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Abstract
A known characterization for entire functions that preserve all nonnegative matrices of
order two is shown to characterize polynomials that preserve nonnegative matrices of
order two. Equivalent conditions are derived and used to prove that P3 ⊂ P2, which
was previously unknown. A new characterization is given for polynomials that preserve
nonnegative circulant matrices of order two.

1 Introduction
In 1979, Loewy and London [3] posed the problem of characterizing

Pn := {p ∈ C[x] | p(A)≥ 0,∀A ∈Mn(R),A ≥ 0} ,
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for every positive integer n. In particular, and for practical purposes, necessary and
sufficient conditions are sought in terms of the coefficients of the polynomials belonging
to Pn.

The characterization of P1 is known as the Pólya–Szegö theorem (see, e.g., Powers
and Reznick [5, Proposition 2]), which asserts that p ∈ P1 if and only if

p(x) =
(

f1(x)2 + f2(x)2)+ x
(
g1(x)2 +g2(x)2) .

Bharali and Holtz [1] gave partial results for the set
Fn := { f entire | f (A)≥ 0,∀A ∈Mn(R),A ≥ 0} ⊃ Pn

and characterized entire functions that preserve certain structured nonnegative matrices,
including upper-triangular matrices and circulant matrices. In addition, they gave
necessary and sufficient conditions for an entire function f to belong to F2. Specifically,
they showed that an entire function f belongs to F2 if and only if

f (x+ y)− f (x− y)≥ 0, ∀x,y ≥ 0, (1)
and

(x+ y− z) f (x− y)+(z− x+ y) f (x+ y)≥ 0, ∀x ≥ z ≥ 0,y ≥ x− z, (2)

or, equivalently, if f satisfies (1) and
(x+ y) f (x− y)+(y− x) f (x+ y)≥ 0, ∀y ≥ x ≥ 0. (3)

More recently, Clark and Paparella [2] gave partial results for Pn in terms of the
coefficients of the polynomials in Pn. While it is known that Pn+1 ⊆ Pn, ∀n ∈ N,
Clark and Paparella proved that P2 ⊂ P1 and conjectured that Pn+1 ⊂ Pn, ∀n ∈
N.

In this work, it is shown that the characterization for F2 established by Bharali and
Holtz also characterizes P2. Our demonstration, which utilizes the definition of matrix
function via Jordan canonical form, directly establishes that (1) and (3) are necessary
and sufficient whereas Bharali and Holtz establish (1) and (2) (via the definition of
matrix function via interpolating polynomial) and proceed to show that (2) is equivalent
to (3). Equivalent conditions are derived for (1) that are used to prove that P3 ⊂ P2,
which was previously unknown. A new characterization is given for polynomials that
preserve nonnegative circulant matrices of order two.

2 Notation and Background
The set of m-by-n matrices with entries from a field F is denoted by Mm×n(F). If
m = n, then Mm×n(F) is abbreviated to Mn(F). The set of all n-by-1 column vectors
is identified with the set of all ordered n-tuples with entries in F and thus denoted by
Fn.

If A ∈Mn(F), then ai j denotes the (i, j)-entry of A. If F = R and ai j ≥ 0 (ai j > 0),
1 ≤ i, j ≤ n, then A is called nonnegative (respectively, positive) and this is denoted by
A ≥ 0 (respectively, A > 0).
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Unless otherwise stated,

p(x) =
m

∑
k=0

akxk ∈ C[x],

where am ̸= 0. If n is a positive integer less than or equal to m, then the coefficients
a0,a1, . . . ,an−1 are called the first n terms of p and the coefficients am−n+1, . . . ,am−1,am
are called the last n terms of p.

3 Basic Observations
Lemma 1. If D is a positive diagonal matrix, then p(A)≥ 0 if and only if p(D−1AD)≥
0.

Proof. The result follows immediately by observing that p(D−1AD) = D−1 p(A)D.

Lemma 2. If P is a permutation matrix, then p(A)≥ 0 if and only if p(P⊤AP)≥ 0.

Proof. Similar to the proof of Lemma 1.

We briefly digress to present the following result which, to the best of our knowledge,
has not previously been addressed in the literature.

Theorem 3. If p ∈ P1, then ak ∈ R, ∀k ∈ {0,1, . . . ,m}.

Proof. It is known that if f is an analytic function defined on a self-conjugate domain
D ⊆ C (i.e., D is symmetric with respect to the real-axis in the complex-plane) and
f (x) ∈R, ∀x ∈ I := D ∩R, then f (k)(x) ∈R, ∀x ∈ I (see, e.g., Paparella [4, Lemma
4.7]). In particular, p(k)(x) ∈ R, ∀x ≥ 0. The result follows by noting that ak =
p(k)(0)/k! ∈ R.

Corollary 4. If p ∈ Pn, then ak ∈ R, ∀k ∈ {0,1, . . . ,m}.

Proof. Since Pn+1 ⊆ Pn, ∀n ∈ N [1, Lemma 1], it follows that p ∈ P1. The result is
now immediate from Theorem 3.

