pα)≤ p

p−1
(2)

Now since I is multiplicative function(Theorem 2.1)

I(n) = I(
k

∏
i=1

pαi
i ) =

k

∏
i=1

I(pαi
i ) (3)

Using the inequality (2) we get

k

∏
i=1

pi +1
pi
≤

k

∏
i=1

I(pαi
i )≤

k

∏
i=1

pi

pi−1

Using the identity mentioned in (3)

k

∏
i=1

pi +1
pi
≤ I(n)≤

k

∏
i=1

pi

pi−1

So we get our desired result.
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3 Set of Abundancy Indices
As we study the function I : N→ Q, many questions arise. For example, is every
rational q≥ 1 the Abundancy Index of some integer? Many mathematicians have tried
to study the set of Abundancy Indices, Laatsch [29] shown the set D = {I(n) : n≥ 2}
is dense in (1,∞). Later Weiner[48] showed there exists rationals which are not the
Abundancy Index of any integer. In 2007 Stanton and Holdener[42] defined Abundancy
Outlaw. An Abundancy Outlaw is a rational greater than 1 that is not an Abundancy
Index of integer, in other words it is not in the image map of the map I.

Theorem 9. (Laatsch[29]): D = {I(n) : n≥ 2} is dense in (1,∞).

A rational number q > 1 is said to be an Abundancy Outlaw if I(n) = q has no solution
in N.

Theorem 10. (Weiner[48]): If k is relatively prime to m and m < k < σ(m), then k
m

is an Abundancy Outlaw. Hence if r/s is an Abundancy Index with gcd(r,s) = 1, then
r ≥ σ(s).

Example of such outlaws given by Holdener and Stanton [42] are

5/4,7/6,9/8,10/9,11/6,11/8,11/9,11/10,13/8,13/10,13/12,15/14,16/15, ...

The previous theorem was also proven by Anderson[3]. The theorem implies that k+1
k

is an Abundancy Index if and only if k is prime; also k+2
k is an Abundancy Outlaw

whenever k is an odd composite number. This is a very important result shown by
Weiner, which concludes that there are rationals in (1,∞) which are the not Abundancy
Index of any integer. This can be proven using Theorem 3.2.

Theorem 11. (Wein[48]): The set of Abundacy outlaws is dense in (1,∞).

In the next three theorems we are giving few general forms of Abundancy Outlaw,
which were studied by Holdener and Stanton [42]. These are some particular cases of
proven results by Holdener [24]. For the original general results someone may look
into the original paper of Holdener [24]. Theorem 3.4 is really just the special case of
Theorem 3.5 with p = 2.

Theorem 12. For all primes p > 3,

σ(2p)+1
2p

is an Abundancy outlaw. If p = 2 or p = 3 then σ(2p)+1
2p is an Abundancy index.

For p = 2 or p = 3, it is easy to see that σ(2p)+1
2p is an Abundancy index since I(6) =

σ(4)+1
4 and I(18) = σ(6)+1

6 . Let us assume p > 3.By substituting σ(2p) = 3+3p we

can get an explicit expression. Note that σ(2p)+1
2p = 3p+4

2p is in lowest terms. Therefore

if I(N) = σ(2p)+1
2p , then 2p|N. Now since p > 3, we have I(4p)> (σ(2p)+1)/2p, so

4 6 |N. Hence we have, σ(2)|σ(N). Also note that since σ(2p)+1 is not divisible by
σ(2) = 3, 3 divides N. Therefore we can write

I(N)> I(6p)> 2 > (σ(2p)+1)/2p
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We hence arrive at a contradiction. Hence (σ(2p)+1)/2p is an Abundancy outlaw.
Example of such outlaws given by Holdener and Stanton [42] are

19
10

,
25
14

,
37
22

,
43
26

,
55
34

,
61
38

,
73
46

,
91
58

,
97
62

,
115
74

,
127
82

,
133
86

,
145
94

,
163
106

,
181
118

,
187
122

...

Theorem 13. For primes p,q with q > 3, q > p and gcd(p,q+2) = gcd(q, p+2) = 1,

σ(pq)+1
pq

is an Abundancy outlaw.

Note that if p and q = p+2 are twin primes then Theorem 3.5 does not hold true. We
get

σ(p(p+2))+1
p(p+2)

=
σ(p)+1

p
=

p+2
p

Abundancy index satisfying I(x) = p+2
p has been studied by Ryan[39]. It is still not

known whether any such example exist. The existence of such a solution is important
since if 5

3 = 3+2
3 is an Abundancy index then there must exist an odd perfect number.

We state a state an important result of Weiner which proves this.

Theorem 14. (Weiner[48]): If there is a positive integer n with I(n) = 5/3, then 5n is
an odd perfect number.

This theorem was further generalized by Ryan[40].

Theorem 15. (Ryan[40]): If there exist positive integers m and n such that m is odd,
2m−1 is prime, 2m−1 does not divide n, and I(n) = (2m−1)/m, then n(2m−1) is
an odd perfect number.

He further showed that if m is even but not a power of 2 then (2m−1)/m is an Abun-
dancy Outlaw. Both of these results are further generalized by Holdener[24].

Theorem 16. (Holdener[24]): There is an odd perfect number if and only if there are
positive integers p,n, and k such that p is prime and does not divide n and also satisfies
p≡ k ≡ 1(mod 4), and

I(n) =
2pk(p−1)

pk+1−1

A similar example can be made about Theorem 3.5 as we have done earlier for
Theorem 3.4. For this we assume that the two odd primes p,q, satisfying q≡ 1(mod
p). Then p 6 |q+2 and q 6 |p+2 .Now by Dirichlet’s theorem on arithmetic progressions
of primes, we know that there are infinitely many such pairs of odd primes p,q.
Example of such outlaws given by Holdener and Stanton [42] are
For p = 5

73
55

,
193
155

,
253
205

,
373
305

,
433
355

,
613
505

,
793
655

,
913
755

,
1093
905

,
1153
955

,
1273
1055

,
1513
1255

,
1633
1355

1693
1405

,
1873
1555

,
1993
1655

,
2413
2005

,
2533
2105

, ..
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For p = 7

241
203

,
353
301

,
577
497

,
913
791

,
1025
889

,
1585
1379

,
1697
1477

,
1921
1673

,
2257
1967

,
2705
2359

,
3041
2653

,
3377
2947

,
3601
3143

3713
3241

,
3937
3437

,
4385
3829

,
4945
4319

..

For p = 11

289
253

,
817
737

,
1081
979

,
2401
2189

,
3985
3641

,
4249
3883

,
4777
4367

,
5041
4609

,
5569
5093

,
7417
6787

,
7945
7271

,
8209
7513

,
8737
7997

10321
9449

,
10585
9691

,
11377
10417

, ...

Theorem 17. If N is an even perfect number, then σ(2N)+1
2N is an abundancy outlaw.

4 Superabundant Numbers
A positive integer n is called superabundant if I(m)< I(n) ∀m < n.

The first few superabundant numbers are 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180.
Ramanujan [34][35][36] in 1915 first introduced the idea of superabundant numbers.
In 30 pages of Ramanujan’s paper "Highly Composite Numbers" Ramanujan defined
generalized highly composite numbers, which is a generalized case of superabundant
numbers. Ramanujan’s work remained unpublished till 1997 when it was published
in Ramanujan Journal. The idea of Superabundant numbers were also independently
defined by Alaoglu and Erdős [2] in 1944, who are unknown to the unpublished work
done by Ramanujan earlier in 1915. They proved that if n is superabundant, then there
exist a k and a1,a2, ...,ak satisfying a1 ≥ a2 ≥ ·· · ≥ ak ≥ 1 such that

n =
k

∏
i=1

(pi)
ai

where pi is the i-th prime number, and

Theorem 18. There are infinitely many superabundant numbers.

Proof. Let us assume there are finitely many superabundant numbers and n is the
largest superabundant number. So I(m)< I(n) for all m < n. Now let us consider the
integer 2n. By Theorem 2 we know I(2n)> I(n). So I(m)< I(2n). But 2n cannot be
a superabundant number. So ∃n0 � I(n0)> I(2n) and n < n0 < 2n. Let us consider the
least n0. We know

I(n0)> I(2n)> I(n)> I(m) for all m < n

n0 cannot be a superabundant number. Hence there exist a real number n1 such that
I(n0) > I(n1) and n < n1 < n0. It is easy to see I(n1) > I(2n) and n < n1 < 2n. But
we had assumed n0 to be least such integer. Hence we get a contradiction.
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So we can conclude there are infinitely many superabundant numbers. This type of
numbers can be further generalized as colossally abundant numbers.

A number n is colossally abundant if and only if there is an ε > 0 such that for all
k > 1,

σ(n)
n1+ε

≥ σ(k)
k1+ε

Therefore all colossally abundant numbers are also superabundant numbers, but all
superabundant numbers may not be a colossally abundant number. For every ε > 0 the
function σ(n)

n1+ε has a maximum and that these maxima will increase as ε tends to zero.
Thus there are infinitely many colossally abundant numbers [30].

Now we draw a connection between superabundant numbers and well known Riemann
Hypothesis[37], which is considered as one of the most important unsolved problems
in Mathematics. The Riemann Hypothesis conjectures that the Riemann zeta function
defined as

ζ (s) =
∞

∑
n=1

1
ns =

1
1s +

1
2s +

1
3s +

1
4s + ...

valid when the real part of s exceeds 1 has non-trivial zeros only at the complex numbers
with real part 1

2 . This conjecture is of significant interest to number theorists since this
result has direct consequences in the distribution of prime numbers.

In 1984 Robin [38] proved a surprising result. He showed an equivalence between
Riemann Hypothesis and a bound to the Abundancy Index.

