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A Word from the Editor

The editorial board of the Mathematics Exchange is pleased to present this latest
issue, a collection of nine enjoyable articles addressing a range of mathematical topics
of interest to a broad audience at the undergraduate level. We appreciate the authors’
efforts to disseminate their new discoveries as well as appreciate how they inspire and
motivate our readership to follow their example in sharing their love for mathematics.
And we hope you enjoy the fruits of their labor. We believe that getting students
involved in publishing mathematics is a true milestone in helping them find their
(permanent) place in the mathematical community and we are thrilled to be a part of
that endeavor.

The first article gives a detailed treatment of generalized trigonometric functions
defined on the unit p− circle |x|p+ |y|p = 1. It covers the existing foundational material
well, leads ideas in some interesting directions, provides a variety of new results, and
lists some open questions for future work.

The second article considers quantities associated to a graph G called the “k−
diameter component vertex connectivity parameter" and “k−diameter component
connectivity function", denoted respectively as CVk(G) and CMk(G; p), and computes
their values for several families of graphs. The quantity CVk(G) is the minimal number
of vertices that needs to be removed from G so that no component of the remaining
graph has diameter ≥ k. The mixed parameter CMk(G; p) is similar but considers the
minimal number of edges that need to be removed allowing for any p vertices to first
be removed from G. The article is well written, and it should be quite accessible to
undergraduates with some modest exposure to graph theory.

The third article provides a good example of mathematical modeling. It takes
a standard stability analysis of an ordinary differential equations model approach to
determine if a zombie apolocalypse is theoretically possible with realistic parameter
values taken from empirical sources. The mathematics it presents is appropriate and
reasonable and the application is fun.

It is well known that the sum of the entries along a slope-2 diagonal through Pascal’s
triangle is a Fibonacci number. For integers h ≤ 2, the fourth article considers the
sequence dh(n) of sums along slope-h diagonals, derives a recurrence and generating
function for dh(n), and uses the generating function to obtain an approximation to
dh(n).

A known characterization for entire functions that preserve all nonnegative matrices
of order two is shown to characterize polynomials that preserve nonnegative matrices of
order two. The fifth article gives a new characterization for polynomials that preserve
nonnegative circulant matrices of order two.



Is it possible to dilate (or shrink) each side of a polygon P ⊂ R2 by a factor of
positive t to get a new polygon P′ while preserving the unit normal vectors to the edges?
The sixth article draws a connection with Viviani’s theorem and equiangular polygons,
and uses the Minkowski’s existence and uniqueness theorem for polytopes to show that
such P′ exists if and only if P satisfies the constant Viviani sum.

The classical Lotka-Volterra equation models the interaction between two species
competing for limited resources; the seventh article explores its extension in which a
general nonlinear relationship models the effects of each species on the other.

The eighth article gives a brief exposition of two different well-known metrics on
the Heisenberg group, an extremely well-studied object in analysis, proves that there
exist minimal geodesics for the Koranyi metric as a consequence of the Arzelà-Ascoli
theorem, and shows that lengths of (horizontal) curves are the same when computed in
either metric.

The final article investigates the numerical range of 3×3 matrices over finite fields,
particularly when the matrix is strictly triangular. The article is both novel and deep.
The reviewer rated this article highly, believing that it will have an impact on the field
of research and be cited by future publications.

We hope that you will enjoy reading this issue of the Mathematics Exchange. As
always, we welcome and encourage ideas on how we can better serve our readers.

Ya¹�ua®� ��iao

10.25.2022
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Abstract
Trigonometry is the study of circular functions, which are functions defined on the
unit circle x2 + y2 = 1, where distances are measured using the Euclidean norm. When
distances are measured using the Lp-norm, we get generalized trigonometric functions.
These are parametrizations of the unit p-circle |x|p + |y|p = 1. Investigating these new
functions leads to interesting connections involving double angle formulas, norms
induced by inner products, Stirling numbers, Bell polynomials, Lagrange inversion,
gamma functions, and generalized π values.

1 Introduction
It is a well-known fact that trigonometric functions are periodic: if f (x) is any trigono-
metric function, then f (x+2π) = f (x) for all values of x in the domain of f . Therefore,
it is natural to define trigonometric functions on the unit circle, where all multiples of
2π are identified when we wrap the real line onto the circle. Because of this definition,
trigonometric functions are also called circular functions. In this setting, the trigono-
metric functions sin t and cos t are just the unit circle’s parametrization with respect to
arc length.

Recall that the unit circle is the locus of all points in the plane R2 that are at a distance
of one unit from the origin, where distances are measured using the standard Euclidean
norm: ∥⃗x∥= (x2

1 +x2
2)

1/2. What if we switch to an Lp-norm: ∥⃗x∥p = (|x1|p + |x2|p)1/p,
(p ≥ 1)? We then get a new family of curves defined by the equations |x|p + |y|p = 1.
These are called unit p-circles and are shown in the figure below. Because these curves
are in between a square and a circle, they are also called squircles.

Figure 1: p-circles for p = 1,2,4, and 10 from inside to outside, respectively

Can we parametrize these p-circles to get p-trigonometric functions x = sinp t and
y = cosp t such that, when p = 2, we recover the standard trigonometric functions?
What properties and identities do these generalized trigonometric functions have? Can
we do calculus over these curves? What can be said about the periods of these functions?
How does the curvature change along a p-circle? What is the area it encloses? What
are the rational points on p-circles? Note that for any p ≥ 1, Lp, as defined above, gives
a norm, but this norm is induced by an inner product only when p = 2 ([9]). Therefore,
p = 2 is a special case of interest; however, all of the aforementioned questions are
well defined for any p ≥ 1. The goal of this paper is to investigate these questions. Our
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primary reference for this research is [7]. While we follow the general outline given in
[7], we also do some independent investigation.

There are at least three ways to generalize trigonometric functions. These correspond
to 3 different parametrizations of the unit p-circle: areal, arc length, and angular.
It turns out that these three parametrizations are equivalent only when p = 2! The
parametrization we will be working with corresponds to the areal parametrization.
Our investigation of these generalized trigonometric functions and their inverses led
to several interesting connections involving double angle formulas, norms induced
by inner products, Stirling numbers, Bell polynomials, Lagrange inversion, gamma
functions, and generalized π values.

These p-trigonometric functions have several applications, specifically in design.
Rather than using rounded rectangles, Apple uses p-circles for their icons, as the
curvature continuity leads to a more sleek look, unifying the design of their hardware
and icons [10]. Another design application can be found in squircular dinner plates,
designed to allow a greater surface area for food while taking up the same amount of
cabinet space as their circular counterparts [4].

The paper is organized as follows. In Section 2, we define p-trigonometric functions
using a differential equations approach and derive some basic properties of these
functions. We show that for any positive integer k, the well-known double angle
formula for sin(2x) holds for sink(2x) if and only if k = 2. In Section 3, we focus
on the successive derivatives of sinp(x). This revealed a connection between the
coefficients of the terms in the derivatives and Stirling numbers of the first kind. We
derive the Taylor series of sin−1

p x using Newton’s binomial series and then find the
Taylor series of its inverse using Lagrange inversion theorem. It is shown that both
sinp x and sin−1

p x are analytic functions at x = 0. Our work gave rise to the concept of
rigidity of functions, which deals with the simultaneous vanishing of the derivatives of
a function and its inverse. A generalization of π for p-circles, πp, and its properties are
examined in Section 4 using beta and gamma functions. Furthermore, we use a Monte
Carlo method to compute πp. In Section 5, we determine the value of p for which the
unit p-circle is halfway between the unit circle and the square that contains it from the
lenses of area, perimeter, and curvature. Rational points on p-circles are determined in
Section 6. We end the paper with some questions for future work in Section 7.

2 p-trigonometric Functions

Unless stated otherwise, p will denote a positive real number that is at least 1.

2.1 Coupled Initial Value Problem

The standard trigonometric functions sine and cosine that parametrize the unit circle
are famously coupled by the derivative relation sin′ t = cos t, cos′ t =−sin t. If we take
x(t) = cos t and y(t) = sin t, we see that the pair is one of many solutions to the system
of differential equations

x′(t) =−y(t), y′(t) = x(t).
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However, with the inclusion of the initial conditions
x(0) = 1, y(0) = 0,

differential equation theory guarantees that the sine and cosine functions are, in fact,
the only solutions to this system [2], better known as the Coupled Initial Value Problem
(CIVP).

For p ≥ 1, a natural extension of the CIVP considers the functions x(t), y(t) satisfy-
ing

x′(t) =−y(t)p−1, y′(t) = x(t)p−1, x(0) = 1, y(0) = 0.

The motivation for this extension comes from that fact that any functions x(t) and
y(t) that satisfy the above CIVP parametrize the curve xp + yp = 1. This is seen by
differentiating h(t) := x(t)p + y(t)p with respect to t, to get h′(t) = px(t)p−1x′(t)+
py(t)p−1y′(t). Substituting x′(t) =−y(t)p−1, y′(t) = x(t)p−1, will show that h′(t) = 0.
This means h(t) is a constant function. Using the initial conditions, we can conclude
that h(t) = 1, i.e., xp + yp = 1, as desired.

Again, from the general theory of differential equations, the above CIVP has a unique
solution. We can define cosp t = x(t) and sinp t = y(t) as the unique solution to the
generalized CIVP. But these functions do not parametrize p-circles in general. For
instance, when p is an odd positive integer, these functions parametrize p-circles only in
the first quadrant where x and y are both positive. To circumvent this issue, we restrict
the domain of the solutions of the CIVP and then extend them to functions on the real
line using symmetry and periodicity. This is done in the next three subsections.

Once we have sinp t and cosp t in place, we may then define the other trigonometric
functions tanp t := sinp t

cosp t , cscp t := 1
sinp t , secp t := 1

cosp t , and cotp t := 1
tanp t such that the

familiar inverse relations are maintained.

2.2 Inverse p-trigonometric Functions
Starting with the equation x = sinp y, we use the CIVP to find sin−1

p x. Differentiating
both sides with respect to y and simplifying, we find:

dx
dy

= cosp−1
p y

= (cosp
p y)

p−1
p

= (1− sinp yp)
p−1

p

= (1− xp)
p−1

p .