4 A Characterization of P2

Lemma 5. Let A ∈M2(R) and suppose that A > 0. If σ(A) = {ρ,µ}, with ρ > |µ|,
then A is similar to a matrix of the form

1
1+α

[
αρ +µ ρ −µ

α(ρ −µ) αµ +ρ

]
,

where α > 0.

Proof. By the Perron–Frobenius theorem for positive matrices, there is a positive vector
x such that Ax = ρx. If D = diag(x1,x2), then the positive matrix

B := D−1AD
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has row sums equal to ρ . Thus, there is an invertible matrix Ŝ =

[
1 â
1 b̂

]
such that

B = Ŝ
[

ρ 0
0 µ

]
Ŝ−1.

Notice that â ̸= 0 and b̂ ̸= 0: for contradiction, if â = 0, then

B
[

0
b̂

]
= µ

[
0
b̂

]
,

but

B
[

0
b̂

]
= b̂

[
b12
b22

]
.

Thus, b12 = 0, but this is a contradiction since B> 0. A similar calculation demonstrates
that b̂ ̸= 0.

If

S := Ŝ
[

1 0
0 1/â

]
=

[
1 1
1 a

]
,

where a = b̂/â, then

B = S
[

ρ 0
0 µ

]
S−1.

Furthermore, a < 0 (otherwise,

B =
1

1−a

[
aρ −µ µ −ρ

a(ρ −µ) aµ −ρ

]
and b12 < 0). Thus,

S =

[
1 1
1 −α

]
, α > 0,

and

B =
1

1+α

[
αρ +µ ρ −µ

α(ρ −µ) αµ +ρ

]
, (4)

as desired.

To simplify the main result, we rely on the following result [1, Lemma 4].

Lemma 6. If p ∈ R[x], then p ∈ Pn if and only if p(A)≥ 0 whenever A > 0.

Proof. Follows from the continuity of p and the fact that the set of positive matrices of
order n is dense in the set of all nonnegative matrices of order n.

Theorem 7 (cf. [1, Theorem 13]). If p ∈ R[x], then p ∈ P2 if and only if

p(ρ)≥ |p(µ)|, ∀ρ,µ ∈ R,ρ ≥ |µ| (5)
and

ρ p(−µ)+µ p(ρ)≥ 0, (6)

whenever 0 < µ ≤ ρ .
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Proof. If p ∈ P2, then the necessity of (5) follows by noting that if

A :=
1
2

[
ρ +µ ρ −µ

ρ −µ ρ +µ

]
≥ 0, (7)

with ρ ≥ |µ|, then

p(A) =
1
2

[
p(ρ)+ p(µ) p(ρ)− p(µ)
p(ρ)− p(µ) p(ρ)+ p(µ)

]
≥ 0. (8)

Let ρ and µ be real numbers such that 0 < µ ≤ ρ . If

A :=
[

0 ρ

µ ρ −µ

]
≥ 0

then

A =

[
ρ 1
−µ 1

][
−µ 0
0 ρ

][
ρ 1
−µ 1

]−1

=
1

ρ +µ

[
ρ 1
−µ 1

][
−µ 0
0 ρ

][
1 −1
µ ρ

]
,

and

p(A) =
1

ρ +µ

[
ρ p(−µ)+µ p(ρ) ρ(p(ρ)− p(−µ))
µ(p(ρ)− p(−µ)) ρ p(ρ)+µ p(−µ)

]
≥ 0.

i.e., p satisfies (6).

Conversely, suppose that p satisfies (5) and (6). In view of Lemma 6, it suffices to
show that p maps positive matrices of order two to nonnegative matrices of order two.
To this end, suppose that A is a positive matrix of order two with spectrum {ρ,µ}.
Without loss of generality, assume that ρ > |µ|.

By Lemma 5, A is similar to a matrix of the form

B =
1

1+α

[
αρ +µ ρ −µ

α(ρ −µ) αµ +ρ

]
,

where α > 0. In view of Lemmas 1 and 2, it suffices to show that p(B)≥ 0. By (4),
notice that

p(B) = Sp(D)S−1 =
1

1+α

[
α p(ρ)+ p(µ) p(ρ)− p(µ)

α(p(ρ)− p(µ)) α p(µ)+ p(ρ)

]
.

Since p satisfies (5), it follows that p ∈ P1. Thus, p(B)≥ 0 whenever µ ≥ 0.

If µ < 0, then, since B > 0, it follows that α >−µ/ρ = |µ|/ρ . Thus,

α p(ρ)+ p(µ)>
|µ|
ρ

p(ρ)+ p(−|µ|) = |µ|p(ρ)+ρ p(−|µ|)
ρ

≥ 0

by (6). The remaining entries of p(B) are nonnegative by (5).

5 Equivalent Conditions for P2

Proposition 8. If p ∈ R[x], then

p(x)≥ |p(y)|, ∀x,y ∈ R,x ≥ |y| (9)
if and only if

p′ ∈ P1 (10)



Polynomials that Preserve Nonnegative Matrices of Order Two 63

and
p(x)≥ |p(−x)|, ∀x ≥ 0. (11)

Proof. First, note that p ∈ P1 whenever p satisfies (9) or (11).

