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Abstract

Consider a polygon P ⊂ R2 and a positive real number t. The action of dilating (or
shrinking) P by a factor of t is equivalent to dilating (or shrinking) each side of P by t,
while preserving the unit normal vectors to the edges. A possible variation to this task
is to consider elongating or shortening each side of P by t, also keeping the unit normal
vectors intact. It is not clear a priori that such a task can always be accomplished. The
current work addresses this adaptation and draws a connection with Viviani’s theorem
and equiangular polygons. The main purpose of the paper is to highlight a famous
theorem of Minkowski from convex geometry that makes this connection possible and
gives a generalization to higher dimensions.
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1 Introduction
Let P be a regular polygon of side length s. Then, dilating P by a factor t > 1 is the
same as adding (t−1)s to each edge, and shrinking P by a factor of t < 1 is the same as
subtracting (1− t)s from each edge. Take the square S of edge length 3 as an example.
For t = 2, the square 2S has edge length 6 = 3+(2−1)(3) and for t = 1

3 , the square
1
3 S has edge length 1 = 3− (1− 1

3 )(3).

It is not hard to see that the two problems are generally equivalent in the case of regular
polygons. What happens when P is not regular? If P is the trapezoid with side lengths
5,5,5,11, then it is impossible to add a real number t to each of the sides while keeping
the edge normal vectors intact (the reader is encouraged to try it on their own).

To this end, we aim at connecting two seemingly unrelated theorems from differents
historical eras of mathematics: Viviani’s theorem and Minkowski’s theorem. The
former dates back to the mid 17-th century; it asserts that no matter where you place a
point inside a regular polygon, the sum of the distances from the point to the sides of
the polygon remains constant. The latter is due to Hermann Minkowski from the early
1900’s; it states that every polygon (or polytope in general) is uniquely determined, up
to translation, by the directions and measures of its sides (or facets in general).

2 Viviani’s Theorem
Viviani’s theorem states that the sum of the distances from any interior point to the
sides of an equilateral triangle is independent of the position of the point. In particular,
this sum is equal to the length of the height of the triangle.

Figure 1: Equilateral Triangle ABC with an interior point P

There are many proofs and generalizations of Viviani’s theorem in the literature. We
survey some of them below and provide two additional elementary proofs as well.
Historically, the problem of finding the Fermat point of the vertices A,B,C of a triangle
ABC, i.e., the point that minimizes the sum of the distances to the vertices, was first
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proposed by Fermat in a private letter to Torricelli. Torricelli solved the problem and
his solution was published by his student Viviani in 1659. The solution uses the fact
that the sum of the distances from any point inside an equilateral triangle to its sides is
constant, which is commonly known today as Viviani’s theorem.

Viviani’s original proof [8] (Appendix, pp. 143-150) uses areas as follows. Let ABC be
an equilaterial triangle of side length s and height length h. Let P be an interior point.
The area of the triangle ABC

(
sh
2

)
is equal to the sum of the areas of the triangles ABP,

BPC, and CPA. Since AB = AC = BC = s, then we conclude that PJ +PI +PK = h
(see Figure 1). In fact, Viviani proved a bit more, namely that the sum of the distances
from any point inside a regular polygon to its sides is constant, and is less than the sum
from any point outside the regular polygon.

Using rotations of smaller triangles inside the equilateral triangle, Kawasaki [6] proved
Viviani’s theorem as illustrated in Figure 2.

Chen and Liang [3] proved the converse of Viviani’s theorem: if the sum of the
distances from an interior point of a triangle to its sides is independent of the location
of the point, then the triangle is equilateral. Moreover, they showed that the sum of the
distances from an interior point to the sides of a quadrilateral is constant if and only if
the quadrilateral is a parallelogram.

The area method highlighted in Viviani’s original proof can be extended to show that
the theorem holds for all regular polygons as well. Likewise, by a volume argument,
a similar result holds for regular polyhedra in R3: the sum of the distances from any
point inside a regular polyhedron to its faces is independent of the location of the
point.

Abboud [1] defines a polygon to have the constant Viviani sum (CVS) property if the
sum of the distances from any interior point to the sides of the polygon is constant.
He then shows that a necessary and sufficient condition for a convex polygon to have
such property is the existence of three non-collinear interior points with equal sums of
distances. His proof relies on ideas from linear programming.

Figure 2: Kawasaki’s proof using rotations [6].

We conclude this section with two new proofs of Viviani’s theorem, based on simple
geometric arguments.
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First Proof. With the notation set above, recall that the normal vectors to the edges of
the equilateral triangle ABC satisfy

−→u +−→v +−→w =
−→
0 . (1)

After taking the dot product with the vector
−→
PA, we get:
−→
PA.(−→u +−→v +−→w ) =

−→
PA.