This is a separable differential equation. To solve it, we separate and integrate both
sides. This gives:

dx
dy

= (1− xp)
p−1

p∫ dx

(1− xp)
p−1

p

=
∫

dy

∫ x

0

dt

(1− t p)
p−1

p

= y = sin−1
p x.
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We can do the same for x = cosp y to get

cos−1
p x =

∫ 1

x

dt

(1− t p)
p−1

p

.

2.3 Areal Parametrization of p-circles
The unit circle has a useful property that a sector with angle measure θ in radians has
an area of θ/2. We can use this property to find sine and cosine in terms of area where
x = cos(2a), y = sin(2a), and a is the area of the sector made by the points (1,0) and
(x,y). It is then natural to ask if this property extends to all p-circles.

Figure 2: Area of a p-sector

Proposition 1. Let (x,y) be a point in the first quadrant of the unit p-circle, and a be
the area of the sector made by the points (1,0) and (x,y). It holds that x = cosp(2a)
and y = sinp(2a).
Proof. This argument is in the spirit of Levin [3]. Working in the first quadrant, the
area of the sector in a p-circle can be given by the area of A1+A2 as denoted in Figure
2. This can be given by a = 1

2 x(1− xp)
1
p +

∫ 1
x (1− t p)

1
p dt. We can differentiate both

sides with respect to x and simplify to get the following:
da
dx

=
1
2

(
(1− xp)

1
p + x

1
p
(1− xp)

1
p−1(−pxp−1)

)
− (1− xp)

1
p

= (1− xp)
1
p

(
1
2
− xp

2
(1− xp)−1 −1

)
= (1− xp)

1
p

(
(1− xp)− xp −2(1− xp)

2(1− xp)

)
= − (1− xp)

1
p−1

2
.

Using the fundamental theorem of calculus, we can write this as a =
∫ 1

x
(1−t p)

1
p −1

2 dt+c.
When a = 0 and x = 1, we get c = 0. From here, we can conclude that a = 1

2 arccosp x.
Solving for x gives x = cosp (2a).

We can do the same thing in terms of y to get a =
∫ y

0
(1−t p)

1
p −1

2 dt+c. When a = 0 and
y = 0, we get c = 0. From here, this equation has been shown to be a = 1

2 arcsinp y
and thus y = sinp (2a). As such, this shows that this property does extend to all unit
p-circles.
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2.4 Definition and Graphs of sinp x and cosp x

To generalize the formula π/2 = sin−1(1), we first set πp/2 := sin−1
p (1). Since we

have shown that the p-trigonometric functions can be parametrized by area, we can
now extend then to functions defined on the entire real line as follows. We first
restrict them to [0,sin−1

p (1)] = [0,πp/2] and then extend the domain to [0,2πp] using
symmetry:

sinp t :=

{
sinp(πp − t) πp/2 < t ≤ πp,

−sinp(2πp − t) πp < t < 2πp.

We then periodically extend that it (−∞,∞) by setting sinp(t + 2πpk) = sinp(t) for
any integer k. The definition of cosp(t) is similar. The resulting graphs are shown
below.

Figure 3: Graph of sinp x for p = 1,2, and 10

Figure 4: Graph of cosp x for p = 1,2, and 10

2.5 Trigonometric Identities
While we may have defined the generalized CIVP in a manner similar to the original,
there is no guarantee that sinp t, cosp t thus defined satisfy familiar trigonometric prop-
erties and identities. In this section, we explore a few identities of the p-trigonometric
functions.

Lemma 2 (p-Pythagorean Equation). [7, p. 268] The functions sinp t, cosp t satisfy
|sinp t|p + |cosp t|p = 1 for all real t.

Proof. This is clear from the definition of these functions using the CIVP and extension
using symmetry and periodicity.
It is clear from the p-Pythagorean Equation that the functions sinp t, cosp t are bounded
and |sinp t| ≤ 1, |cosp t| ≤ 1. Dividing all terms of the p-Pythagorean equation by
|sinp t|p and |cosp t|p gives the identities 1+ |cotp t|p = |cscp t|p and | tanp t|p +1 =
|secp t|p, respectively.
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Lemma 3. The functions sinp t and cosp t are odd and even, respectively.

Proof. The functions α(t) :=−sinp(−t) and β (t) = cosp(−t) satisfy α ′(t) =−(−
sin′p(−t))= cosp−1

p (−t)= β (t)p−1 and β ′(t)=−cos′p(−t)= sinp−1
p (−t)=−α(t)p−1.

Note that α(0) = −sinp(0) = 0 and β (0) = cosp(0) = 1; thus, the functions α,β
satisfy the generalized CIVP. Then, by the uniqueness of solutions, we must have
sinp t =−sinp(−t) and cosp t = cosp(−t).

However, not all standard 2-trigonometric identities are satisfied. For instance, we
show that for positive integer values of p, sinp(2t) = 2sinp t cosp t is satisfied if and
only if p = 2. A double angle formula for generalized trigonometric functions is still
sought after [1, 8].

Proposition 4. Let k ∈ Z+. Then sink(2t) = 2sink(t)cosk(t) if and only if k = 2.

Proof. The desired identity is well known for k = 2. We suppose the identity holds for
k ≥ 1 and show that k must be 2. We consider the cases k = 1 and k > 1 separately.
For k = 1, we note that the CIVP gives the unique solution sin1(t) = t and cos1(t) =
1− t. Then sin1(2t) = 2t ̸= 2t(1− t) = 2sin1 t cos1 t. If k > 1, then by Lemma 2,
the functions sink and cosk satisfy |sink t|k + |cosk t|k = 1. By the Intermediate Value
Theorem, there exists some t0 in [0,πp/2] such that sink(t0) = cosk(t0). As t0 ≥ 0, the
substitution sink(t0) = cosk(t0) into the p-Pythagorean identity gives 2sink

k(t0) = 1,
therefore sink

k(t0) =
1
2 . Then, by the assumption that sink(2t) = 2sink t cosk t is satisfied

for all t, we may raise all terms to the power k and evaluate at the point t0 to obtain
sink

k(2t0) = 2k( 1
2 )

1
2 = 2k−2. Since sink

k t is bounded above by 1, we obtain 2k−2 ≤ 1,
which implies that k ≤ 2. Together with the assumption that k > 1, we obtain k = 2.

It is known that the Lp norm is induced by an inner product if and only if p = 2 [9].
Then together with Proposition 4, we make the following remark.

Remark 5. The following are equivalent for k ∈ Z+:

• Lk is a norm induced by an inner product,

• sink(2t) = 2sink t cosk t, and

• k = 2.

3 Taylor Series
Now that we have defined p-trigonometric functions and their derivatives by the CIVP,
it is natural to study the higher derivatives of these functions. We begin by observing
that for any p > 1, all the successive derivatives of sinp x and cosp x are defined for all
values of x. In this section, we provide an algorithm for differentiating these functions,
demonstrate some patterns and connections present in their successive derivatives, and
formulate the Taylor series for sin−1

p x and sinp x. The Taylor series representations of
these functions provide a tool to express all of the derivatives of the p-trigonometric
functions in one formula.
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3.1 Higher Derivatives and the Bracket Notation

Because of the simplicity and utility of the closed formulas for differentiation of
sin2 x, cos2 x, it is natural to wonder about higher derivatives of sinp x, cosp x. We find
these higher derivatives by utilizing the definition given by the CIVP in Section 2.1.
However, these derivatives become complex rather quickly. To help address this, we
introduce a notation that will be used throughout this section in relation to higher
derivatives of these p-trigonometric functions: [m,n]p := cosm

p (x)sinn
p(x).

Lemma 6. The derivative of cosm
p (x)sinn

p(x) satisfies d
dx [m,n]p =−m[m−1,n+ p−

1]p +n[m+ p−1,n−1]p.

Proof. Applying the standard rules of differentiation, we get the following.
d
dx

[m,n]p =
d
dx

(cosm
p (x)sinn

p(x))

=−mcosm−1
p (x)sinp−1

p (x)sinn
p(x)+ cosm

p (x) ·nsinn−1
p (x)cosp−1

p (x)

=−mcosm−1
p (x)sinn+p−1

p (x)+ncosm+p−1
p (x)sinn−1

p (x).

=−m[m−1,n+ p−1]p +n[m+ p−1,n−1]p.

Although we do not have a closed formula for finding derivatives of these functions,
Lemma 6 serves as a recursive algorithm for computing successive derivatives, as
demonstrated in the following example.

Example 7. Lemma 6 can be iteratively applied to sinp x to find the first few derivatives:

sinp x = [0,1]p
d
dx

sinp x = 0+1[p−1,0]p

d2

dx2 sinp x = 0+(−p+1)[p−2, p−1]p +0

d3

dx3 sinp x = 0+−(p−1)(−(p−2)[p−3,2p−2]p +(p−1)[2p−3, p−2]p)+0

= 0+(p2 −3p+2)[p−3,2p−2]p +(−p2 +2p−1)[2p−3, p−2]p +0.

There seems to be no clear pattern that arises from these derivatives like there is for
sinx. However, in the next subsection, we will see one pattern in the coefficients of the
first terms of these derivatives.

3.2 Connection to Stirling Numbers

For any variable x and a non-negative integer n, the falling factorial is defined as
follows.

(x)n :=

{
1 if n = 0,
x(x−1)(x−2) · · ·(x−n+1) if n ≥ 1.

For n ≥ 1, (x)n is a non-constant polynomial of degree n whose coefficients are the
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Stirling numbers of the first kind. More precisely, we set:

(x)n =
n

∑
k=1

s(n,k)xk.

We will now show a connection between the successive derivatives of sinp x and Stirling
numbers. Building a tower from the coefficients in Example 7, we get:

1
0 | 1

0 | −p+1 | 0
0 | p2 −3p+2 | −p2 +2p−1 | 0

We observed that the coefficients of the polynomials in the second column (underlined)
can be expressed using Stirling numbers of the first kind s(n,k). For instance, corre-
sponding to the polynomial p2 −3p+2 (corresponding to the 3rd derivative of sinp x),
we have s(3,3) = 1, s(3,2) =−3 and s(3,1) = 2. To prove this, we need the following
lemma.