Theorem 19. (Robin[38]): For n≥ 3 we have I(n)< eγ log logn+ 0.6483
loglogn .

Theorem 20. (Robin[38]): The Riemann Hypothesis is true if and only if I(n) <
eγ log logn for all n≥ 5041.

Note: Here γ denotes Euler’s Gamma Constant(also known as Euler–Mascheroni
constant). It is the limiting difference between the the natural logarithm and harmonic
series.

γ = lim
x→∞

(− lnx+
x

∑
k=1

1
k
)

The value of Euler’s Gamma Constant is approximately 0.57721[41]. Theorem
4.3(Robin’s Inequality) is the most striking result here, it gives an alternative ap-
proach to prove or disprove Riemann’s Hypothesis, one of the greatest problems in
Number Theory.

This result by Robin’s inequality is supported by many other findings. Gronwall [18]
found that

limsup
n→∞

I(n)
eγ log logn

= 1

Wojtowicz[50] further showed that the values of f (n) = I(n)
eγ log logn are close to 0 on a

set of asymptotic density 1. An alternate version of Robin’s inequality equivalent to
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Riemann Hypothesis was found by Lagarias[30], who showed the equivalence of the
Riemann hypothesis to an sequence of elementary inequalities involving the harmonic
numbers Hn, the sum of the reciprocals of the integers from 1 to n:

σ(n)≤ eHn logHn +Hn for all n≥ 1

Another alternate version of Robin’s inequality is by Choie et.al [10] who have shown
that the RH holds true if and only if every natural number divisible by a fifth power
greater than 1 satisfies Robin’s inequality. Briggs[7] describe a computational study
of the successive maxima of I(n). They found that the maxima of this function occur
at superabundant and colossally abundant numbers and studied the density of these
numbers. He then compared this with the known maximal order of f (n) and found out
a condition equivalent to the Riemann Hypothesis using these data.

Theorem 21. (Akbary[1]): If there is any counterexample to Robin’s inequality then
the least such counterexample is a superabundant number.

Let S(x) be the number of superabundant numbers not exceeding x.

From the proof of Theorem 4.1, we get the inequality S(x)≥ logx, since the spacing
grows at most exponentially. This gives logx as the lower bound to the counting
function S(x). Note that Theorem 4.4 helps us find a counterexample of the Robin’s
inequality by limiting our attention to only superabundant numbers. Unfortunately
there is no algorithm find superabundant numbers except finding it using Definition
4.1. Some results in the distribution of the superabundant numbers are therefore very
helpful. We now state two results in that regard.

Theorem 22. (Alaoglu[2]): S(x)> c logx log logx
(log loglogx)2

Erdős and Nicholas [12] proved a more stronger inequality.

Theorem 23. (Nicholas[12]): S(x)> (logx)1+δ (x > x0) f or every δ < 5/48.

So we finally see that abundancy index and superabundant numbers have a very close
connection with Riemann Hypothesis. One may try to prove or disprove Riemann
Hypothesis with the help of Theorem 4.3. To disprove Riemann’s Hypothesis it enough
to get a counterexample to Robin’s inequality. One might try to find it computationally
and Theorem 4.4 will definitely make his or her job easier.
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Abstract

Despite positional notation being the primary way we represent numbers, it’s not
trivial to perform a variety of digit-manipulation with arithmetic alone. The Conway
Base-13 Function is a prime example of a function who’s definition is easily said in
plain language, but difficult to formulate with arithmetic alone. To emphasize the
difficulty, we construct a closed-form function equivalent to the Base-13 function over
the integers, comprising only of arithmetic.

1 Introduction
Created by the great and late John H. Conway, the Conway Base 13 Function, f :R→R,
is a counterexample to the converse of the Intermediate Value Theorem. Despite f
being discontinuous everywhere, it satisfies that for any interval (a,b), f takes all
values between f (a) and f (b). In fact, f takes all values in R within every interval of
non-zero length. Such a function can be defined in plain language in terms of digit-
manipulation with relative ease, yet formulating f using arithmetic to perform such
digit-manipulation is more difficult. Hence, the purpose of this article is to emphasize
such difficulty by constructing a closed-form function equivalent to f over the integers,
comprising only of arithmetic.

Imperatively, a summary of a definition will be given. Hence, let the set of digits in any
base, b ∈ Z>1, be denoted

Ub = {0, . . . ,b−1}.
*Corresponding author: lyamboylan@gmail.com
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Figure 1: Log-plot of f over a subset of Z[ 1
13 ].

Thus, the set of decimal and tridecimal digits are U10 = {0,1,2,3,4,5,6,7,8,9} and
U13 = {0,1,2,3,4,5,6,7,8,9,A,B,C}, respectively. The digits A, B, and C correspond
to their decimal equivalents 10, 11, and 12.

Suppose all x ∈ R≥0 have base-b expansions of the form

x = . . .d1d0.d−1d−2 . . .(b) s.t. ∑
k∈Z

bkdk = x

where dk ∈Ub are individual digits for all k ∈ Z. Note that dk corresponds to a digit
to the left of the radix point only when k ≥ 0. In reference to the position of a digit,
the term index is used. A digit at the kth index of an expansion refers to the digit k
positions to the left of the units’ column. Hence, a digit at index 0 is a digit in the units
column. If no digit appears at the kth index, the digit is assumed to be zero. Considering
that some values of x and b have two expansions (such as in the cases 0.9(10) = 1(10)

or 1.2AC(13) = 1.2B(13)), we’ll assume the terminating expansion is always preferred.
For brevity, we’ll introduce the notation d j→k(b) as shorthand for d jd j−1 . . .dk+1dk(b).
Furthermore, let d j→k(b) ⊆ x represent, disregarding sign and radix point, that the
sequence of digits d j→k(b) occurs in the base-b expansion of x. For example

ABC(13) ⊆−A.BC(13).

If x ∈ Z≥0, then k < 0 =⇒ dk = 0. Hence, for non-negative integer values, the base-b
expansion of x can simply be written dm→0(b), where m ∈ Z≥0 is the largest index such
that dm 6= 0 (assuming x 6= 0, otherwise m = 0).

Adapted from a definition by Greg Oman [1], the Base-13 function f is defined in plain
language as follows:

For any x ∈R, k ∈ Z, let dk represent the digit at index k in the tridecimal expansion of
|x|. A few cases are considered:
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• Case 1: Suppose there exists a digit A⊆ |x|, such that all digits to the right of
such do not contain A or B, and there exists exactly one C ⊆ |x| to the right of
such A. Let the digits between A and C be denoted d jA−1→ jC+1, where jA and
jC are the respective indices of such A and C. Let the digits after C be denoted
d jC−1→−∞. Let f (x) = +d jA−1→ jC+1.d jC−1→−∞(10).

• Case 2: Suppose there exists a digit B⊆ |x|, such that all digits to the right of
such do not contain A or B, and there exists exactly one C ⊆ |x| to the right of
such B. Let the digits between B and C be denoted d jB−1→ jC+1, where jB and
jC are the respective indices of such B and C. Let the digits after C be denoted
d jC−1→−∞. Let f (x) =−d jB−1→ jC+1.d jC−1→−∞(10).

• Otherwise: f (x) = 0 if x is not of either form.

Here, d jC−1→−∞ is shorthand for limk→−∞ d jC−1→k(13). It’s important to recognize that
the final result in cases 1 and 2 are decimal expansions, despite using digits from the
tridecimal expansion of |x|. This is possible because in either case, the result only uses
digits after the right-most A or B. Hence, the proceeding digits do not contain A or B.
There’s expectantly exactly one proceeding C, (the only other possible tridecimal digit
which isn’t also a decimal digit) however, which incidentally is excluded in the result.
Hence, all digits in the result are indeed decimal. Essentially, f is a recompilation of
some of the decimal digits in the tridecimal expansion of |x|, using a specific C (if it
exists) as a decimal point, and A or B as the sign. Here are a few examples that cover
all cases:

f (−B1A.3C1415 . . .(13)) = π

f (137(13)) = 0

f (0.B17C11(13)) =−17.11(10)

f (0.A1C1(13)) = 0

f (0.A1C1(13)) = 0

f (0.A999C9(13)) = 1000(10)

It may be easy to see why f passes through all values of R within every non-zero-length
interval. Regardless, proofs of its properties are not the purpose of this paper. Since
the digit manipulation in f is not trivial, the ability to define f using only standard
mathematical operations is not immediately clear.

Theorem 1. There exists a closed-form g : Z→ R such that g ⊆ f , where f is the
Conway Base-13 Function.

Understandably, such a prospect would benefit from quantifying its cases. The condition
of the existence of a digit A or B ⊆ |x|, such that all digits to the right of such do
not contain A or B can be quantified as ∃ jA

[
d jA = A∧ 6 ∃k < jA(dk ∈ {A,B})

]
or

∃ jB
[

d jB = B∧ 6 ∃k < jB(dk ∈ {A,B})
]

respectively. With the added condition that
there exists exactly one C ⊆ |x| to the right of such A or B, the cases become

case 1 ⇐⇒ ∃ jA
[

d jA = A∧ 6 ∃k < jA(dk ∈ {A,B})∧∃! jC < jA(d jC =C)
]

case 2 ⇐⇒ ∃ jB
[

d jB = B∧ 6 ∃k < jB(dk ∈ {A,B})∧∃! jC < jB(d jC =C)
]
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This gives rise to an equivalent piecewise formulation:

f (x) =


+d jA−1→ jC+1.d jC−1→−∞(10) : case 1
−d jB−1→ jC+1.d jC−1→−∞(10) : case 2
0 : otherwise

2 Closed Form Expressions
As indicated and motivated by Nate Eldredge [4], a construction of f using only
arithmetic functions is a possible procedure, albeit tedious and logic-heavy. It requires
quite the array of functions designed to arbitrarily manipulate digits and test for logical
conditions. This does not guarantee that the procedure will have a closed form over the
entirety of R, however it does give credence for a closed form over Z.