−→
0

−→
PA.−→u +

−→
PA.−→v +

−→
PA.−→w = 0

PK +PA
(

cos
(2π

3
+∠APK

))
+PJ = 0

PK +PA
(
− 1

2
cos∠APK −

√
3

2
sin∠APK

)
+PJ = 0

PK − 1
2

PAcos∠APK −
√

3
2

PAsin∠APK +PJ = 0

PK − 1
2

PK −
√

3
2

AK +PJ = 0.

This leads to the following result

1
2

PK +PJ−
√

3
2

AK = 0. (2)

Similarly, multiplying Equation (1) by the vector
−→
PC, we obtain

1
2

PK +PI −
√

3
2

CK = 0. (3)

Finally, adding Equations (2) and (3), we get

1
2

PK +PJ−
√

3
2

AK +
1
2

PK +PI −
√

3
2

CK = 0

PK +PJ+PI =

√
3

2
(AK +CK)

PK +PJ+PI =

√
3

2
AC

PK +PJ+PI = h.

Next we embed Figure 1 in cartesian coordinates and provide yet another proof of
Viviani’s theorem.

Second Proof. Without loss of generality, we may assume that B(0,0) and C(s,0)
for some positive real number s. Since ABC is an equilateral triangle, the point A
has coordinates

(
s
2 ,

s
√

3
2

)
and the line segments BC, AB, AC have equations y = 0,

√
3x − y = 0,

√
3x + y −

√
3s = 0, respectively. Let P(x,y) be a point inside the

triangle ABC. Using the formula for the distance from a point to a line, we get
PI = y, PK = −

√
3x−y+

√
3s

2 , and PJ =
√

3x−y
2 . Adding the three lengths together leads

to PK +PJ+PI =
√

3
2 s = h.

As a side note, we mention a remarkable application of Viviani’s theorem in chemistry.
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Consider a mixture of three chemical components represented by the vertices of an
equilateral triangle. If the height of the triangle is taken as unity and the mixture is
depicted by a point inside the triangle, then the distances from this point to the sides
correspond to the proportions of the components in the mixture. The same principles
can be applied to a system of four components: within a regular tetrahedron whose
vertices represent the pure components, the distances from an interior point to the faces
again sum to a constant, and may be used to represent the proportions. For further
details, the reader is referred to the book [4] (Chapter 8).

3 Minkowski’s Theorem
Polytopes are the generalization of polygons in higher dimensions. Formally, a convex
polytope is the convex hull of a finite set of points in Rn, or equivalently, the intersection
of a finite number of hyperplanes.

The Minkowski problem for polytopes concerns the following specific question. Given
a collection −→u1 , . . . ,

−→uk of unit vectors and a1, . . . ,ak > 0, under what condition(s) does
there exist a polytope P having the −→ui ’s as its facet normal vectors and the ai’s as its
facet areas? The answer to this question is known as the Minkowski’s existence and
uniqueness theorem for polytopes.

Theorem 1 (Minkowski). Let −→u1 , . . . ,
−→uk be unit vectors that span Rn, and a1, . . . ,ak >

0. Then there exists a polytope P in Rn having facet unit normal vectors −→u1 , . . . ,
−→uk and

corresponding facet areas a1, . . . ,ak if and only if

a1
−→u1 + · · ·+ak

−→uk =
−→
0 . (4)

Moreover, this polytope is unique up to translation.

Minkowski’s original proof involves two steps. First, the existence of a polytope
satisfying the given facet data is demonstrated by a linear optimization argument. In the
second step, the uniqueness of that polytope (up to translation) is shown by a generalized
isoperimetric inequality for mixed volumes. Alternative proofs, generalizations, and
applications of Minkowski’s theorem are abundant in the literature. We refer the reader
to [7] and the references therein for a good exposition on this topic.

Note that in the 2-dimensional Euclidean space, the facet areas of a polygon are simply
the edge lengths of the polygon. In the case of equilateral triangles, it is clear that
Equation (4) is equivalent to Equation (1).

A special family of polygons are the equiangular polygons. These are characterized
by having equal angles without necessarily having congruent edges. For a set of
positive real numbers a1, . . . ,ak, it is well known [2] that there exists an equiangular
polygon with side lengths a1, . . . ,ak if and only if the polynomial a1+a2x+ · · ·+akxk−1

vanishes at e
2π

k i. Hence, for example, equilateral triangles are the only equiangular
triangles and rectangles are the only equiangular quadrilaterals.