Lemma 8. For any n ≥ 1, the first term of dn

dxn (sinp(x)) is given by

(−1)n−1(p−1)n−1[p−n,(n−1)(p−1)]p.

Proof. We prove this using mathematical induction. For n= 1, d
dx (sinp(x))= cosp−1

p (x)
= 1[p−1,0]p, which agrees with the answer obtained with n = 1 in the given expres-
sion. Having proved the base case, let us assume that the result is true for n = k.
Differentiating the first term of dk

dxk (sinp(x)) using the chain rule, and only picking the
first term of the resulting expression will give us

(−1)k−1(p−1)k−1 ((−1)(p− k)[p− (k+1),k(p−1)])

= (−1)k(p−1)k−1(p−1)[p− (k+1),k(p−1)].

The recursive nature of the falling factorial tells us that (p−1)k−1(p−1) = (p−1)k.
This shows that the first term of dk+1

dxk+1 (sinp(x)) is given by (−1)k(p− 1)k[p− (k +
1),k(p−1)]. By the principle of mathematical induction, the result is true for all n ≥ 1.

The connection to Stirling numbers and the successive derivatives of the sinp(x) is now
clear. Simplifying the coefficient of the first term of dn

dxn (sinp(x)) obtained from the
above lemma gives:

(−1)n−1(p−1)n−1 = (−1)n−1 (p)n

p
=

(−1)n−1

p

n

∑
k=1

s(n,k)pk.

3.3 Newton’s Binomial Series
Let p be any integer that is greater than 1. As the previous section demonstrates,
finding a formula for the successive derivatives of sinp x to compute its Taylor series
is complicated. Instead, we examine sin−1

p x, whose Taylor series at x = 0 is more
manageable, and use this to find the Taylor series of sinp x at x= 0 through the Lagrange
inversion theorem. To do this, we apply Newton’s binomial series to derive the Taylor
series of sin−1

p x. Newton’s binomial series tells us the following for any exponent a
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and |x|< 1:

(1− x)−a = 1+ax+
a(a+1)

2!
x2 +

a(a+1)(a+2)
3!

x3 + ...

=
∞

∑
k=0

a(k)xk

k!
,

where a(k) = a(a+ 1)(a+ 2) · · ·(a+ k− 1) is the rising factorial [12, p. 742]. Note
that, by convention, a(0) = 1.

Proposition 9. We can express sin−1
p x as the following Taylor series:

sin−1
p x =

∞

∑
k=0

(
p−1

p

)(k) xkp+1

k!(kp+1)
.

Proof. Beginning with the integral form of sin−1
p x derived in Section 2.2, we apply

Newton’s binomial series:

sin−1
p x =

∫ x

0
(1− t p)−( p−1

p )dt

=
∫ x

0

(
∞

∑
k=0

(
p−1

p

)(k) tkp

k!

)
dt.

Power series have the property that they can be integrated term by term within the
interval of convergence. Thus, when we integrate and apply the fundamental theorem
of calculus, the result follows.

Example 10. Applying Proposition 9 for p = 2 gives the following well-known result:

sin−1
2 x = x+

1
6

x3 +
3

40
x5 +

5
112

x7 + · · ·+
(

2n
n

)
x2n+1

22n(2n+1)
+ · · · .

Similarly, when p = 4, we get the first few terms as follows:

sin−1
4 x = x+

3
20

x5 +
7

96
x9 +

77
1664

x13 + · · · .

It would be helpful to have a closed-form solution for these higher derivatives. In the
next section, we introduce some tools and discuss what this will look like.

3.4 sin−1
p x through the Gamma Function

We now introduce a special function to shed light on sin−1
p x. The gamma function,

Γ(z), is defined as Γ(z) =
∫

∞

0 e−ttz−1 dt, for z > 0. This converges for any real number
z > 0, and it is an extension of the factorial function: Γ(n) = (n−1)!. It is well-known
that Γ(1/2) =

√
π . Two important properties of the gamma function are

Γ(x+1) = xΓ(x) and Γ(x)Γ(1− x) =
π

sin(πx)
.

Using the gamma function, for any integer p > 1, we can further simplify the Taylor
series for sin−1

p (x) as follows. We begin by the formula from Proposition 9 which states
that

sin−1
p x =

∞

∑
k=0

(
p−1

p

)(k) xkp+1

k!(kp+1)
.
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Then we have the following:

sin−1
p x =

∞

∑
k=0

(
p−1

p

)(k) xkp+1

k!(kp+1)

=
∞

∑
k=0

(
1− 1

p

)(k) xkp+1

k!(kp+1)

=
∞

∑
k=0

(
1− 1

p

)(
2− 1

p

)(
3− 1

p

)
· · ·
(

k− 1
p

)
xkp+1

k!(kp+1)

=
∞

∑
k=0

Γ

(
1− 1

p

)(
1− 1

p

)(
2− 1

p

)(
3− 1

p

)
· · ·
(

k− 1
p

)
1

Γ(1− 1
p )

xkp+1

k!(kp+1)

=
∞

∑
k=0

Γ

(
2− 1

p

)(
2− 1

p

)(
3− 1

p

)
· · ·
(

k− 1
p

)
1

Γ(1− 1
p )

xkp+1

k!(kp+1)

...

=
∞

∑
k=0

Γ

(
k− 1

p

)
1

Γ(1− 1
p )

xkp+1

k!(kp+1)

=
∞

∑
k=0

Γ

(
k− 1

p

)
Γ

(
1− 1

p

) xkp+1

k!(kp+1)
.

Theorem 11. Let n > 1 be a positive integer. Then for any positive integer l, let k
and r be the integers given by the division algorithm: l = nk+ r where k ≥ 0 and
0 ≤ r ≤ n−1. Then we have(

dl

dxl sin−1
n (x)

)∣∣∣∣
x=0

=


Γ(k− 1

n )
Γ(1− 1

n )
(kn)!

k! , if r = 1,

0, if r ̸= 1.

Proof. The Taylor series for sin−1
n (x) at x = 0 has the form

sin−1
n (x) = h(x) =

∞

∑
m=0

h(m)(0)
m!

xm.

On the other hand, from the above calculation, we know that

sin−1
n (x) =

∞

∑
k=0

Γ
(
k− 1

n

)
Γ
(
1− 1

n

) xkn+1

k!(kn+1)
=

∞

∑
k=0

(
Γ
(
k− 1

n

)
Γ
(
1− 1

n

) (kn)!
k!

)
1

(kn+1)!
xkn+1.

Equating the coefficients of like-powers of x in both these series, we get the theorem.

Now that we have derived the Taylor series of sin−1
p x, we can apply the Lagrange

inversion theorem as outlined in the next section.

3.5 Lagrange Inversion
A function z = f (w) is said to be analytic at c if it is infinitely differentiable at c and if
the Taylor series for f (w) at w = c converges to f (w) for all w in a neighborhood of
c.
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For an equation z= f (w), where f is analytic at c and f ′(c) ̸= 0, the Lagrange inversion
theorem can be used to find the equation’s inverse, w = g(z), in a neighborhood of 0.
This inverse is given by the formula [5, Chapter 3]:

g(z) = c+
∞

∑
n=1

gn
(z− f (c))n

n!
, where

gn = lim
w→c

dn−1

dwn−1

[(
w− c

f (w)− f (c)

)n]
.

For power series, this theorem takes a slightly different form. Specifically, when f and
g are formal power series expressed as

f (w) =
∞

∑
k=0

fk
wk

k!
and g(z) =

∞

∑
k=0

gk
zk

k!
,

with f0 = 0 and f1 ̸= 0, applying the Lagrange inversion theorem gives us the following
[5]:

g(z) = c+
∞

∑
n=1

gn
(z− f (c))n

n!
, with

gn =
1
f n
1

n−1

∑
k=1

(−1)kn(k)Bn−1,k( f̂1, f̂2, ..., f̂n−k), n ≥ 2, where

f̂k =
fk+1

(k+1) f1
, g1 =

1
f1
, n(k) = n(n+1) · · ·(n+ k−1), and

Bn,k(x1,x2, ...,xn−k+1) = ∑
n!

j1! j2!... jn−k+1!

(x1

1!

) j1 (x2

2!

) j2
...

(
xn−k+1

(n− k+1)!

) jn−k+1

,

where this sum is taken over all sequences j1, j2, j3, ..., jn−k+1 of non-negative integers
that satisfy j1 + j2 + ...+ jn−k+1 = k and j1 +2 j2 +3 j3 + ...+(n− k+1) jn−k+1 = n.
These are the Bell polynomials.

The Taylor series expansion of sinp x is obtained when the above theorem is applied
to

sin−1
p x =

∞

∑
k=0

(
p−1

p

)(k) xkp+1

k!(kp+1)
,

which was derived in the previous section. We are able to apply this theorem to sin−1
p x,

as it meets the initial conditions given above: f0 = 0 and f1 ̸= 0.

Example 12. When p = 2, we can apply Lagrange Inversion Theorem with c = 0,
as f (c) = 0 and f ′(c) = 1. To do so, we must calculate fk for the first few terms.
Expanding sin−1

2 x, we find

f0 = 0, f1 = 1, f2 = 0, f3 = 1, f4 = 0, f5 = 9, f6 = 0.
Using these values, we can find f̂k:

f̂1 = 0, f̂2 =
1
3
, f̂3 = 0, f̂4 =

9
5
, f̂5 = 0.

We may now use these values to find the first few gn using the formulas given above.
To this end, we record a couple of special Bell polynomials that will be used below:
Bn,n(x1) = (x1)

n and Bn,n−1(x1,x2) =
(n

2

)
(x1)

n−2x2. These are obtained by simplifying
the general Bell polynomial given above.
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When n = 1, g1 = 1
f1
= 1

1 = 1. When n = 2, we have g2 = (−1)1 · 2(1)B1,1(0) = 0.
Similarly, when n = 3, we have

g3 =
1
f 3
1

(
(−1)13(1)B2,1( f̂1, f̂2)+(−1)23(2)B2,2( f̂1)

)
=

1
13 (−3B2,1(0,1/3)+12B2,2(0))

= −3
(

2
2

)
1
3
+12(02) =−1.