2.1 Closed Form Operations
As there is no universal definition for closed-form expressions, we assume a conserva-
tive definition.

Definition 2. Let an operation be considered closed-form if it can be equivalently
expressed in a finite number of operations, of which include addition, subtraction,
multiplication, division, exponentiation, principal roots, and the principal branch of the
logarithm.

This definition is restrictive so that operations that fulfill this conservative definition
expectantly fulfill more liberal ones [2]. As evident in following sections, a significant
number of arithmetic digit manipulation relies on the floor and ceiling operations.
These can be defined through the use of their relationship to the modulo operation in
floored division [3]:

bxc := x− (x mod 1),
dxe := x+((−x) mod 1).

Here, mod is used as a binary operation as opposed to its use in congruence relations.
It can be defined though the use of the periodic nature of the principal branch of the
logarithm

x mod y :=
y

2πi
Log

(
e

2πix
y
)

assuming 0≤ 1
i Log

(
eiθ
)
< 2π ∀θ ∈ R. Hence, the floor, ceiling, and modulo opera-

tions will be considered closed-form. Similarly, the absolute value operation can be
defined closed-form through the use of the principal square root, |x| :=

√
x2.

2.2 Logical-Conditional Functions
Given the natural piecewise definition of the Base-13 function, a multitude of functions
that act for testing logical conditions are constructed. In particular, we construct func-
tions that check for equality and inequality relations between two real numbers.
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Definition 3. Let E, the “equivalence function”, be defined as

E(a,b) := b(1+ ε)−|a−b|c such that ε > 0, ∀a,b ∈ R.

It is easily shown that

E(a,b) =

{
1 : a = b
0 : a 6= b

For brevity, the “negation” of the equivalence function will also be used.

Definition 4. Let N, the “non-equivalence function”, be defined as

N(a,b) := 1−E(a,b) ∀a,b ∈ R.

Similarly,

N(a,b) =

{
1 : a 6= b
0 : a = b

Definition 5. Let GE , the “greater-than or equal-to function”, be defined as

GE(a,b) :=
⌊1

2
+

1
1+(1+ ε)b−a

⌋
such that ε > 0, ∀a,b ∈ R.

Although not as trivial as the equivalence function, it can be shown that

GE(a,b) =

{
1 : a≥ b
0 : a < b

Definition 6. Let M, the “minimum function”, be defined as

M(a,b) := aGE(b,a)+bGE(a,b)−aE(a,b), ∀a,b ∈ R.

By definition of GE , it is clear that

M(a,b) =

{
a : a≤ b
b : a > b

These functions enable the ability to arithmetically test for logical conditions. With
such, some digit manipulation that is naturally a more piecewise procedure, may instead
be done entirely arithmetically.

3 Digit Manipulation
Singling-out digits from an expansion is the most critical ability of digit manipulation.
As such, let us introduce the following closed-form functions:
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Definition 7. Let
←−
T , the “trailing-digit-truncation function”, be defined as

←−
T n

b(x) :=
⌊ x

bn

⌋
∀x ∈ Z≥0, for any base b ∈ Z>1, and any digit-index n ∈ Z≥0.

In essence,
←−
T removes the right-most n digits from a base-b expansion of x. More

formally, it removes digits with indices less than a given index n.

Lemma 8. x = dm→0(b) =⇒ ←−T n
b(x) = dm→n(b)

Proof: Suppose x = dm→0(b). By definition of positional notation, x = ∑
m
k=0 bkdk.

Plugging this into
←−
T yields

←−
T n

b(x) =

⌊
∑

m
k=0 bkdk

bn

⌋
=

⌊ m

∑
k=0

bk−ndk

⌋

which can be split into a whole and fractional part.

=

⌊ m

∑
k=n

bk−ndk +
n−1

∑
k=0

bk−ndk

⌋
=

m

∑
k=n

bk−ndk +

⌊n−1

∑
k=0

bk−ndk

⌋
=

m

∑
k=n

bk−ndk

We are left with a recompilation of the digits dm→n, such that dn is now directly to the
left of the radix point. In our notation, this is written dm→n(b). �

For example,
←−
T 2

10(123456(10)) = 1234(10). In conjunction, the selection of an arbitrary
digit at a given index is possible.

Definition 9. Let D, the “digit-selection function”, be defined as

Dn
b(x) :=

←−
T n

b(x)−b
←−
T n+1

b (x)

∀x ∈ Z≥0, for any base b ∈ Z>1, and any digit-index n ∈ Z≥0.

This grants the ability to retrieve a digit at the nth index of the base-b expansion of x
within a closed-form manner. This ability is most critical in construction of the Base-13
Function.

Lemma 10. x = dm→0(b) =⇒ Dn
b(x) = dn
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Proof: Suppose x = dm→0(b). Using Lemma 8, D becomes

Dn
b(x) =

m

∑
k=n

bk−ndk−b
m

∑
k=n+1

bk−n−1dk

=
m

∑
k=n

bk−ndk−
m

∑
k=n+1

bk−ndk

= dn +
m

∑
k=n+1

bk−ndk−
m

∑
k=n+1

bk−ndk

= dn

�

For example, D2
10(123456(10)) = 4(10). Not surprisingly, the number of digits in an

expansion can also be deduced arithmetically.

Definition 11. Let L, the “length function”, be defined as

Lb(x) := dlogb(x+1)e+E(x,0)

∀x ∈ Z≥0, for any base b ∈ Z>1.

This is variant of the usual method to count the number of digits: blogb(x)c+ 1.
However the latter is undefined for the case x = 0, whereas Lb(0) = 1. Otherwise both
methods are equivalent over the positive integers.

Lemma 12. x = dm→0(b)∧ x > 0 =⇒ Lb(x) = m+1

Proof : Suppose x = dm→0(b)∧ x > 0,

=⇒ Lb(x) =
⌈

logb

(
1+

m

∑
k=0

bkdk

)⌉
=⇒

⌈
logb(b

m)
⌉
< Lb(x)≤

⌈
logb(b

m+1)
⌉

=⇒ m < Lb(x)≤ m+1
=⇒ Lb(x) = m+1

�

For example, L10(10(10)) = L10(99(10)) = 2. If x ∈ Z≥0 and d ∈Ub, then functions
D,E,L can be used to count the occurrences of d in the base-b expansion of x.

Definition 13. Let O, the “digit-occurrence-counting function”, be defined as

Op
b(x) :=

Lb(x)−1

∑
k=0

E(Dk
b(x), p)

∀x ∈ Z≥0, for any base b ∈ Z>1, and any digit p ∈Ub.
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It should be evident that as O loops through all possible indices, k, for digits in the base-
b expansion of x, the summation increments by 1 iff the digit at index k is equivalent to
the given digit p, which we are looking to count the occurrences of. In other words, O
counts the number of occurrences of a digit p in the base-b expansion of x.

Less trivial is a method to deduce the a specific index of an occurrence of a given
digit.

Definition 14. Let I, the “digit-occurrence-index function”, be defined as

Ip
b (x) :=

Lb(x)

∑
k=1

E
(

Op
b

(←−
T k

b(x)
)
,Op

b(x)
)

∀x ∈ Z≥0, for any base b ∈ Z>1, and any digit p ∈Ub.

The purpose of I is to return the index of the right-most digit p in the base-b expansion
of x. If there isn’t such an index, then I returns Lb(x), which is by definition a number
higher than the maximum index of a nonzero digit.

Lemma 15.

x = dm→0(b) =⇒ Ip
b (x) =

{
j : ∃ j

[
d j = p∧∀k < j(dk 6= p)

]
Lb(x) : otherwise

Proof: Suppose x = dm→0(b). We’ll look at the case where there does exist a right-most
digit p in the base-b expansion of x.

Case 1: ∃ j
[
d j = p∧∀k < j(dk 6= p)]

Thus, with such a digit having index j, truncating off digits of x with indices less than
k for k ≤ j, yields a number with no occurrences of p removed. Likewise, truncating
for k > j yields a number with at least one less occurrence of p.

k ≤ j ⇐⇒ Op
b

(←−
T k

b(x)
)
= Op

b(x)

=⇒ E
(

Op
b

(←−
T k

b(x)
)
,Op

b(x)
)
=

{
1 : k ≤ j
0 : k > j

Thus, the summation can be split into

Ip
b (x) =

j

∑
k=1

1+
Lb(x)

∑
k= j+1

0 = j

Resulting in the index, j.

Case 2: @ j
[
d j = p∧∀k < j(dk 6= p)

]
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In the other case, since x is an integer of finite digits, there not being a right-most digit
p implies that there are no occurrences.

Op
b

(←−
T k

b(x)
)
= Op

b(x) = 0 ∀k

=⇒ E
(

Op
b

(←−
T k

b(x)
)
,Op

b(x)
)
= 1

=⇒ Ip
b (x) =

Lb(x)

∑
k=1

1

= Lb(x).

As such, the sum is trivially the bound, Lb(x).

Therefore x = dm→0(b) =⇒ Ip
b (x) =

{
j : ∃ j

[
d j = p∧∀k < j(dk 6= p)

]
Lb(x) : otherwise

�

In parody to
←−
T , we’ll define a function that virtually removes the left-most n digits

from a base-b expansion of x.

Definition 16. Let
−→
T , the “leading-digit-truncation function”, be defined as

−→
T n

b(x) :=
Lb(x)−n−1

∑
k=0

bkDk
b(x)

∀x ∈ Z≥0, for any base b ∈ Z>1, for any digit-index n ∈ Z≥0

Clearly,
−→
T reassembles the digits in the base-b expansion of x into their original

position, save for the last n digits.