If (9) holds, then (11) clearly holds. To demonstrate (10), for contradiction, let x ≥ 0
and h > 0. By (9), p(x+h)≥ |p(x)| ≥ p(x). Hence, p(x+h)− p(x)≥ 0. Dividing by
h and letting h → 0+ shows that p′ ∈ P1.

Assume that a,b ∈ R, with a ≥ |b|. By assumption, p′ ∈ P1 and so p is increasing on
[0,∞). Using this and (11), we obtain p(a)≥ p(|b|)≥ |p(b)|.

Recall that if f : C−→ C, then

fe(x) :=
f (x)+ f (−x)

2
is called the even-part of f and

fo(x) :=
f (x)− f (−x)

2
is called the odd-part of f .

Proposition 9. If p : C−→ C, then p satisfies (11) if and only if pe, po ∈ P1.

Proof. Notice that

pe, po ∈ P1 ⇐⇒ p(x)+ p(−x)
2

≥ 0 and
p(x)− p(−x)

2
≥ 0, ∀x ≥ 0

⇐⇒ p(x)+ p(−x)≥ 0 and p(x)− p(−x)≥ 0, ∀x ≥ 0
⇐⇒ p(x)≥ |p(−x)|, ∀x ≥ 0.

Theorem 10. Conditions (5) and (6) are independent.

Proof. If p(x) = x5 −2x3 +2x, ρ = 1, and µ = .5, then
ρ p(−µ)+µ p(ρ) =−0.78125 < 0,

i.e., p does not satisfy equation (6).

Clearly, pe ∈ P1 since pe(x) = 0. Since

p′(x) = 5x4 −6x2 +2 = 5
(

x2 − 3
5

)2

+
1
5

and
po(x) = p(x) = x((x2 −1)2 +12),

it follows that p′, po ∈ P1. Thus, p satisfies (5) by Propositions 8 and 9.

If p(x) =−x, then p does not satisfy (5). If 0 < µ ≤ ρ , then
ρ p(−µ)+µ p(ρ) = ρµ −ρµ = 0,

i.e., p satisfies (6).

Theorem 11. If p ∈ R[x], then p ∈ P2 if and only if p′, pe, po ∈ P1 and p satisfies
(6).
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Proof. Immediate from Theorem 7 and Propositions 8 and 9.

Remark 12. The preceding arguments also apply to entire functions; as such, f ∈ F2
if and only if f ′, fe, fo ∈ P1 and f satisfies (6).

Proposition 13. If p is a polynomial such that po satisfies (6) and pe ∈ P1, then p
satisfies (6).

Proof. The result follows with the observation that
µ p(ρ)+ρ p(−µ) = µ(pe(ρ)+ po(ρ))+ρ(pe(−µ)+ po(−µ))

= (µ pe(ρ)+ρ pe(µ))+(µ po(ρ)+ρ po(−µ)) ,

which is nonnegative by the hypotheses.

Clark and Paparella [2, Conjecture 5.2] conjectured that Pn+1 ⊂ Pn, ∀n ∈ N and
showed that P2 ⊂ P1. The following result settles the conjecture when n = 2.

Theorem 14. P3 ⊂ P2.

Proof. Consider the polynomial p(x) = x4 − x2 + x+1. It is known that if

p(x) =
m

∑
k=0

akxk ∈ Pn, am ̸= 0,

and m≥ n−1, then ak ≥ 0, ∀k ∈ {0,1, . . . ,n−1} (see Bharali and Holtz [1, Proposition
2] or Clark and Paparella [Corollary 4.2][2]). Thus, p /∈ P3.

Since po(x) = x, it is clear that po ∈ P1. Notice that p′, pe ∈ P1 since
p′(x) = 4x3 −2x2 +1 = x[(2x−1)2 +12]+ [(2x−1)2 +02]

and

pe(x) = x4 − x2 +1 =

(
x2 − 1

2

)2

+
3
4
.

We also have that po satisfies (6) since
ρ po(−µ)+µ po(ρ) =−ρµ +µρ = 0.

By Proposition 13, p satisfies (6). Thus, p ∈ P2 by Theorem 11.

We conclude by providing a novel characterization for polynomials that preserve all
nonnegative circulant matrices or order two. If

A =

[
a b
b a

]
=

1
2

[
(a+b)+(a−b) (a+b)− (a−b)
(a+b)− (a−b) (a+b)+(a−b)

]
, (12)

then by (7) and (8)

p(A) =
1
2

[
p(ρ)+ p(µ) p(ρ)− p(µ)
p(ρ)− p(µ) p(ρ)+ p(µ)

]
≥ 0,

where ρ = a+b and µ = a−b. We immediately obtain the following result.

Theorem 15 (cf. [1, Theorem 10]). If p ∈ R[x], then p preserves all two-by-two
nonnegative circulant matrices of the form (12) if and only if p′, pe, po ∈ P1.
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