In the same manner, applying this formula to the next few values of n, we find that
g4 = 0 and g5 = 1.

Substituting these values into the formula for g(z) given by Lagrange Inversion Theorem
above, we have:

g(z) = 0+
∞

∑
n=1

gn
(z−0)n

n!
.

sin2(z) = z− z3

3!
+

z5

5!
+ · · · .

When p = 4, these computations get more tedious. Using SageMath, we find that

sin4 x = x− 18
5!

x5 +
14364

9!
x9 −·· · .

The above ideas prove the following theorem.

Theorem 13. For any integer p > 1, the functions sin−1
p x and sinp x are analytic at

x = 0.

It is well-known that sinx/x → 1 as x → 0. We now generalize this result.

Corollary 14. Let p > 1 be an integer. Then we have

lim
x→0

sinp x
x

= 1.

Proof. By Theorem 13, we know that sinp x is analytic at x = 0, and moreover, from
the CIVP, sinp 0 = 0. Therefore, we can express sinp x as a power series whose constant
term is 0:

sinp x = a1x+a2x2 +a3x3 + · · ·+anxn + · · · .

Differentiating both sides and invoking the CIVP gives:
(cosp x)p−1 = a1 +2a2x+3a3x2 + · · ·+nxn−1 + · · · .

Since cosp(0) = 1, setting x = 0 in the above equation tells us that a1 = 1. Finally, we
have

lim
x→0

sinp x
x

= lim
x→0

x+a2x2 +a3x3 + · · ·
x

= lim
x→0

1+a2x+a3x2 + · · ·= 1.

Note that from this result it also follows that tanp x/x → 1 as x → 0. One can also
prove these limits using l’Hôpital’s rule. In the same vein, one can also show the
following.
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Corollary 15.

lim
x→0

sin4 x− x
x5 =−18

5!
.

3.6 Rigidity

Note that the missing terms of the Taylor series for sin4(x) are exactly the ones that
were also missing in sin−1

4 (x); see Example 10. In fact, for both functions, the non-zero
terms in the Taylor series correspond to powers of x that form an arithmetic progression
of the form 4m+1. We proved this fact in Theorem 11 for sin−1

n (x). We now conjecture
that this is also true for sinn(x).

Conjecture 16. Let n be a positive integer. Then(
dl

dxl sinn(x)
)∣∣∣∣

x=0
̸= 0 ⇐⇒ l ≡ 1 mod n.

This led to the following, more general question in analysis.

Question: Suppose f (x) is a real-valued function that is infinitely differentiable at
x = a such that f ′(a) ̸= 0. Let f (a) = b and let g(x) be the local inverse of f (x) (this
exists by the inverse function theorem) at x = a. Is it true that for every positive integer
n, the nth derivative of f (x) at x = a is non-zero if and only if the nth derivative of g(x)
at x = b is non-zero?

It turns out that, in general, the above answer is no. Take for example f (x) = x2. We
have f (1) = 1 and f ′(1) = 2 ̸= 0. At x = 1, the local inverse of f (x) is g(x) =

√
x.

Note that for all k ≥ 3, f (k)(1) = 0 but g(k)(1) ̸= 0. On the other hand, for the function
f (x) = sin(x), the above question has an affirmative answer because the Taylor series
for sinx and sin−1 x, have only odd terms. This leads naturally to the following
definition.

Definition 17. Let y = f (x) be a function that is infinitely differentiable at x = a such
that f ′(a) ̸= 0. We say that f (x) is rigid at x= a if for any positive integer k, f (k)(a) ̸= 0
if and only if g(k)(b) ̸= 0, where g(x) is the local inverse of f (x) at x = a and b = f (a).

In this terminology, f (x) = x2 is not rigid at x = 1 but f (x) = sinx is rigid at x = 0.
Conjecture 16 can now be restated as follows. For any positive integer k, sink x is rigid
at x = 0.

Question: What are necessary and sufficient conditions for a function y = f (x) that is
infinitely differentiable at x = a to be rigid at a?

4 Generalized π values
4.1 Organic Definition

As we generalize trigonometric functions in the p-norm, we must also take into con-
sideration generalizing the value of π . Recall that π = 2sin−1(1). Using this as our
inspiration, we can organically define πp as πp := 2sin−1

p (1). Using our sin−1
p x formula
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we derived in Section 2.2 and letting x = 1, we get

πp = 2
∫ 1

0

1

(1− t p)
p−1

p

dt. (1)

Note that, unless otherwise indicated, when we refer to π , we are referring to π2.

When p = 2, we find that the area of the unit circle is equal to π . It is then natural to
wonder if πp has any relation to the area of a unit p-circle.

Proposition 18. The area of a unit p-circle is πp, when p ≥ 1.

Proof. In Proposition 1, we found that the area of the sector of the p-circle that connects
the points (x,y) and (1,0) is given as a function of y by a(y) = 1

2
∫ y

0 (1− t p)
1
p−1 dt. If

we let (x,y) be the point (0,1), we get the area of the unit p-circle in the first quadrant,

given by a(1) = 1
2
∫ 1

0 (1− t p)
1
p−1 dt. Since the unit p-circle has 4-fold symmetry, we

can multiply both sides of the equation by four to find the area of the entire p-circle:

4a(1) = 2
∫ 1

0
(1− t p)

1
p−1 dt.

From Section 2.2, we know that 2
∫ x

0 (1− t p)
1
p−1 dt = 2sin−1

p x. Therefore, we know
that the right hand side of the equation is 2sin−1

p (1), which is equal to πp as shown in
Equation (1). We have also already established that a(1) is the area of the quarter unit
p-circle, so 4 ·a(1) gives us the area of the entire unit p-circle. Therefore, we find that
the area of the unit p-circle is πp.

Corollary 19. For any p ≥ 1, we have 2 ≤ πp < 4.

Proof. As shown above, πp is the area of a unit p-circle. When p = 1, we get the region
bounded by the square |x|+ |y| = 1, which has area 2. Similarly, since the p-circle
is inscribed in a square of side length two, we know that the area of the p-circle is
bounded by the square’s area, which is 4. This shows that for any p ≥ 1, we have
2 ≤ πp < 4.

4.2 A Formula for πp

We now show how we can compute πp in terms of the gamma function. To this end, we
need another special function called the beta function, β (x,y), which is closely related
to the gamma function and can be defined as β (x,y) =

∫ 1
0 tx−1(1− t)y−1 dt, for any two

real numbers x,y such that x > 0 and y > 0. We can put the beta function in terms of
gamma using the property

β (x,y) =
Γ(x)Γ(y)
Γ(x+ y)

. (2)

Proposition 20. For any p ≥ 1, we have

πp =
2Γ2( 1

p )

pΓ( 2
p )

.

In particular, πp is a differentiable function of p.
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Proof. Referring back to our definition for πp, if we let u = t p, we can express πp in
terms of the beta function as follows:

πp = 2
∫ 1

0

1

(1− t p)
p−1

p

dt =
2
p

∫ 1

0
(1−u)

1
p−1 ·u

1
p−1 du = 2β (1/p,1/p).

We can then use Equation (2) to put πp in terms of the gamma function, and that
gives the formula stated in the proposition. Since Γ(x) is a differentiable function
and compositions and quotients of differentiable functions are again differentiable, it
follows that πp is differentiable.

Example 21. Using the above equation, we can numerically approximate πp for any
p. For p = 2,3 and 4, we get:

π2 =
2Γ2( 1

2 )

2Γ(1)
≈ 3.1415, π3 =

2Γ2( 1
3 )

3Γ( 2
3 )

≈ 3.533 and π4 =
2Γ2( 1

4 )

4Γ( 2
4 )

≈ 3.708.

4.3 Properties of πp

We have already seen that πp is a differentiable function of p for all p > 0. Is it a
monotonic function? Example 21 suggests that πp increases with p. We now prove
that fact.

Proposition 22. πp is an increasing function on (0,∞).

Proof. Recall that πp is the area of a unit p-circle. Since p-circles have a 4-fold

symmetry, we get πp = 4
∫ 1

0 (1− xp)
1
p dt. We will be done if we can show that, for any

fixed value of x in (0,1), (1− xp)
1
p is an increasing function in p. This is because if

(1− xp1)
1

p1 < (1− xp2)
1

p2 for all x in (0,1) and p1 < p2, then

4
∫ 1

0
(1− xp1)

1
p1 dx < 4

∫ 1

0
(1− xp2)

1
p2 dx,

showing that πp1 < πp2 whenever 0 < p1 < p2.

To this end, let ψ(p) := (1− xp)
1
p , where x is a fixed number in (0,1). Taking the

natural logarithm and differentiating with respect to p on both sides, we get

ln(ψ(p)) =
ln(1− xp)

p
,

ψ ′(p)
ψ(p)

=
− ln(1− xp)

p2 +
− ln(x)xp

p(1− xp)
,

ψ
′(p) = (1− xp)

1
p

(
− ln(1− xp)

p2 +
− ln(x)xp

p(1− xp)

)
.

For 0 < x < 1 and p > 0, note that 0 < 1− xp < 1. Therefore, ln(x) and ln(1− xp)
are both negative. This shows that all parts of the derivative are positive. Therefore,
ψ ′(p)> 0, which means ψ(p) is an increasing function.

Having shown above that πp is an increasing function and that it has an upper bound of
4 in Corollary 19, we know that a limit exists. It is then only natural to wonder what



18 BSU Undergraduate Mathematics Exchange Vol. 16, No. 1 (Fall 2022)

the limit of πp is.

Proposition 23. limp→∞ πp = 4.

Proof. Using πp =
2Γ2( 1

p )

pΓ( 2
p )

, we can take the limit of πp as p approaches infinity. Note

that we have not yet stated Legendre’s duplication formula, Γ(2z) = Γ(z)Γ(z+ 1
2 )

21−2z√π
.