Definition 17. Let K, the “cut-to-index function”, be defined as

K p
b (x) :=

Ip
b (x)

∑
k=0

bkDk
b(x)

∀x ∈ Z≥0, for any base b ∈ Z>1, for any digit p ∈Ub.

Similar to
−→
T , K reassembles the digits in the base-b expansion of x into their original

position, save for the last digits with indices greater than Ip
b (x). For the case where

p * x, we find that Ip
b (x) = Lb(x), which implies that Kd

b (x) = x.

4 Assembling The Conway Base-13 Function
Perhaps the most daunting of tasks to replicate in the Conway Base-13 Function is
recompiling digits in an expansion from one base to another, and replacing a digit with
a radix-point.
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Definition 18. Let X , the “base-to-base re-radix function”, be defined as

X p
b1,b2

(x) :=
Lb1 (x)−1

∑
k=0

N(Dk
b1
(x), p)Dk

b1
(x)b

k−Ip
b1
(x)−GE (I

p
b1
(x),k)

2

∀x ∈ Z≥0, for any bases b1,b2 ∈ Z>1, and any digit p ∈Ub1 .

X removes a specific digit p, with index j in the base-b1 expansion of x. This position
will be virtually used as a new radix-point. Digits to the left of p (with indices k > j)
are placed directly to left of this new radix, and digits to the right of p (with indices
k < j) are placed directly to the right. The final result is treated as a base-b2 expansion.
For the instances where there are multiple occurrences of p, such a case is evidently
disregarded in further construction of the Base-13 function.

Lemma 19.

x = dm→0(b1)∧∃! j(d j = p) =⇒ X p
b1,b2

(x) = dm→ j+1.d j−1→0(b2) ∀b2 ∈ Z≥b1

Proof : Suppose x = dm→0(b1) and ∃! j(d j = p). Thus the index, j, is given by Ip
b1
(x) = j.

A digit at index k is given by Dk
b1
(x) = dk. Hence ∀b2 ∈ Z≥b1 , substituting for our

positional notation,

N(Dk
b1
(x), p)Dk

b1
(x)b

k−Ip
b1
(x)−GE (I

p
b1
(x),k)

2 =


dkbk− j

2 if k < j
0 if k = j
dkbk− j−1

2 if k > j

which can be used to split the sum into

X p
b1,b2

(x) =
j−1

∑
k=0

dkbk− j
2 +

m

∑
k= j+1

dkbk− j−1
2

We are left with two recompilations of digits from base-b1 to base-b2, with the digits to
the left of p directly to left of the radix, and digits to the right of p to the right. In our
positional notation, this is equivalent to dm→ j+1.d j−1→0(b2).

�

For example, XC
13,10(1C3(13)) = 1.3(10). Lastly, we’ll introduce a method to detect

whether one of two given digits are contained within a base-b expansion. This will act
as the step in determining if the final expansion of Conway’s Base-13 function will be
positive or negative.

Definition 20. Let S, the “resulting-sign function”, be defined as

Sp1,p2
b (x) := E

(
Op1

b (x),1
)
−E

(
Op2

b (x),1
)

∀x ∈ Z≥0, for any base b ∈ Z>1, for any digits p1, p2 ∈ {0, . . . ,b−1}.



50 BSU Undergraduate Mathematics Exchange Vol. 15, No. 1 (Fall 2021)

Unlike the previous function, S is much simpler in description. If there exists exactly
one p1 ⊆ x, and not exactly one p2 ⊆ x (assuming a base-b expansion), then Sp1,p2

b (x) =
1. Similarly, Sp1,p2

b (x) = −1 if there exists exactly one p2 ⊆ x, and not exactly one
p1 ⊆ x. Otherwise the result is zero.

Lemma 21.

x = dm→0(b) =⇒ Sp1,p2
b (x) =


+1 : ∃! j1(d j1 = p1)∧@! j2(d j2 = p2)

−1 : @! j1(d j1 = p1)∧∃! j2(d j2 = p2)

0 : otherwise

Proof : Suppose x= dm→0(b). With the definitions of E and O, the values of S, defined by
E
(
Op1

b (x),1
)
−E

(
Op2

b (x),1
)
, in the following case-table are straightforward.

cases ∃! j1(d j1 = p1) @! j1(d j1 = p1)

∃! j2(d j2 = p1) Sp1,p2
b (x) = 1−1 = 0 Sp1,p2

b (x) = 0−1 = −1
@! j2(d j2 = p2) Sp1,p2

b (x) = 1−0 = 1 Sp1,p2
b (x) = 0−0 = 0

�

With an arsenal of closed-form logical-conditional and digit manipulating functions,
the Conway Base-13 Function can be constructed.

Theorem 2 There exists a closed-form g : Z→ R such that g ⊆ f , where f is the
Conway Base-13 Function.

Proof. Let f1(x) = M
(

KA
13|x|,KB

13|x|
)
. After applying f1 to an integer x, digits directly

to the left of the rightmost A or B in the tridecimal expansion of x are truncated. As
the sign of the input is disregarded in the Base-13 Function, the absolute value of x is
taken for each instance of x in f1. For any k ∈ Z, let dk represent the digit at index k in
the tridecimal expansion of |x|. Let the rightmost-index of A be written as IA

13|x|= jA
and the rightmost-index of B be written as IB

13|x|= jB. Note that by our definitions of I
and K,

A * x =⇒ jA = L13|x| =⇒ KA
13|x|= |x|

B * x =⇒ jB = L13|x| =⇒ KB
13|x|= |x|

Since L is monotonically increasing, the inequality relation between jA and jB implies

jA ≤ jB ⇐⇒ L13

(
KA

13|x|
)
≤ L13

(
KB

13|x|
)
⇐⇒ KA

13|x| ≤ KB
13|x|

jB ≤ jA ⇐⇒ L13

(
KB

13|x|
)
≤ L13

(
KA

13|x|
)
⇐⇒ KB

13|x| ≤ KA
13|x|

Therefore, they determine the value of M by

jA ≤ jB ⇐⇒ M
(

KA
13|x|,KB

13|x|
)
= KA

13|x|

jB ≤ jA ⇐⇒ M
(

KA
13|x|,KB

13|x|
)
= KB

13|x|
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Consequently f1 becomes

f1(x) =


KA

13|x| : jA < jB
KB

13|x| : jB < jA
|x| : otherwise

And by definition of K, the function f1 can be represented

f1(x) =


Ad jA−1→0(13) : A⊆ x∧ jA < jB
Bd jB−1→0(13) : B⊆ x∧ jB < jA
|x| : otherwise

Next, let f2(x) = f1(x)E
(

OC
13

(
f1(x)

)
,1
)

. In f2, we are checking if after such an A or
B, there exists exactly one C leftover in the tridecimal expansion of f1(x). If there does
not exist exactly one such C,

OC
13
(

f1(x)
)
6= 1 =⇒ E

(
OC

13
(

f1(x)
)
,1
)
= 0 =⇒ f2(x) = 0

Otherwise, let the index of such be denoted IC
13

(
f1(x)

)
= jC. Therefore

f2(x) =


Ad jA−1→ jC+1Cd jC−1→0(13) : A⊆ f1(x)∧OC

13( f1(x)) = 1
Bd jB−1→ jC+1Cd jC−1→0(13) : B⊆ f1(x)∧OC

13( f1(x)) = 1
f1(x) : A,B * f1(x)∧OC

13( f1(x)) = 1
0 : OC

13( f1(x)) 6= 1

Lastly, let f3(x) = SA,B
13

(
f2(x)

)
XC

13,10

(−→
T 1

13
(

f2(x)
))

. This final function determines
the sign of the final result, truncates off the leftover A or B, recompiles the tridecimal
expansion into decimal, and essentially replaces C with a decimal point (assuming
C ⊆ f2(x)). By the definition of S and f2, we find that

SA,B
13

(
f2(x)

)
=


+1 : A⊆ f2(x)
−1 : B⊆ f2(x)
0 : otherwise

and by our definition of
−→
T ∗,

−→
T 1

13
(

f2(x)
)
=


d jA−1→ jC+1Cd jC−1→0(13) : A⊆ f1(x)∧OC

13( f1(x)) = 1
d jB−1→ jC+1Cd jC−1→0(13) : B⊆ f1(x)∧OC

13( f1(x)) = 1
dL13|x|−2→0(13) : A,B * f1(x)∧OC

13( f1(x)) = 1
0 : OC

13( f1(x)) 6= 1
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Hence, by definition of X ,

XC
13,10

(−→
T 1

13
(

f2(x)
))

=
d jA−1→ jC+1.d jC−1→0(10) : A⊆ f1(x)∧OC

13( f1(x)) = 1
d jB−1→ jC+1.d jC−1→0(10) : B⊆ f1(x)∧OC

13( f1(x)) = 1
dL13|x|−2→ jC+1.d jC−1→0(10) : A,B * f1(x)∧OC

13( f1(x)) = 1
0 : OC

13( f1(x)) 6= 1

Therefore, the final result is of form

f3(x) =


+d jA−1→ jC+1.d jC−1→0.(10) : A⊆ f2(x)∧C ⊆ f2(x)
−d jB−1→ jC+1.d jC−1→0.(10) : B⊆ f2(x)∧C ⊆ f2(x)
0 : otherwise

It should be seen that when x is an integer, the result for each case in f3 is equivalent
to f , the Base-13 function. Furthermore, as the cases from our original quantification
from the plain-language definition hold equivalently, we find that f3 ⊆ f , directly
satisfying that f3 is a closed-form representation of the Conway Base-13 Function over
the integers.