We prove this result using Minkowski’s theorem as follows. Let P be a polygon in R2

with side lengths a1, . . . ,ak and interior angle measures θ1, . . . ,θk (k ≥ 3). Recall that
θ1 + · · ·+θk = (k− 2)π for any k-gon. Consider the following polynomial in k− 1
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variables
p(x1,x2, . . . ,xk−1) : = a1 +a2x1 + · · ·+akx1 . . .xk−1

= a1 +
k−1

∑
i=1

ai+1x1 . . .xi.

With the definition above, Minkowski’s theorem in dimension 2 can be written in
algebraic form. Observe that the angle formed by the vectors −→u j and −−→u j+1 is equal to
π −θ j, for each j. Since each −→u j is a unit vector, we can then write the vector −→u j =

ei[(π−θ1)+(π−θ2)+···+(π−θ j−1)] for j = 2, . . . ,k (we consider −→u1 the vector of reference
here). By substituting the latter expression of −→u j in Equation (4), we get the following
theorem.

Theorem 2. Let a1, . . . ,ak and θ1, . . . ,θk be positive real numbers such that
θ1 + · · ·+ θk = (k− 2)π . Then, there exists a polygon with edge lengths a1, . . . ,ak
and interior angle measures θ1, . . . ,θk if and only if the polynomial p(x1,x2, . . . ,xk−1)
vanishes at (ei(π−θ1),ei(π−θ2), . . . ,ei(π−θk−1)).

If P is equiangular, then θ1 = · · · = θk =
k−2

k π . This implies that π − θi =
2π

k for
i = 1, . . . ,k. The following can then be deduced.

Corollary 3. There exists an equiangular polygon with edge lengths a1, . . . ,ak > 0 if

and only if a1 +a2e
2π

k i +a3e
4π

k i + · · ·+ake
2(k−1)π

k i = 0.

4 Viviani Polytopes
Similar to the CVS property defined above, Zhou [9] introduced the notion of Viviani
polytopes as follows. Let p1, . . . , pk be distinct hyperplanes enclosing a convex polytope
P ⊂ Rn, and −→u1 , . . . ,

−→uk the outward unit normal vectors to each pi, respectively. For
a point T ∈ Rn, denote by di the signed distance from T to the hyperplane pi and let
v(P) :=∑

k
i=1 di. We call P a Viviani polytope if v is a constant function, i.e. independent

of the choice of the point T .

The main result in [9] is a geometric characterization of Viviani polytopes in any
dimension. An algebraic characterization using linear programming was previously
derived in [1].

Theorem 4 (Theorem 1 in [9]). With the above notation, a polytope P ⊂ Rn is Viviani
if and only if

−→u1 + · · ·+−→uk =
−→
0 . (5)

In light of Theorem 2, a polynomial formulation for Viviani polygons can be de-
rived as follows. Given a set of positive real numbers θ1, . . . ,θk that add up to
(k− 2)π , there exists a polygon with interior angle measures θ1, . . . ,θk if and only
if (ei(π−θ1),ei(π−θ2), . . . ,ei(π−θk−1)) is a root of the polynomial 1+ x1 + x1x2 + · · ·+
x1x2 . . .xk−1. In particular, we get the following corollary.

Corollary 5. Equilateral triangles are the only Viviani triangles and parallelograms
are the only Viviani quadrilaterals. Moreover, equiangular polygons are Viviani for
any number of sides.



72 BSU Undergraduate Mathematics Exchange Vol. 16, No. 1 (Fall 2022)

As mentioned in the first section, it can be shown that regular polygons in R2 and
regular polyhedra in R3 are Viviani using an area and a volume argument, respectively.
Along the same line of thought, it was shown in [5] that any polyhedron with faces
of equal area is Viviani. We extend this result to all dimensions using Minkowski’s
theorem.

Consider a polytope P ⊂Rn with facet unit normal vectors −→u1 , . . . ,
−→uk . If the facets of P

have equal area (i.e. (n−1)-dimensional volume), then a1 = · · ·= ak in the statement
of Theorem 1, which implies that −→u1 + · · ·+−→uk =

−→
0 . By Theorem 3, one can deduce

that the polytope P is Viviani. Thus, we proved the following general result.

Theorem 6. Any polytope whose facets have equal area is Viviani.

Finally, we turn back to our original question. Assume P ⊂ R2 is a polygon with
side lengths s1, . . . ,sk and unit normal vectors −→u1 , . . . ,

−→uk . The goal is to find another
polygon P′ with the same unit normal vectors but with side legths s1 ± t, . . . ,sk ± t.
Applying Minkowski’s theorem to P and P′, we get s1

−→u1 + · · ·+ sk
−→uk =

−→
0 and (s1 ±

t)−→u1 + · · ·+(sk ± t)−→uk =
−→
0 , respectively. Combining the two equations, we obtain

±t(−→u1 + · · ·+−→uk ) =
−→
0 . This is equivalent to P (or P′) being Viviani!
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