πp =
2
p
·

Γ2( 1
p )

Γ( 2
p )

=
2
p
·

Γ2( 1
p ) ·2

1− 2
p
√

π

Γ( 1
p )Γ

(
1
p +

1
2

)
=

2
p
·

Γ( 1
p ) ·2

1− 2
p
√

π

Γ

(
1
p +

1
2

) =
2 ·Γ( 1

p +1) ·21− 2
p
√

π

Γ

(
1
p +

1
2

) .

lim
p→∞

πp =
2 ·Γ(1) ·2

√
π

Γ( 1
2 )

=
1 ·4

√
π√

π
= 4.

Figure 5: Graph of πp

Recall that it is well-known that π2 = π is an irrational number (a number that is not the
ratio of two integers). On the other hand, π1 = 2, a rational number. (π1 = 2 because it
is the area enclosed by the square |x|+ |y|= 1 of side length

√
2.) It is natural to ask

for what values of p, is πp irrational? This is a hard question. Since πp is a continuous
function, it takes rational and irrational values infinitely often; see Figure 5.

4.4 πp with the Monte Carlo Method
Since we have shown that πp can be described as the area of a p-circle, we can use a
rather fun technique to approximate the value of πp. Given a p-circle shaped dartboard
inscribed inside a square, what is the probability that a uniformly random throw will
land on the dartboard (assuming that the dart must land inside the square)? The
probability is the ratio of the area of the board to the area of the box. Therefore, if
we have n throws where t of them land on the dartboard, the probability would be
t
n =

πp
4 . We can solve for πp to get πp = 4t

n . Because of the law of large numbers,
when n → ∞, the ratio goes to the true ratio, and we find the true value of πp. Writing
a simple program to do this for us, at n = 1,000,000,000, we get π3 ≈ 3.53324 and
π4 ≈ 3.7081.
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5 Optimal Unit p-circles

One question that naturally arises when examining p-circles is, “At what value of p is
the corresponding squircle halfway between a unit circle (p= 2) and a square (p→∞)?"
This question was examined from three lenses: area, perimeter, and curvature.

5.1 Area

We sought to find the value of p for which the area enclosed by the p-circle |x|p+ |y|p =
1 is π+4

2 , which is the average of the areas of the unit circle and the square that the
unit circle is inscribed in. Because the p-circle is symmetric, we can examine the first
quadrant only, resulting in the following equation:∫ 1

0

p
√

1− xp dx =
π +4

8
.

Using SageMath, the root of this equation can be found, giving the approximation
p ≈ 3.162038. As such, we can conclude that the value of p for which the area of the
p-circle is exactly halfway between the areas of the unit circle (p = 2) and the square
in which it is inscribed is p ≈ 3.162038.

5.2 Perimeter

Next, we want to find the value of p for which the perimeter of a unit p-circle is halfway
between those of a unit circle and the square that the unit circle is inscribed in. The
circumference of a unit circle is 2π , and the perimeter of a square that contains the unit
circle is 8. Therefore, we have to find the value of p for which the perimeter of a unit
p-circle is π +4. To find the perimeter of the unit p-cirle, we apply the Euclidean arc
length formula to the defining equation of a p-circle. We equate the resulting integral
to π +4 to obtain the equation:

π +4 = 4
∫ 1

0

√
1+(1− xp)2(1−p)/px2(p−1) dx.

We solved this equation numerically using SageMath to find that p ≈ 4.667489.

5.3 Curvature

Finally, we wish to find p such that the curvature of the unit p-circle is halfway between
that of a square (here said to have curvature 0) and the 2-unit circle (which has curvature
1). For a given smooth curve C in R2, the curvature is a measure of how different our
curve is from a circle at a given point. While there are many equivalent formulations of
the curvature of a given curve, the following gives the curvature for a curve defined
implicitly by F(x,y) = 0:

κ =
|F2

y Fxx −2FxFyFxy +F2
x Fyy|

(F2
x +F2

y )
3
2

.

Using the relation F(x,y) = xp + yp −1 = 0 for the unit p-circle, we obtain

κ = (p−1)
xpy2p + x2pyp

(x2py2 + y2px2)
3
2
(xy).
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If we investigate the curvature of the unit p-circle at the point x = y, we find that

κ = (p−1)x2 2x3p

(2x2p+2)
3
2
=

p−1√
2x

.

When x = y, we can write the relation for the unit circle as 2xp = 1, which gives
x = 2−

1
p . Substituting for x gives

κ =
p−1

√
2 ·2−

1
p
=

p−1

2
1
2−

1
p
= (p−1)2

1
p−

1
2 .

Therefore, if we solve for p such that the unit p-circle has curvature 1/2, we find that
p ≈ 1.43643264.

5.4 Resulting Graphs

Graphing these 3 p-circles gives Figure 6 where the unit circle and square are dashed,
and the p-circle is solid. For the optimal curvature, we also have p = 1 since both
p = 1 and p → ∞ have the same curvature.

Figure 6: All 3 optimal p-circles

6 Rational Points on p-circles

6.1 2-circles and Pythagorean Triples

Right triangles (and as a result, Pythagorean triples) have long been objects of mathe-
matical interest, studied intensely by the Babylonians even more than a thousand years
before Pythagoras [6]. Given any Pythagorean triple (x,y,z) satisfying x2 + y2 = z2,
we may divide all parts by z2 to obtain x2

z2 +
y2

z2 = 1. Then the point ( x
z ,

y
z ) is a rational

point which lies on the 2-unit circle defined by x2 + y2 = 1. On the other hand, given
any rational number v

u , we obtain the Pythagorean triple (u2 − v2,2uv,u2 + v2) [11]. In
this manner, we may translate contexts between rational points on the unit circle and
right triangles with integer side lengths.
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6.2 p-circles and Fermat’s Last Theorem

We can generalize the known results for rational points on 2-circles and ask the
same question for p-circles where p is an integer greater than 2. There are cer-
tainly 4 trivial rational points along the axes of the graph, which are the points
(0,1),(1,0),(0,−1),(−1,0). To find the others, we may look at the rational solu-
tions in the first quadrant and use symmetry to extend our answers to the entire unit
p-circle.

Let p be an integer greater than 2 and let P = ( p1
q1
, p2

q2
) ∈ Q2 be a rational point on

the unit p-circle lying in the first quadrant. As P lies on the unit p-circle and P is
in the first quadrant, we must have ( p1

q1
)p +( p2

q2
)p = 1 and p1

q1
> 0, p2

q2
> 0. We then

find (p1q2)
p +(p2q1)

p = (q1q2)
p. However, by Fermat’s Last Theorem, there are no

positive integers p1, p2,q1,q2 that satisfy this relation. Thus, there exist no rational
solutions in the first quadrant. Then, by symmetry, we see that the only rational points
on the circle are exactly those along the axes.

7 Future Research

The results in this paper seem to indicate that p-trigonometric functions have interesting
but complex behavior. For instance, even basic formulas such as the double-angle
formulas for sin(2x) and cos(2x) seem to have no straightforward generalization. Sim-
ilarly, understanding higher derivatives of sinp(x) at x = 0 looks very difficult; see
Conjecture 16 and the questions following it. There are several other open questions.
We list a few that we think merit further study.

1. We know the derivatives of sinp x and cosp x. What about
∫

sinp xdx and
∫

cosp xdx?
Using the Taylor series for sinp x and cosp x, one can evaluate these integrals as series.
But are there closed-form answers for these integrals?
2. The parametrization of p-circles we considered in this paper are with respect to area.
We can also parametrize these curves with respect to arc length. These give yet another
generalization of the p-trigonometric functions. What properties do these functions
have?
3. Can we extend this work for (p,q)-trigonometric functions that come from looking at
the curves |x|p + |y|q = 1? Parametrizing these curves will give us sinp,q x and cosp,q x.
What can be said about these functions?
4. So far, we have been working in R2. Can we extend this work to R3? To this end, we
should look at the unit p-sphere |x|p + |y|p + |z|p = 1. For p = 2, this is the standard
unit sphere, and as p goes to infinity, we get a cube that encloses the unit sphere. These
surfaces can be called sphubes (p-spheres), analogous to our squircles (p-circles). It
opens gates to a whole new area of research. What are the parametric equations of these
surfaces? Can we do sphubical trigonometry that is similar to spherical trigonometry?
What are the volume and surface areas of the regions enclosed by these surfaces? What
is the Gaussian curvature function of these surfaces?
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Abstract
In the k-diameter component connectivity model a network is consider operational if
there is a component with diameter at least k. Therefore, a network is in a failure state
if every component has diameter less than k. In this paper we find the vertex variant of
the k-diameter component connectivity parameter, which is the minimum number of
vertex deletions in order to put a network into a failure state, for particular classes of
graphs. We also show the mixed variant by allowing vertex and edge failures within the
network. We show results for paths, cycles, complete, and complete bipartite graphs
for both variants as well as perfect r-ary trees for the vertex variant.

1 Introduction
Many different network structures can be modeled through graph theory. We think of
nodes, hubs, people, stations, objects, etc. as vertices of a graph and the communication
or connection between them as the edges of the graph. For many reasons, accidental
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and deliberate, these networks break or fail. Therefore, understanding the reliabil-
ity and vulnerability of a network is crucial to maintaining and building a reliable
network.

When considering network reliability there are two issues to understand: what are the
minimum requirements to maintain an operational network and what pieces of the
network may fail. In a network modeled as a graph we can have edges, vertices, or
both (mixed) fail. To keep a network operational we often consider what characterizes
a failure state for a network. Several different network reliability models have been
studied and Harary [6] provided the general framework for these network reliability
models by considering a property P and a network, G. He defined a network to be
operational if there is a component of G which has property P and therefore, if no
component of G has property P the network is in a failure state. Therefore, the network
reliability of G based on property P is the minimum number of failures so that no
component of G has property P.

For example, the component order edge connectivity [2] considers the minimum number
of edges that need to be removed from a graph so that all the components have order
less that some specific bound. Similarly the component order vertex connectivity [3]
considers vertex removal. For a survey of results see [4].