5 Concluding Remarks
Due to the fractal-like symmetry of f , such that f (13nx) = f (x)∀n ∈ Z, it’s possible
to extend f3 : Z→ R to f3 : Z[ 1

13 ]→ R by imposing that if x = y
13n ∀y ∈ Z, ∀n ∈ Z≥0,

then f3(x) = f3(y). This was done in the creation of Figure 1. It may be possible to
extend f3 to even larger sets of numbers whose distribution of digits are known, but
a closed-form for f over the entirety of R is impossible, as the digit-distribution for
every real number is not computable [4].

It is no doubt that the computational efficiency of these algorithms is far from optimal. A
computer can perform a variety of digit manipulation tasks directly and quite efficiently,
without the use of arithmetic closed-form functions such as these. The purpose, rather,
was to fulfill the recreational endeavor of finding the first equation for Conway’s Base-
13 Function, based solely on finite arithmetic. This work was inspired by the recent
passing of John H. Conway (1937→2020).
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Abstract

The 2018 National Financial Capability Study found that 46 percent of Americans do
not have the recommended three months’ worth of expenses in the case of an emergency.
It is of immense importance to provide the best financial strategies towards building
a solid financial foundation. In this paper, we examine how to build an emergency
fund while maximizing the utility of consumption, allowing for a balance of consumer
gratification and necessary future planning. This problem was approached utilizing
the method of dynamic optimization. The necessary conditions for optimality were
obtained and computations were performed to determine the optimal solution. The
optimal savings trajectory was adjusted monthly by incorporating sensitivity factors
with respect to each parameter involved in the model to get the actual monthly savings.
Finally, we performed numerical simulations to create a financial plan that achieves a
prescribed amount of emergency fund goal in a given planning year utilizing simulation
data from an entry-level college graduate’s salary, current high-yield return rates, and
treasury yield-to-maturity rates.

1 Introduction
Everyday, Americans strive to achieve their “American Dream” which could be finding
a better job, getting a better education, buying a property, etc. However, with the
acquisition of a better life style, Americans’ face greater financial responsibilities.
Without an appropriate financial understanding, by the end of each paycheck, one’s
“American Dream” can easily turn into a nightmare. According to the 2018 National
Financial Capability Study, the subject of personal finances is a source of anxiety. The
study says, “more than half (53%) agree that thinking about their finances makes them
anxious, and 44% feel that discussing their finances is stressful, with respondents ages
18-34 reporting the highest levels of stress (63%) and anxiety (55%).” With that being
said, Bankrate, a personal finance website, conducted a survey that shows only 40%
of Americans are comfortable covering $1,000 of unexpected expenses. Therefore,
emergencies that might cost more, such as losing a job or getting injured, can be out of
the question. After further research on the subject of personal finances, there is one
common topic that is covered in almost every website and financial literacy book- the
subject of building an emergency fund. An emergency fund is a saved currency that
is easy to liquidate in case of emergencies. Having such a fund promises financial
security. Despite the importance of having “rainy day” funds, the 2018 National Fi-
nancial Capability Study found that 46% of Americans have not yet set aside funds
enough to cover three months worth of expenses in case of an emergency. We feel it
is of immense importance to provide a reference for those looking to get on the right
track toward building a solid financial foundation.

Both savings and emergency funds bring positive changes into well-being of households.
The first and most obvious benefit is interest that can be earned on money in savings
accounts. Today most of the banks have low interest rates, however by investing into a
high yield savings account (as we are going to present in our paper), one can maximize
the interest that can be earned. Another great benefit is that there is basically no
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risk involved. Unlike, the stock market, which is considered a high-risk investment
type, putting money in a savings account will not cause any losses. In addition,
today most of the banks are insured, which ensures that one’s money is safe in banks.
Today’s automatic deposits make it convenient to save without having to physically
be present in banks. There are a lot more benefits that come with having extra money
saved. Therefore, we hope that this paper will bring essential input on presenting how
individuals can achieve their saving goals.

In this paper we attempt to present how Dynamic Programming and Optimal Control
Theory can be applied in optimization models that deal with efficiency of savings and
consumption. For simulation purposes we are assuming the year 2003 as a current time.
The data that we have collected is assumed as a predicted data. The problem that we
consider is a system that continuously evolves over time and we are looking for an
optimal solution or trajectory for the state variable using dynamic optimization. While
applications of dynamic programming and optimization are still new in economics,
we believe that further work can lead to an improvement of the welfare of households.
With this practical experiment we will implement mathematical techniques used in
optimization. Our goal is to maximize the utility of consumption (which has an effect
on overall satisfaction of a given person) while building up the savings fund. Solution to
such a problem will involve structuring it into multiple stages that can be performed by
using dynamic-programming approach. This approach also constitutes the states of the
process. The state variable trajectory help us to evaluate future actions taken based on
present decisions. Despite the rich theoretical concept behind our project, it will have a
realistic connection because of the factual data, including treasury yield-to-maturity
rates and treasury bond rates. We believe that this paper will bring further contributions
in applications of mathematics and dynamic programming in fields of economics and
finance.

2 Mathematical Model

Suppose a teacher wants to set up an emergency fund that will allow them to save
a certain amount of money over a specific time period while also maximizing their
utility. We seek an optimal balance between saving money while also having the most
satisfaction from the money you are able to consume. Let s(t) be the state of the
savings account at time t and changes at the rate ds

dt (t) = s′(t) with s(0) = s0. Let c(t)
be the amount of money available for consumption at time t after saving. The teacher’s
total consumption at any moment t is

c(t) = E(t)+ρ(t)s(t)− s′(t),

where E(t) is after tax earnings at time t and ρ(t)s(t) is a return from the savings
account. The natural log is frequently used in economics to capture the relationship
between consumption and utility, u(t) = ln(c(t)). It shows that the utility of each
additional dollar of consumption declines as the level of consumption increases.

The teacher’s objective is to determine the trajectory of the state, savings accumulation
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s(t), to maximize the functional

J =
∫ T

0
ln(c(t))e−r(t)t dt =

∫ T

0

[
ln(E(t)+ρ(t)s(t)− s′(t))

]
e−r(t)t dt

subject to s(0) = s0 = 0, s(15) = 60,000 and s′(t) ≥ 0, where ρ(t) = the return rate
for the savings account at time t, r(t) is the treasury yield-to-maturity rate at time t,
e−r(t)t is the discount factor, and ln(c(t))e−r(t)t is the present value of utility.

To formulate our problem in a control theory set up we summarize the state and control
variables and parameters involved in our model as:

c(t) = consumption at time t
s(t) = the state of the savings account at time t
r(t) = treasury yield-to-maturity rate at time t

E(t) = after tax earnings at time t
ρ(t) = return rate for the savings account at time t
s′(t) = what is being deposited into the savings at time t

We assume that in each year the monthly salary to be a constant (which is also true in
most professions), E(t)=E. We also assume that the return rate on savings and treasury
yield-to-maturity rate (both depend on the market) are constant for short intervals of
time by taking the average predicted values. Then we will perform sensitivity analysis
of the optimal solution with respect to these parameters and adjust our solutions
accordingly.

3 Mathematical Tools
Calculus of Variations (modern Optimal Control Theory) is used in mathematics to find
minimums and maximums of functionals that involve functions that change over time.
The origins are traced back to 1696−1697 when John Bernoulli and his brother James
were solving the brachistochrone problem. Later the search for the necessary conditions
for an extremal to be a minimizer led to the development of the Euler-Lagrange equation.
It was widely used in mathematics to solve problems of optimization, which led to
fruitful outcomes in many fields such as aerospace engineering and machine learning.
In early 1930 mathematicians and economic theorists such as Ramsey and Hotelling
started developing optimization theories related to the field of economics (Kamien [1]).
To find the optimal solution we will derive the Euler-Lagrange equation. Suppose that
we have the functional

J(s(t)) =
∫ T

0
F(t,s(t),s′(t))dt.

We wish to find a function s(t) that satisfies the boundary conditions s(0) = 0 and
s(T ) = sT and maximizes the functional J. Suppose that s∗(t) is such a function. Then
any small perturbations of s∗(t) that preserves the boundary conditions will decrease
the value of J since s∗(t) is a maximizer.
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Let h(t) be a function that is continuous and differentiable on [0,T ] and (0,T ), respec-
tively, such that h(0) = h(T ) = 0 and let ε ∈ R. Then define

J(ε) =
∫ T

0
F
(

t,s∗(t)+ εh(t),s∗
′
(t)+ εh′(t)

)
dt

to be the resulting functional under the slight perturbations. We wish to find the total
derivative of J(ε) with respect to ε . Therefore we have

d
dε

(J(ε)) =
d

dε

∫ T

0
F
(

t,s∗(t)+ εh(t),s∗
′
(t)+ εh′(t)

)
dt

=
∫ T

0

d
dε

F
(

t,s∗(t)+ εh(t),s∗
′
(t)+ εh′(t)

)
dt.

Let x∗ε = s∗(t)+εh(t), x∗
′

ε = s∗
′
(t)+εh

′
(t) and Fε =F

(
t,s∗(t)+ εh(t),s∗

′
(t)+ εh′(t)

)
.

Then the inside derivative becomes

dFε

dε
=

dt
dε

∂Fε

∂ t
+

dx∗ε
dε

∂Fε

∂ s
+

dx∗
′

ε

dε

∂Fε

∂ s′

= h(t)
∂Fε

∂ s
+h′(t)

∂Fε

∂ s′
.

Therefore the integral becomes

d
dε

(J(ε)) =
∫ T

0

[
h(t)

∂Fε

∂ s
+h′(t)

∂Fε

∂ s′

]
dt.

When ε = 0 we have that J is at its maximum since we chose s∗(t) to be the function
that maximizes J. Therefore

dFε

dε

∣∣∣∣
ε=0

=
∫ T

0

[
h(t)

∂F
∂ s

+h′(t)
∂F
∂ s′

]
dt = 0.