In this paper we will consider a graph operational if it contains a component of diameter
at least k for some fixed positive integer k. In practice, a network may need to have a
component with a minimum diameter for reliability testing of a particular function, the
spread of information must travel a minimum distance before it is deemed valuable, or
a virus which is transmitted to neighbors may stay dormant until it has passed through
a specific number of hosts or nodes. These, and other examples, motivate the need to
consider networks which contain a component of minimum diameter. In [5], the authors
considered the instance where edges fail, or are removed. In this paper we consider
vertex failure as well as the mixed failure case for certain graph classes.

2 Background and Definitions
We will be using common graph theory notation found in [7]. Throughout we will
assume that G = (V,E) is a finite simple graph with vertex set V and edge set E. For
any edge set D ⊆ E, let G−D denote the spanning subgraph of G containing the
vertex set V and the edge set E −D. For any vertex set H ⊆V , let G−H denote the
subgraph of G induced by V −H. Similarly, if V ′ ⊆ V and E ′ ⊆ E(G−V ′) we will
write G−V ′−E ′ to denote (G−V ′)−E ′. For any set A, let |A| denote the cardinality
of A.

If u,v ∈V , let dG(u,v) denote the distance between u and v in G (length of the shortest
u− v path in G). Note that if u and v are not connected (there is no u− v path), we
will define dG(u,v) = ∞. If the graph G is clear, we will denote dG(u,v) = d(u,v). If
d(u,v) = k for some positive integer k, then we will say that u is a k-neighbor of v,
{u,v} a k− pair, and a u− v path of length k will be a k-path. If there exists a vertex
x ∈ V so that d(u,x) = k, then we will say that u has a k− neighbor in G. If G is a
connected graph then the diameter of G is the maximum distance between any two
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vertices. If G is not connected, the diameter is defined to be infinite. A component of a
graph G is a connected and induced subgraph of G, call it H, so that no other vertex in
v ∈V (G−H) is adjacent to a vertex in H. Clearly, if G has more than one component,
then the diameter of G is infinite.

Throughout we will consider k to be a positive integer and we will consider a network
to be operational if there is a component of diameter at least k. Thus, a network is
in a failure state if every component has diameter less than k. We can easily render a
network into a failure state by removing all of the vertices or all of the edges. However,
we are interested in finding the minimum number of vertex or edge deletions to produce
a failure state.

Clearly, if k ≥ 2 and if a graph contains a k-pair, then the graph also contains a (k−1)-
pair. This leads to the following lemma which will be useful for our considerations of
vertex and edge connectivity.

Lemma 1. Let G = (V,E) be a graph and k be a positive integer. The graph G is in a
failure state if and only if there does not exist a k-pair in G.

Thus, in the process of making a failure state we must remove vertices or edges that
impact each k-path. The following lemma shows that vertex disjoint k-paths can not
both be impacted by only one vertex or edge removal. This will help us to show bounds
on the number of vertex or edge removals we need to render our network into a failure
state.

Lemma 2. Let G = (V,E) be a graph and k be a positive integer. If there exists m
vertex disjoint k-paths in G, then for any v ∈V or e ∈ E, G−{v} and G−{e} each
have at least m−1 vertex disjoint k-paths.

Proof. Let G = (V,E) be a graph and k be a positive integer. Assume G has m vertex
disjoint k-paths. Assume by way of contradiction that there exists some v ∈V such that
G−{v} has less than m−1 vertex disjoint k-paths. Then v was a vertex in at least two
of the vertex disjoint k-paths. Hence, G did not contain m vertex disjoint k-paths. A
similar argument holds for edge removals.

It is often the case that edges are the object that fails. The k-diameter component
edge connectivity of the graph was introduced in [5] and results were shown for path,
complete, and complete bipartite graphs as well as perfect r-ary trees. In this paper we
focus on the k-diameter component vertex connectivity parameter as well as the mixed
parameter which allows vertex and edge deletions.

Definition 3. Let G = (V,E) be a graph and k be a positive integer. A set V ′ ⊆ V
is a k-diameter component vertex disconnecting set if G−V ′ has no vertex with a
k-neighbor.

This means that a vertex set V ′ is a k-diameter component vertex disconnecting set if
every component of G−V ′ has diameter less than k. If V ′ is a k-diameter component
vertex disconnecting set, then G−V ′ is in a failure state.

Recall we are interested in finding the minimum number of vertices that can be removed
to produce a failure state. This motivates the definition of the k-diameter component
vertex connectivity parameter.
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Definition 4. Given a graph G = (V,E) and a positive integer k, the k-diameter
component vertex connectivity parameter of G, denoted CVk(G), is the size of the
smallest k-diameter component vertex disconnecting set.

Thus, the k-diameter component vertex connectivity parameter is the size of the smallest
vertex set V ′ so that G−V ′ is in a failure state.

Similarly, we will consider edge disconnecting sets which will be used in our mixed
deletion case.

Definition 5. Let G = (V,E) be a graph and k be a positive integer. A set E ′ ⊆ E is a
k-diameter component edge disconnecting set if G−E ′ has no vertex with a k-neighbor.

This means that an edge set E ′ is a k-diameter component edge disconnecting set if
every component of G−E ′ has diameter less than k. If E ′ is ak-diameter component
edge disconnecting set, then G−E ′ is in a failure state.

As with vertex deletions, we can also consider the minim number of edges whose
removal produces a failure state. This motivates the definition of the k-diameter
component edge connectivity parameter.

Definition 6. Given a graph G = (V,E) and a positive integer k, the k-diameter
component edge connectivity parameter of G, denoted CEk(G), is the size of the
smallest k-diameter component edge disconnecting set.

Thus, the k-diameter component edge connectivity parameter is the minimum size of
an edge set E ′ so that G−E ′ is in a failure state.

It is often the case that vertices and edges fail which is investigated through the mixed
deletion case. This was first introduced by Beineke and Harary [1]. The following
definitions address the k-diameter component connectivity function, which is a mixed
version of the k-diameter component connectivity involving both vertex and edge
deletions. As is standard we will remove vertices first then remove edges.

Definition 7. Let G=(V,E) be a graph, k be a positive integer, and p∈{0,1, ...,CVk(G)}.
Then the k-diameter component connectivity function of G is defined as CMk(G, p) =
min{CEk(G−V ′) : V ′ ⊆V, |V ′|= p}.

So CMk(G, p) is the minimum number of edges that must be removed to render the
graph into a failure state assuming we can also remove any p vertices in the graph. Note
that we must remove the p vertices first then remove the least amount of edges.

Definition 8. Let G = (V,E) be a graph and k be a positive integer. A k-diameter
component connectivity pair of G for each p ∈ {0,1, ...,CVk(G)} is an ordered pair
(p,q), such that CMk(G, p) = q.

Two obvious connectivity pairs of G are (0,CEk(G)) and (CVk(G),0). For each value
of p where 0 ≤ p ≤ CVk(G), there is a unique k-diameter component connectivity
pair.

When trying to find the value of CMk(G, p) it is often useful to consider which p
vertices we need to remove to minimize CEk(G−V ′). This motivates the following
definition of a optimal p-set.
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Definition 9. Let G = (V,E) be a graph, k be a positive integer, and p be a nonnegative
integer. Let V ′ ⊆V such that |V ′|= p. We say V ′ is an optimal p-set if CMk(G, p) =
CEk(G−V ′).

The following lemma will prove valuable for providing lower bounds. The lemma
shows disjoint k-paths provide a lower bound for the number of vertex deletions, edge
deletions, or mixed deletions needed to produce a failure state.

Lemma 10. Let G = (V,E) be a graph and let k be a positive integer. If there exists
M vertex disjoint k-paths in G, then CVk(G)≥ M and CEk(G)≥ M. Furthermore, if
CMk(G, p) = q, then p+q ≥ M.

Proof. Let G = (V,E) be a graph and let k be a positive integer. Assume there exists
M vertex disjoint k-paths in G. Let V ′ ⊆V such that G−V ′ is in a failure state. Let
E ′ ⊆ E such that G−E ′ is in a failure state. Then Lemma 1 and multiple iterations of
Lemma 2 implies that |V ′| ≥ M and |E ′| ≥ M.

Let V ∗ ⊆ V and E∗ ⊆ E(G−V ∗) such that G−V ∗−E∗ is in a failure state. Then
Lemma 1 and Lemma 2 implies that |V ∗|+ |E∗| ≥ M. Hence, if CMk(G, p) = q, then
p+q ≥ M.

3 Vertex Deletion Results
In this section we will consider only vertex deletions; we compute CVk(G) for specific
graphs G. We provide results for path graphs, cycles, complete graphs, complete
bipartite graphs, and perfect r-ary trees. Note that if k = 1, then CVk is the minimum
number of vertex deletions whose removal results in an edgeless graph. Therefore, we
will always assume k ≥ 2.

3.1 Path Graphs
Consider the path graph on n vertices, denoted Pn. Label the vertices consecutively
from 1 to n starting at a pendant vertex. Since any path of length k has k+1 vertices,
there are

⌊ n
k+1

⌋
vertex disjoint k-paths in Pn. By Lemma 10, CVk(Pn)≥

⌊ n
k+1

⌋
.

If we delete every vertex whose label is a multiple of k+1, then all of the remaining
components have k vertices, with the exception of at most one component which could
have fewer than k vertices. Therefore, the diameter of each remaining component will
be less than k. This results in a total of

⌊ n
k+1

⌋
deletions. Hence, CVk(Pn) ≤

⌊ n
k+1

⌋
.

These two observations imply the following:

Theorem 11. For every positive integer n,

CVk(Pn) =

⌊
n

k+1

⌋
.

3.2 Cycle Graphs
Consider the cycle graph on n vertices, denoted Cn. Since diam(Cn) =

⌊ n
2

⌋
, if k >

⌊ n
2

⌋
,

then Cn is already in a failure state and no deletions are necessary. If k ≤
⌊ n

2

⌋
, then at

least one deletion must be made. Notice that the deletion of any single vertex from
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Cn leaves a path graph on n−1 vertices. Then, by Theorem 11, CVk(Cn) =
⌊ n−1

k+1

⌋
+1.