Using integration by parts and the condition that h(0) = 0 = h(T ) the above equation
can be rewritten as ∫ T

0
(

∂F
∂ s
− d

dt
∂F
∂ s′

)h(t)dt = 0.

For the last step in our derivation we use the following well-know fundamental theorem
in Calculus of Variations.

Theorem 1. If f (t) is a continuous function and∫ T

0
f (t)h(t)dt = 0

for all continuous and differentiable functions h(t) over [0,T ] with h(0) = 0 = h(T ),
then f (t) = 0, for all t ∈ [0,T ] .

By the above Theorem, we obtain the Euler-Lagrange equation

∂F
∂ s

(t,s∗(t),s∗
′
(t))− d

dt
(

∂F
∂ s′

(t,s∗(t),s∗
′
(t))) = 0.
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4 The Necessary Condition and Optimal Solutions
4.1 The Necessary Condition
We can write the performance function as:

F(t,s,s′) = ln(E +ρs− s′)e−rt

Taking the partial derivative with respect to s, we get the equation

Fs =
ρe−rt

E +ρs− s′

Taking the partial derivative with respect to s′, we get the equation

Fs′ =
−e−rt

E +ρs− s′

Then replacing s= s(t) and s′= s′(t) and differentiating with respect to t, we get

dFs′

dt
=

re−rt

E +ρs(t)− s′(t)
+

e−rt(ρs′(t)− s′′(t))
(E +ρs(t)− s′(t))2

Note that E, ρ , and r assumed to be independent of time. Please see section 2 for the
details.

By taking the derivatives and substituting in the Euler-Lagrange equation that corre-
sponds to our problem, we get the following second order differential equation:

(−r+ρ)(ρs(t)+E− s′(t))− (ρs′(t)− s′′(t)) = 0,

with boundary conditions s(0) = s0 and s(T ) = sT .

4.2 Numerical Results: Optimal Monthly Savings and Consump-
tion Plan
We collected data from the National Center for Education Statistics (NCES). The
NCES data gives us the average salary of classroom teachers in public elementary and
secondary schools in the United States from 1980 to 2017. We then took the average
salary and divided it by twelve to find the average monthly salary. Because we were
interested in safe investment options, we used data from the U.S. Treasury and the
International Monetary Fund to obtain the monthly treasury bond rates which behave
similarly to the high yield saving accounts like High Yield American Express account.
Interest rates were obtained for 180 months for years 2003−2017. We also obtained the
corresponding monthly U.S. treasury constant maturity (yield-to-maturity) rates data,
which was used as a risk-free discounting rate for our numerical simulation.

The descriptive statistics shown by Table 1 provide information about our parameters:
salary, treasury yield-to-maturity rate, and treasury 1-year bond yield rate. On average,
a teacher makes about $53,391 per year. The minimum starting salary was recorded in
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Table 1: Descriptive Statistics

Variable Observations Mean SD Min Max
Salary 180 53391 4371.6 45757 58875

Treasury yield-to-maturity 180 0.032 0.0105 0.0150 0.0511
Treasury bond yield 180 0.0144 0.0162 0.0010 0.0522

2003 at $45,757 per year and increased by approximately $874 every year, reaching the
maximum salary of $58,875 per year in 2017. The average treasury yield-to-maturity
rates recorded between the years 2003 to 2017 was approximately 3.20%, with a low
of 1.5%, which occurred in 2016 and a high of 5.11% between the years 2006 and
2007. The average treasury bond yield rates was around 1.44%, with a minimum of
0.1% from the years 2011 and 2014 and a maximum of 5.22% in 2006.

We want to find our adjusted monthly savings that allows us to continue maximizing the
overall satisfaction and meeting the $60,000 target assuming that the teacher continues
earning their monthly salary for 15 years. To achieve this goal, we follow the following
dynamic programming or scheduling steps.

1. We solve the second order differential equation

(−r+ρ)(ρs(t)+E− s′(t))− (ρs′(t)− s′′(t)) = 0,

with boundary conditions, s(0) = 0 and s(15) = 60000. The solution depends on
t, ρ , r and E. Let s(t,ρ,r,E) be the solution. Substituting the constant monthly
salary for the first year, E1 into s1(t,ρ,r,E), we get s1(t,ρ,r,E1).
Assume that the monthly treasury bond rates and treasury yield-to-maturity
rates are forcasted in advance for the first year (it can also be done quarterly
or biannually). Let the first year average treasury bond and treasury yield-to-
maturity rates be ρ1 and r1. Then the projected monthly savings at the ith month
of the first year is s1(

i
12 ,ρ1,r1,E1) for i = 1..12. These predicted values can

be adjusted month-by-month using the first order Taylor’s series expansion of
s1(t,ρ,r,E1):

s1(ti,ρi,ri,E1)∼= s1(ti,ρ1,r1,E1)+
∂ s1

∂ρ
(ti,ρ1,r1,E1)(ρi−ρ1)+ (1)

∂ s1

∂ r
(ti,ρ1,r1,E1)(ri− r1) (2)

The first term is the monthly savings predicted using the averages, the second
term ∂ s1

∂ρ
(ti,ρ1,r1,E1)(ρi− ρ1) is the monthly adjustment due to the relative

change in treasury bond return rates and the third term ∂ s1
∂ r (ti,ρ1,r1,E1)(ri− r1)

is the monthly adjustment due to the relative change in treasury yield-to-maturity
rates. Therefore, the adjusted saving at ith month is the difference of the savings
account balance between two consecutive months:

s1(
i

12
,ρi,ri,E1)− s1(

i−1
12

,ρi−1,ri−1,E1)
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and our ith month out-of-pocket monthly savings contribution will be

S1(i) = s1(
i

12
,ρi,ri,E1)

−ri−1

[
i−1

∑
m=1

(
s1(

m
12

,ρm,rm,E1)− s1(
m−1

12
,ρm−1,rm−1,E1)

)] (3)

The first year total savings account balance becomes

B1 =
i=12

∑
i=1

[
s1(

i
12

,ρi,ri,E1)− s1(
i−1
12

,ρi−1,ri−1,E1)

]
,

by assumption s1(0,ρ0,r0,E1) = 0.

2. After we finished the first year, month-by-month calculations and got B1, we
solve the same second order differential equation with different boundary con-
ditions, s(1) = B1 and S(15) = 60000. Let s2(t,ρ,r,E) be the solution for this
boundary value problem. Again substituting the second year constant monthly
salary E2 in s2(t,ρ,r,E), we get s2(t,ρ,r,E2). Then we repeat step (1) using
s2(t,ρ2,r2,E2) for i = 13..24, where ρ2 and r2 are the average values of the
monthly treasury bond yield and treasury yield-to-maturity rates in year 2. We
continue this process recursively for the remaining 13 years.

We evaluated the monthly savings, monthly consumptions, and cumulative
savings account balance for the years 2003−2017 and presented the results in
Figure (1), (2) and Figure (3) below.
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Figure 3: Monthly Savings and Savings Account Balance

Figure (1) and Figure (2) shows adjusted monthly saving and corresponding consump-
tion that will allow the teacher to reach their savings goal of $60,000 in 15 years (please
see Figure (3)). From Figure (1) and Figure (2), between the years 2004 to 2007, the
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teacher would have been able to consume more and save less from their salary. This is
because the treasury bond yield rate increased from 1.91% to 5.22%. This allowed the
teacher to reach their monthly savings goal by using more of what was coming from
the return rather than their salary. However, when the stock market crashed in 2008
and treasury yield rates fell, the teacher would have had to save more and consume less
to make up for the low return rate they were getting on their savings account shown by
the very low yield rate and keep on track with their goal. When the market began to
steady around 2010, the teacher stayed on a fairly constant track with their monthly
savings to make sure they reached their goal in the time frame. They were able to
consume more towards the end of the fifteen years due to the return increasing again as
well as the constant increase in salary per year while getting closer to and eventually
reaching their goal of $60,000 in 15 years. It seems as though treasury bond yield rates
have a fairly high inverse correlation with adjusted savings, but a very low correlation
with adjusted consumption. This makes sense because adjusted savings is based on
the fluctuations in the treasury yield-to-maturity rate and treasury bond yield while
attempting to reach the $60,000 goal at the end of year 15. On the other hand, adjusted
consumption (though impacted by the treasury yield-to-maturity rates and treasury
bond yield rates) is more heavily dependent on changes in salary.

5 Conclusion

From our paper, we were able to observe and study how Optimal Control Theory and
Dynamic Programming can be applied in fields of economics and finance. To build a
savings fund with minimum stress while maximizing our utility of consumption we have
used mathematical tools to derive the Euler-Lagrange equation and solve the equation
to determine the optimal solution. Later, we solved our problem and considered the
complexity of our equations (higher-order differential equations). To complete our
numerical and sensitivity analysis and to find adjusted savings and consumption, we
have obtained and used the data of teacher’s salary, treasury yield-to-maturity rates,
and treasury bond yield rates. In the end, we have successfully reached our goal of
saving $60,000 at the end of fifteen years of simulation.
What makes our project so essential is the applicability of it in real life. Even though
we were assuming the past data as current data, we were able to demonstrate how
advanced mathematical computations can be used to work with it. With that being
said the same calculations can be used on predicted data rather than the data obtained
from the past observations. We hope that our project will bring some insight about
applications of Optimal Control Theory in an undergraduate program in the field of
Applied Mathematics, Economics,and Finance.
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Abstract

This research explores the sum of divisors - σ(n) - and the abundancy index given
by the function σ(n)

n . We give a generalization of amicable pairs - feebly amicable
pairs (also known as harmonious pairs), that is m,n such that n

σ(n) +
m

σ(m) = 1. We first
give some groundwork in introductory number theory, then the goal of the paper is to
determine if all numbers are feebly amicable with at least one other number by using
known results about the abundancy index. We establish that not all numbers are feebly
amicable with at least one other number. We generate data using the R programming
language and give some questions and conjectures.