Hence, we have the following:

Theorem 12. For every positive integer n,

CVk(Cn) =

{
0 if k >

⌊ n
2

⌋⌊ n+k
k+1

⌋
if k ≤

⌊ n
2

⌋
.

3.3 Complete Graphs

Consider the complete graph on n vertices, denoted Kn. Since the diameter of a
complete graph is 1 and k ≥ 2, Kn is already in a failure state. Thus, we see the
following obvious result:

Theorem 13. For any positive integer n,

CVk(Kn) = 0.

3.4 Complete Bipartite Graph

Now we will consider a complete bipartite graph Ka,b = (V,E) with parts A and B
where V = A∪B, A∩B = /0, |A|= a > 0, and |B|= b > 0.

Theorem 14. For any positive integer a and b,

CVk(Ka,b) =


0 if a = b = 1,
0 if k > 2 and max{a,b} ≥ 2,
min{a,b} if k = 2 and max{a,b} ≥ 2.

Proof. Let Ka,b = (V,E) be a complete bipartite graph with parts A and B where
V = A∪B, A∩B = /0, |A| = a > 0, and |B| = b > 0. The diameter of a complete
bipartite graph is 2 unless a = b = 1, in which case the diameter is 1 and K1,1 is already
in a failure state for all k > 1. Consider when a ≥ 2 or b ≥ 2. If k > 2, then Ka,b is
already in a failure state. Now consider when k = 2. The only induced subgraphs
of Ka,b which are in a failure state are K1,1, subgraphs of A, and subgraphs of B. To
produce K1,1, we must delete all but two vertices: one vertex from A and one vertex
from B. Thus, the resulting number of vertex deletions is (a− 1)+ (b− 1). Since
A is the subgraph of A with the most vertices, we only need to consider deleting
vertices to produce A. In order to produce A, we must delete all vertices from B and,
therefore, the resulting number of vertex deletions is b. Similarly, to produce B, a
vertex deletions are necessary. If either a ≥ 2 or b ≥ 2, then it is easily seen that
(a−1)+(b−1)≥ min{a,b}.

3.5 Perfect r-ary Trees

Throughout we will assume r and l are positive integers and let Tr,l = (V,E) be a perfect

r− ary tree with height l. This means that Tr,l has rl+1−1
r−1 vertices and r(rl+1−1)

r−1 − r
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edges. We can enumerate the vertices and edges of Tr,l as follows:

V = {vi, j : 1 ≤ i ≤ l +1,1 ≤ j ≤ r(l+1)−i}, and

E = {(vi, j,vi−1,m) : 2 ≤ i ≤ l +1,1 ≤ j ≤ r(l+1)−I ,

( j−1)r+1 ≤ m ≤ jr}.

We will say that vertex vi, j ∈V is on level i. Notice that the root vertex is on level l +1
and the leaves are on level 1.

vvvvv1,11,11,11,11,1 vvvvv1,21,21,21,21,2 vvvvv1,31,31,31,31,3 vvvvv1,41,41,41,41,4 vvvvv1,51,51,51,51,5 vvvvv1,61,61,61,61,6 vvvvv1,71,71,71,71,7 vvvvv1,81,81,81,81,8 vvvvv1,91,91,91,91,9 vvvvv1,101,101,101,101,10 vvvvv1,111,111,111,111,11 vvvvv1,121,121,121,121,12 vvvvv1,131,131,131,131,13 vvvvv1,141,141,141,141,14 vvvvv1,151,151,151,151,15 vvvvv1,161,161,161,161,16

vvvvv2,12,12,12,12,1 vvvvv2,22,22,22,22,2

vvvvv3,13,13,13,13,1

vvvvv2,32,32,32,32,3 vvvvv2,42,42,42,42,4 vvvvv2,52,52,52,52,5 vvvvv2,62,62,62,62,6 vvvvv2,72,72,72,72,7 vvvvv2,82,82,82,82,8

vvvvv3,43,43,43,43,4vvvvv3,33,33,33,33,3vvvvv3,23,23,23,23,2

vvvvv4,14,14,14,14,1 vvvvv4,24,24,24,24,2

vvvvv5,15,15,15,15,1

Figure 1: A perfect 2-ary tree with height 3 (r = 2, l = 4) with vertices in T 2
v4,2

indicated
by ×.

Let h be a positive integer. Fix a vertex vi, j ∈V , with i > h and consider the subtree
T h

vi, j
of Tr,l induced by vi, j and all of its descendants at a distance at most h. Notice in

T h
vi, j

, the degree of vi, j is r and any vertex x of degree 1 in T h
vi, j

will satisfy d(x,vi, j) = h.
Also notice that T h

vi, j
is a perfect r-ary tree of height h.

The following lemma establishes a set V ′ of vertices which will form our minimum
k-diameter component vertex disconnecting set for Tr,l . The cardinality of this set is
shown so that we can prove it is in fact the minimum k-diameter component vertex
disconnecting set.

Lemma 15. Let Tr,l = (V,E). Let V ′ ⊂V such that

V ′ =

{
vm(⌈ k

2⌉+1), j ∈V : 1 ≤ m ≤

⌊
l +1⌈ k
2

⌉
+1

⌋
,1 ≤ j ≤ rl+1−m(⌈ k

2⌉+1)

}
.

Then,

|V ′|= rl+1 − r
l+1−

⌊
l+1

⌈ k
2⌉+1

⌋
(⌈ k

2⌉+1)

r⌈
k
2⌉+1 −1

.

Proof. Consider V ′ as defined above. Then by summing over all possible choices of m
we see

|V ′|=

⌊
l+1

⌈ k
2⌉+1

⌋
∑

m=1
rl+1−m(⌈ k

2⌉+1).

Simplifying the previous expression, we see:
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|V ′|= rl+1

⌊
l+1

⌈ k
2⌉+1

⌋
∑

m=1
r−m(⌈ k

2⌉+1)

= rl+1

1− r
−

⌊
l+1

⌈ k
2⌉+1

⌋
(⌈ k

2⌉+1)

r⌈
k
2⌉+1 −1



=
rl+1 − r

l+1−

⌊
l+1

⌈ k
2⌉+1

⌋
(⌈ k

2⌉+1)

r⌈
k
2⌉+1 −1

.

Now we will show CVk(Tr,l) = |V ′|. For each vi, j ∈V ′, T⌈
k
2⌉

vi, j is not in a failure state. We

will also show that for any vi, j,vi′, j′ ∈V ′ with vi, j ̸= vi′, j′ , T⌈
k
2⌉

vi, j and T⌈
k
2⌉

vi′, j′ are disjoint.
Thus, for each vertex in V ′, we need at least one vertex deletion to produce a subgraph
of Tr,l which is in a failure state. We will also show that Tr,l −V ′ is in a failure state and,
therefore, V ′ forms a minimum k-diameter disconnecting set. For the sake of simplicity,

we will denote T⌈
k
2⌉

vi, j with Tvi, j .

Theorem 16. Let r, l and k be positive integers. Let Tr,l = (V,E) be a perfect r−ary
tree with height l. Then,

CVk(Tr,l) =
rl+1 − r

l+1−

⌊
l+1

⌈ k
2⌉+1

⌋
(⌈ k

2⌉+1)

r⌈
k
2⌉+1 −1

.

Proof. Let r, l, and k be positive integers. Let Tr,l = (V,E).

First we will establish that

CVk(Tr,l)≥
rl+1 − r

l+1−

⌊
l+1

⌈ k
2⌉+1

⌋
(⌈ k

2⌉+1)

r⌈
k
2⌉+1 −1

by finding a set of disjoint k-pairs. Let

V ′ =

{
vm(⌈ k

2⌉+1), j ∈V : 1 ≤ m ≤

⌊
l +1⌈ k
2

⌉
+1

⌋
,1 ≤ j ≤ rl+1−m(⌈ k

2⌉+1)

}
.

For each vi, j ∈V ′ let Tvi, j be the subgraph induced on vi, j and all of its descendants at a
distance at most

⌈ k
2

⌉
. Notice i >

⌈ k
2

⌉
for each vi, j ∈V ′ and Tvi, j is a perfect r-ary tree

with height
⌈ k

2

⌉
for all vi, j ∈V ′. Since the diameter of a perfect r-ary tree of height a is

2a, we have diam(Tvi, j) = 2
⌈ k

2

⌉
for each vi, j ∈V ′. This implies, since k is an integer,

k+1 ≥ diam(Tvi, j)≥ k.

Since diam(Tvi, j) ≥ k, Tvi, j contains at least one k-pair and, thus, is not in a failure



Vertex and Mixed k-Diameter Component Connectivity 31

state.

Let vi, j,vi, j′ ∈ V ′ with j ̸= j′. We will show that all Tvi, j and Tvi, j′ are disjoint. Since
vi, j and vi, j′ have a common ancestor, they cannot share any decendants, or Tr,l would
contain a cycle and is not a tree. Therefore, Tvi, j and Tvi, j′ are disjoint.

Consider vi, j,vi′, j′ ∈V ′ where i ̸= i′. We will show that Tvi, j and Tvi′, j′ are disjoint. By

the definition of V ′, vertices on different levels in V ′ are at a distance of at least
⌈ k

2

⌉
+1

from each other, so vi, j ̸∈ Tvi′, j′ and vi′, j′ ̸∈ Tvi, j . Since vi, j and vi′, j′ are the roots of Tvi, j

and Tvi′, j′ respectively, and Tvi, j and Tvi′, j′ are trees of height
⌈ k

2

⌉
, this implies Tvi, j and

Tvi, j′ are disjoint.

Consider vi, j,vi′, j′ ∈ V ′ where i ̸= i′. We will show that Tvi, j and Tvi′, j′ are disjoint.
Without loss of generality, assume i′ < i. By the definition of V ′, vertices on different
levels in V ′ are at a distance of at least

⌈ k
2

⌉
+ 1 from each other. So if, vi′, j′ is a

descendent of vi, j, then Tvi′, j′ and Tvi, j will be disjoint since Tvi, j has height
⌈ k

2

⌉
. If vi′, j′

is not a descendent of vi, j, then there exists a vi, j − vi′, j′ path which goes through a
vertex va,b with a > i which is not in Tvi, j or Tvi′, j′ . Therefore, Tvi, j and Tvi′, j′ must be
disjoint since trees are acyclic.