1 Introduction

The sum of divisor function, σ(n), for a positive integer n, is the sum of all the positive
divisors including n itself. Looking at the ratio of the sum of divisor function and
the number itself, σ(n)

n , or the abundancy index, we look into its relation to concepts
such as perfect numbers, abundant numbers, deficient numbers, and amicable numbers.
Through understanding these relations, we will define the concept of feebly amicable
numbers also known as harmonious numbers in [12]. This is a generalization of an
amicable number with weakened conditions so that the sum of divisors of the two do
not need to be equal.

Formally, these are two numbers m and n such that n
σ(n) +

m
σ(m) = 1. Examples of the

first twenty feebly amicable pairs are given for illustration of this concept.

We use the R programming language to produce some abundancy indices and then a
list of feebly amicable numbers. This data allows us to ask some questions about feebly
amicable numbers that are unknown about amicable numbers.

Our main new results are Theorem 11 and Corollary 12 which give conditions for when
a number can be feebly amicable with another and consequently amicable. The final
section has some questions and conjectures that might be of interest to the reader or for
future work.

2 History

The implications of this research are derived from the historical mathematical workings
of famous figures, most notably Euclid, Euler, and Mersenne. Euclid further advanced
our understanding of prime numbers by providing the Euclidean algorithm and showing
that there are infinitely many prime numbers. Euclid also completed one of the only
proofs involving perfect numbers: if 2n−1 is prime, then 2n−1(2n−1) is perfect. Euler
continued the idea of perfect numbers by proving that every even perfect number can
be expressed in Euclid’s form. This research also makes use of Marin Mersenne’s work
on primes, and a Mersenne prime is of the form 2n−1. [3]
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3 Preliminary Definitions
We give some some preliminary definitions that we will rely upon throughout. We are
working here with the positive integers (natural numbers). It should also be noted that
it is possible to extend all this theory to the negative integers.

Firstly, a divisor is a number that divides into another number without a remainder.Then,
a prime is a number that has only the divisors 1 and itself. Particular prime numbers
used in this paper are Mersenne primes which are prime numbers of the form 2p−1,
where p is also prime.

Given a natural number n, we can define the canonical representation of n to be ∏
r
i=1 pai

i
where the pi are the distinct prime divisors of n and ai their multiplicities.

Two number are coprime (alternatively relatively prime) if they share only 1 as a
divisor.

Then and importantly to this paper, the sum of divisor function σ(n) for a positive
integer n is defined as the sum of all its divisors (including n itself).

From this, we can categorize natural numbers according to:

• n is called perfect if σ(n) = 2n.

• n is called abundant if σ(n)> 2n.

• n is called deficient if σ(n)< 2n.

This paper generalizes the definition of amicable numbers. To be precise, amicable
numbers are two numbers related in such a way that the sum of the proper divisors of
each are equal and also equal to the sum of the numbers. That is, m,n are amicable if
m+n = σ(m) = σ(n).

Part of this paper is an investigation of the abundancy index of a number. It is defined
by λ (n) = σ(n)

n and, in some sense, measures how divisible a number is.

Multiply-perfect numbers are numbers such that their abundancy index is an integer.
Note that perfect numbers by definition have abundancy index 2.

Finally, two numbers in N are friendly if they have the same abundancy index. That is,
σ(n)

n = σ(m)
m . More generally, friendly numbers form friendly clubs if they all have the

same abundancy index.

4 Preliminary Results
We now present some preliminary results that give some illustration of the theory and
that will be used throughout the rest of the paper. Good references for these and more
foundational theory are [1] and [6]. However, there are many good texts on introductory
number theory.

Proposition 1. If p,q are distinct primes then σ(pnqm) = σ(pn)σ(qm).

Proof. First let p and q be primes, then:



68 BSU Undergraduate Mathematics Exchange Vol. 15, No. 1 (Fall 2021)

σ(pnqm) =
n
∑

i=0

m
∑
j=0

piq j = (1+ p+ . . .+ pn)(1+q+ . . .+qm) = σ(pn)σ(qm)

The above Proposition 1 yields the multiplicative property of the sum of divisors
function. That is, if m and n are coprime, then σ(mn) = σ(m)σ(n).

This leads to the following which is Theorem 2.24 of [1]:

Theorem 2. If a = ∏
r
i=1 pai

i where ai > 0 for each i is the canonical representation of
a, then

σ(a) =
r

∏
i=1

pai
i −1

pi−1
.

Proof. We first establish that:

σ(pn) = 1+ p+ p2 + p3 + ...+ pn =
pn+1−1

p−1

This follows as:

(p−1)(1+ p+ p2 + p3 + ...+ pn) = pn+1−1

Then by applying Proposition 1 inductively, the result follows.

We make here a number of remarks regarding values of the abundancy index and how
it relates to perfect, abundant, deficient, and friendly numbers.

The codomain of the abundancy index, λ (n) = σ(n)
n , is Q∩ (1,∞). We will see later

that this codomain is not in fact the range, that is, there are values in Q∩ (1,∞) that are
not abundnacy indices.

When σ(n)
n = 2, then n is perfect. When 1 < σ(n)

n < 2, then n is deficient. And when
σ(n)

n > 2, then n is abundant. Additionally, all perfect numbers in this case are friendly
to one another. That is σ(n)

n = σ(m)
m ; λ (n) = λ (m).

We give a proof of the Euclid-Euler Theorem to illustrate the theory:

Theorem 3. An even number is perfect if and only if it has the form 2p−1(2p− 1),
where 2p−1 is prime.

Proof. Let 2p−1 be prime. Then, by the multiplicative property, the sum of divisors
of 2p−1(2p−1) is equal to

σ(2p−1(2p−1)) = σ(2p−1)σ(2p−1) = (2p−1)2p = 2(2p−1)(2p−1).

Hence, since the sum of the divisors of 2p−1(2p− 1) is twice itself, 2p−1(2p− 1) is
perfect.
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For the converse, let 2kx be an even perfect number, where x is odd. For 2kx to be a
perfect number, the sum of its divisors must be twice its value. So,

2(2kx) = σ(2kx) = σ(2k)σ(x) = (2k+1−1)σ(x)

by the multiplicative property of σ .

The factor 2k+1−1 must divide x. So y = x/(2k+1−1) is a divisor of x. Now,

2k+1y = σ(x) = x+ y+ z = 2k+1y+ z,

where z is the sum of the other divisors. Thus, for this equality to be true, there must
be no other divisors, so z must be 0. Hence, y must be 1, and x must be a prime of
the form 2k+1−1. Therefore, an even number is perfect if and only if it has the form
2p−1(2p−1), where 2p−1 is prime.

We also give the following proposition that we will utilize later on:

Proposition 4. If p is prime, then σ(n)
n = p+1

p if and only if n = p.

Proof. We first show that if p is prime and σ(n)
n = p+1

p , then n = p. So we have
σ(n)

n = (p+1)k
(p)k for some k = paL where p does not divide L and n = pk. Then suppose

for contradiction that k > 1.

Then σ(n) = (p+ 1)k, but also, σ(n) = σ(pk) = σ(ppaL). By the multiplicative
property of σ and Theorem 2, σ(ppaL) =σ(pa+1)σ(L) = pa+2−1

p−1 σ(L). So, (p+1)k =
pa+2−1

p−1 σ(L).

We continue the calculation with (p+1)(paL) = pa+2−1
p−1 σ(L).

Hence, (p+1)(p−1)(paL) = (pa+2−1)σ(L), which gives, (p2−1)(paL) = (pa+2−
1)σ(L), and finally, (pa+2− pa)L = (pa+2−1)σ(L).

Because (pa+2− pa)< (pa+2−1) and L < σ(L) we must have that (pa+2− pa)L <
(pa+2−1)σ(L). So, by contradiction, n = p.

For the converse if n = p, then if p is prime, as σ(p) = p+1 we must have:

σ(n)
n = σ(p)

p = p+1
p .

5 R code
In order to explore the values of both the sum of divisors function and the abundancy
index, we used some code in the R programming language [9] to generate the first
100,000 values of the sum of divisor function and abundancy indices. The following is
some code that describes the algorithm:
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sod <- function(x) %This defines the sum of divisors function%
{s<-0
for(i in 1:x){if(x%%i==0){s<-s+i}}
%This loops through the values 1 through x to see which
are factors and adds them to the sum if they are%
return(s)}

sigma<-c(1:100000)
%This defines a vector of length 100,000%

for(i in 1:100000){sigma[i]<-sod(i)}
%This gives a vector of the first 100,000 values of the sum of
divisors%

abun<-c(1:100000)
%This again defines a vector of length 100,000%

for(i in 1:100000){abun[i]<-sigma[i]/i}
%This gives a vector of the first 100,000 values of the
abundancy index%

Figure 1 shows a histogram to reflect the data.

By our code we calculated the fraction of abundant numbers in the first 100,000
numbers to be 0.24799. This is not within the range given by [2], but it is close. In that

paper, they compute that α = lim
n→∞

A(n)
n

is such that

0.2476171 < α < 0.2476475

Here A(n) is the number of abundant numbers less than n.

We suggest that computing larger numbers of abundancy indices would give an estimate
within the proven bounds. In any case, the histogram illustrates how there are roughly
three times more deficient numbers than abundant numbers.

6 Range of the Abundancy Index
From our data, 5

4 does not appear as an abundancy index of any n less than 100,000.
First, we prove that 5

4 does not appear for any natural number, and then, we show a
generalization for finding more numbers not in the range.

Lemma 5. 5
4 6=

σ(n)
n for any natural number n.

Proof. Suppose to the contrary. So 5k = σ(n) and 4k = n for some k. Thus, n = 4k =
2a+2l for some nonnegative integer a ∈ N and odd integer l ∈ N. So then σ(n) =
σ(2a+2l), which by the multiplicative property of σ , σ(2a+2l) = σ(2a+2)σ(l) =
(2a+3−1)σ(l).
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Figure 1: Histogram for Abundancy Index

This leads to:
σ(n)

n
=

(2a+3−1)σ(l)
2a+2l

>
7
4

σ(l)
l

>
7
4
.

Therefore, 5
4 6=

σ(n)
n .

This can be generalized to Theorem 1 from [5]:

Theorem 6. If k is coprime to m, and m < k < σ(m), then k
m is not the abundancy

index of any integer.

Proof. Assume k
m = σ(n)

n . Then mσ(n) = kn, so m|kn, hence m|n because (k,m) = 1.
But because m|n implies σ(m)

m ≤ σ(n)
n , with equality only if m = n, σ(m)

m ≤ σ(n)
n = k

m ,
contradicting the assumption k < σ(m).

We can see that not all rational numbers greater than 1 are in the range, but we ask the
question: is the range dense in rationals greater than 1? Recall that if S⊆ T ⊆ R, we
say that S is dense in T if for any two numbers in T there exists an element of S in
between them.

We refer to [4] and [5] again for the following results:
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Theorem 7. (Theorem 5 in [4]) The set{λ (n)|n ∈ N} is dense in Q∩ (1,∞).

We give the proofs from [5] of the following results for exposition:

Lemma 8. Let m be a positive integer. If p is prime with p > 2m, then among any 2m
consecutive integers, there is at least one integer coprime with pm.

Proof. Let S be any set of 2m consecutive integers. If p > 2m there is at most one
multiple of p in S. But S contains at least two integers coprime with m, one of which is
coprime with p and, therefore, also pm.

Theorem 9. (Theorem 2 in [5]) The complement of {λ (n)|n ∈ N} in Q∩ (1,∞) is
dense in Q∩ (1,∞).

Proof. Choose any real x > 1, and any ε > 0. We will exhibit a rational in the interval
(x− ε,x+ ε), and that is not an abundancy ratio. By Theorem 7, choose m > 1 so that
the abundancy index σ(m)

m is in the interval (x− ε

2 ,x+
ε

2 ). For every prime p > 2m, we
have:

x− ε

2 < σ(m)
m < σ(pm)

pm = (1+ 1
p )

σ(m)
m < (1+ 1

p )(x+
ε

2 ).

If we also require p > 2x+ε

ε
, then (1+ 1

p )(x+
ε

2 )< x+ ε , we have:

x− ε

2 < σ(pm)
pm < x+ ε .

By the Lemma 8, we know that σ(pm)− k is coprime with pm for some k with
1≤ k ≤ 2m. For such k, we also have:

σ(pm)− k ≥ σ(pm)−2m≥ (p+1)(m+1)−2m > pm

because p > 2m. Therefore, by Theorem 6, σ(pm)−k
pm is not an abundancy index. So,

then:

σ(pm)−k
pm ≥ σ(pm)−2m

pm = σ(pm)
pm − 2

p > x− ε

2 −
2
p .

If p ≥ 4
ε
, we have x− ε

2 −
2
p ≥ x− ε , thus σ(pm)−k

pm > x− ε . All the inequalities are
satisfied if p > max{2m, 2x+ε

ε
, 4

ε
}, and so:

x− ε < σ(pm)−k
pm < σ(pm)

pm < x+ ε .

This gives, σ(pm)−k
pm that is not an abundancy index, within ε of x.
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7 Feebly Amicable Numbers
We now proceed to generalize the definition of amicable numbers. We do so by
recognizing the following result:

Proposition 10. If two numbers m, n are amicable, then n
σ(n) +

m
σ(m) = 1.

Proof. Let m and n be amicable numbers. Then σ(m) = σ(n) = m+n and so m+n
σ(n) = 1

hence n
σ(n) +

m
σ(n) = 1.

Thus, if m and n are amicable numbers, then m
σ(m) +

n
σ(n) = 1.

This allows us to formulate the following definition:

Feebly amicable numbers are pairs m, n such that

n
σ(n)

+
m

σ(m)
= 1

Alternatively, we can define in terms of the abundancy index λ :

1
λ (n)

+
1

λ (m)
= 1

In words, two numbers are feebly amicable if the reciprocals of their abundancy indices
sum to 1. Note that feebly amicable pairs are referred to as harmonious pairs in
[12].

We note that pairs of perfect numbers are not amicable (no two perfect numbers have
the same sum of divisors). However, they are feebly amicable, and the Venn diagram
in Figure 2 illustrates the containment shown in Proposition 10.

We also note that amicable pairs have been extended to amicable triples which are
three numbers m, n, and s such that σ(m) = σ(n) = σ(s) = m+n+ s, and therefore
the following is true as well: n

σ(n) +
m

σ(m) +
s

σ(s) = 1.

If amicable pairs and triples have been defined such as they have been above, then
amicable k-tuples are numbers n1, . . . ,nk such that

σ(n1) = . . .= σ(nk) = n1 + . . .+nk

Given these definitions we can also generalize to feebly amicable triples. These are
three numbers m, n, and s such that

n
σ(n)

+
m

σ(m)
+

s
σ(s)

= 1

and feebly amicable k-tuples as numbers n1, . . . ,nk such that

n1

σ(n1)
+ . . .+

nk

σ(nk)
= 1.
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Figure 2: Venn diagram

All members of a friendly club have the same abundancy index. It is possible to talk of
feebly amicable clubs. As if m,n are feebly amicable then m, l are feebly amicable for
any l in the same friendly club as n.

8 New Results
We now ask the following question: are all integers feebly amicable with some other
integer? To see that this is not true, we establish the following:

Theorem 11. Let k and m be such that k is coprime with m and m < k < σ(m). If
some n has abundancy index k

k−m , then n is not feebly amicable with any other integer.

Proof. Suppose that λ (n) = σ(n)
n = k

k−m . Since we already know 1
λ (n) +

1
λ (m) = 1, then

we can substitute in and get:

k−m
k

+
1

λ (m)
= 1.

1
λ (m)

= 1− k−m
k

=
k− (k−m)

k

=
m
k
.

However, there is no such abundancy index as λ (m) = k
m , by Theorem 6. Thus, proving

the theorem.
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To see that this is not vacuous note that we have seen that 5
4 is not an abundancy index,

yet the abundancy index of 14182439040 is known to be 5 = 5
5−4 as it is a multiply

perfect number of order 5. See OEIS A007539 [10].

A natural corollary of this theorem is the following:

Corollary 12. If k is coprime with m, m < k < σ(m), and n has abundancy index k
k−m ,

then n is not amicable with any other integer.

This follows directly from the fact that amicable pairs are feebly amicable pairs. Hence,
in particular 14182439040 has no amicable pair.

Proposition 4 showed that the only number with abundancy index p+1
p was p where p

was prime. The question arises, is p feebly amicable with any number? Naturally, such
a number would need abundancy index p+1. That is, p+1-perfect. We state this as a
result:

Proposition 13. For p prime, p is feebly amicable with n if and only if n is (p+1)-
perfect.

It is unknown if there are any coprime amicable pairs [7]. Hence a natural question is
whether there are any coprime feebly amicable pairs. The data reveals that there are
none less than 1,000 but that the first coprime feebly amicable pair is 1485 and 868.
There are another four pairs before 5,000.

9 Examples

We now generate the first 20 feebly amicable pairs that are not amicable or pairs of
perfect numbers. To do so, we implemented the following code:

for(i in 1:100000)
{for(j in 1:i)
{if(1/abun[i]+1/abun[j]==1)
{print(i) print(j)}}}

These pairs are consistent with those listed in [10] in A253534 and A253535.
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12 4
30 14
40 10
44 20
56 8
84 15
96 26

117 60
120 2
135 42
140 14
182 66
184 88
190 102
198 45
224 10
234 4
248 174
252 153
260 164

10 Questions and Conjectures
This section considers some questions and conjectures that we have encountered in the
course of writing this paper.

Question 1 Are there infinitely many coprime feebly amicable pairs?

Given the regularity of coprime pairs of feebly amicable pairs, we conjecture that there
are an infinite number.

In [8], Paul Erdős proved that the asymptotic density of amicable integers relative to
the positive integers was 0. That is, the ratio of the number of amicable numbers less
than n with n tends to zero as n tends to infinity. This gives rise to the question:

Question 2 What is the density of feebly amicable numbers relative to the positive
integers?

Given the number of feebly amicable numbers in the first 5,000 integers is 310, then 178
in the next 5,000, and 136 in the third 5,000, it appears that the density is decreasing
and so the asymptotic density is at least less than 0.0272 = 136

15,000 . Indeed, [12] gives
an upper bound and confirms that the asymptotic density is 0.

The sum of amicable numbers conjecture [11] states that as the largest number in an
amicable pair approaches infinity, the percentage of the sums of the amicable pairs
divisible by ten approaches 100%. We therefore ask the question:

Question 3 As the larger number in a feebly amicable pair approaches infinity, does the
percentage of the sums of the pairs divisible by ten approach 100%?
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Our data tells us that in the first 5000 numbers there are 11 feebly amicable pairs
that sum to a multiple of 10. There are then 8 in the next 5000 and 4 between 10000
and 15000. As a sequence of fractions of the number of feebly amicable pairs this is:
0.035,0.045,0.029. This does not give us any noticeable trend and once again much
higher values would be required to make a strong conjecture other than to say it does
not appear that the percentage tends towards 100% as in the amicable case. Computing
further is certainly possible, but it becomes much more computationally expensive to
compute sum of divisors and hence abundancy indices. [13] provides an algorithm to
compute in O(n

1
3 ) time, but our code was much more crude.
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