Therefore, we have shown that {Tvi, j : vi, j ∈V ′} are pairwise disjoint.

Since Tvi, j contains a k-pair for each vi, j ∈V ′, there are at least |V ′| disjoint k-pairs in
Tr,l . Therefore, by Corollary 10 and Lemma 15,

CVk(Tr,l)≥
rl+1 − r

l+1−

⌊
l+1

⌈ k
2⌉+1

⌋
(⌈ k

2⌉+1)

r⌈
k
2⌉+1 −1

.

Now we will show that

CVk(Tr,l)≤
rl+1 − r

l+1−

⌊
l+1

⌈ k
2⌉+1

⌋
(⌈ k

2⌉+1)

r⌈
k
2⌉+1 −1

by showing Tr,l −V ′ is in a failure state.

Consider Tr,l −V ′. By deleting all vertices in V ′ from Tr,l , we are deleting entire levels
of vertices. In fact, we are deleting all vertices which are on a level which is an
integer multiple of

⌈ k
2

⌉
+1. Notice, then, that Tr,l −V ′ is a disconnected graph where

each component is a perfect r-ary tree. All of these trees have height
⌈ k

2

⌉
−1, except

the tree containing the root vertex, which could have less. Then, diam(Tr,⌈ k
2⌉−1) =

2(
⌈ k

2

⌉
−1)≤ 2( k+1

2 )−2 ≤ k−1. Therefore, each component has diameter less than k,
and G−V ′ is in a failure state. Hence,

CVk(Tr,l)≤
rl+1 − r

l+1−

⌊
l+1

⌈ k
2⌉+1

⌋
(⌈ k

2⌉+1)

r⌈
k
2⌉+1 −1

.
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Combining these two inequalities, we see that

CVk(Tr,l) =
rl+1 − r

l+1−

⌊
l+1

⌈ k
2⌉+1

⌋
(⌈ k

2⌉+1)

r⌈
k
2⌉+1 −1

.

4 Mixed Deletion Results
Now we will investigate the k-diameter component connectivity function of a few
simple graph classes. We provide results for path graphs, cycles, complete graphs, and
complete bipartite graphs. As with the previous section, we will assume throughout
that k ≥ 2 is a positive integer.

4.1 Path Graphs

To decompose path graphs into failure states, we will create path graphs components
of maximum length which are in a failure state.

Theorem 17. Let Pn be the path on n vertices. For any nonnegative integer p ≤
CVk(Pn),

CMk(Pn, p) =


0 if p =

⌊ n
k+1

⌋
⌊

n−p(k+1)−1
k

⌋
if p <

⌊ n
k+1

⌋
.

Proof. Let n be a positive integer. Consider Pn and let p ≤CVk(Pn) be a nonnegative
integer. If p =

⌊ n
k+1

⌋
, then by Theorem 11, CMk(Pn, p) = 0.

Assume p <
⌊ n

k+1

⌋
. Label vertices of Pn consecutively starting at a pendant vertex

so that V = {vi : i ∈ Z,1 ≤ i ≤ n}. Let V ′ ⊂ V such that V ′ = {v j(k+1) : j ∈ Z,1 ≤
j ≤ p}. Then Pn −V ′ has p components with diameter k − 1 and one component,
denoted C, which is a path on n− p(k+1) vertices. By Theorem 3.1 in [5], CEk(C) =⌊

n−p(k+1)−1
k

⌋
. Let E ′ be the set of

⌊
n−p(k+1)−1

k

⌋
edges removed from component C to

produce a failure state. Then Pn −V ′−E ′ is in a failure state. Therefore, CMk(Pn, p)≤⌊
n−p(k+1)−1

k

⌋
.

Assume we are going to delete a set, P, of vertices where |P|= p and a set, Q, of edges
where |Q| = q so that Pn −P−Q is in a failure state. Since Pn is a tree, any edge or
vertex deletion creates at most one new component. Therefore, Pn −P−Q can have at
most p+q+1 components. If Pn −P−Q is in a failure state, then each component
contains at most k vertices. Thus, the number of vertices in our original graph is the sum
of all the vertices in the failed components plus the p vertices we had to delete from P.
Therefore, the number of vertices in our original graph would be bounded above by
(p+q+1)k+ p. We will now use this fact to show that CMk(Pn, p) =

⌊
n−p(k+1)−1

k

⌋
.



Vertex and Mixed k-Diameter Component Connectivity 33

Assume by way of contradiction that there exists some set V ∗ ⊆V with |V ∗|= p and
E∗ ⊆ E with |E∗|=

⌊
n−p(k+1)−1

k

⌋
−1 such that Pn −V ∗−E∗ is in a failure state. As

shown above, if Pn −V ∗−E∗ is in a failure state, then the number of vertices in Pn is
bounded above by

|V (Pn)| ≤
(

p+
(⌊

n− p(k+1)−1
k

⌋
−1
)
+1
)

k+ p.

Simplifying this expression, we see

|V (Pn)| ≤ p(k+1)+ k
⌊

n− p(k+1)−1
k

⌋
≤ p(k+1)+ k

(
n− p(k+1)−1

k

)
= n−1.

Hence, we have a contradiction, because |V (Pn)|= n.

4.2 Cycle Graphs
A cycle is only one vertex deletion away from becoming a path graph. Therefore, we
can use our results for path graphs to analyze cycle graphs.

Theorem 18. Consider Cn, the cycle on n vertices. For any positive integer n and
nonnegative integer p ≤CVk(Cn),

CMk(Cn, p) =


0 if k >

⌊ n
2

⌋
0 if k ≤

⌊ n
2

⌋
and p =

⌊ n+k
k+1

⌋⌊
n−p(k+1)−1

k

⌋
+1 if k ≤

⌊ n
2

⌋
and 0 < p <

⌊ n+k
k+1

⌋
.

Proof. Let Cn be the cycle graph on n vertices. Note that diam(Cn) =
⌊ n

2

⌋
, so if

k >
⌊ n

2

⌋
, Cn is already in a failure state and requires no deletions. Consider when

p =
⌊ n+k

k+1

⌋
. Then by Theorem 12, there exists a set V ′ of p vertices such that Cn −V ′ is

in a failure state. Hence, if p =
⌊ n+k

k+1

⌋
, then CMk(Cn, p) = 0.

Consider when k ≤
⌊ n

2

⌋
and 0 < p <

⌊ n+k
k+1

⌋
. Note that any vertex deletion leaves a

path on n−1 vertices, hence, CMk(Cn, p) =CMk(Pn−1, p−1). Therefore, by Theorem
17 CMk(Cn, p) =

⌊
(n−1)−(p−1)(k+1)−1

k

⌋
. Simplifying this expression, we see

CMk(Cn, p) =
⌊

n− p(k+1)−1
k

⌋
+1.

4.3 Complete Graphs
Consider the complete graph on n vertices, denoted Kn. Since any complete graph has
diameter 1, we see Kn is already in a failure state since we are assuming k ≥ 2. Thus,
we see the following obvious result:



34 BSU Undergraduate Mathematics Exchange Vol. 16, No. 1 (Fall 2022)

Theorem 19. For every positive integer n,

CMk(Kn, p) = 0.

4.4 Complete Bipartite Graph
Theorem 20. Consider the complete bipartite graph K(a,b) where a and b are positive
integers with a ≤ b. Then for any nonnegative integer p ≤CVk(Ka,b),

CMk(Ka,b, p) =


0 if a = b = 1
0 if k > 2 and b > 1
(a− p)(b−1) if k = 2 and b > 1.

Proof. Let k be a positive integer. Consider the complete bipartite graph, denoted
Ka,b = (V,E) with parts A and B where V = A ∪ B, A ∩ B = /0, |A| = a > 0, and
|B|= b > 0. Furthermore, assume without loss of generality that a ≤ b.

If a = b = 1, then diam(Ka,b) = 1 and Ka,b is in a failure state. If b ≥ 2, then
diam(Ka,b) = 2. If k > 2, then Ka,b is in a failure state. If k = 2, then Ka,b is not
in the failure state. Therefore, fix k = 2 for the remainder of the proof.

Note that min{a,b}= a, so Theorem 14 implies that CMk(Ka,b,a) = 0. Thus, assume
p < a. Let V ′ be a set of vertices deleted from Ka,b such that |V ′|= p. We claim that
V ′ ⊆ A is an optimal p-set. In other words, it is optimal to delete all p vertices from part
A of Ka,b. Then by, Theorem 3.3 of [5], CMk(K(a,b)) =CEk(Ka−p,b) = (a− p)(b−1).

Assume by way of contradiction that V ′ ⊆ A is not an optimal p-set. Then there exists
an optimal p-set V ∗ = VA ∪VB, where VA ⊆ A, VB ⊆ B, |VA| = x, |VB| = y, y ≥ 1 and
x+ y = p. In other words, it is optimal to delete some vertices from part A and some
from part B of Ka,b. Then, we have the following two cases.

Case 1: Assume a− x ≤ b− y. Then if V ∗ is an optimal p-set, by Theorem 3.3 of [5],
CMk(Ka,b, p) =CEk(Ka−x,b−y) = (a− x)(b− y−1).

Note that y ≥ 1 implies
y(a− x)≤ y(b−1).

Then, by substituting y = p− x on the right side of this inequality, we see
x(b−1)+ y(a− x)≤ p(b−1).

Adding a(b−1) to both sides of the above inequality and simplifying, we see
(a− p)(b−1)≤ (a− x)(b− y−1).

Hence, CEk(Ka−p,b)≤CEk(Ka−x,b−y).

Case 2: Assume b− y < a− x. Then if V ∗ is an optimal p-set, by Theorem 3.3 of [5],
CMk(Ka,b, p) =CEk(Ka−x,b−y) = (b− y)(a− x−1).

Note that a ≤ b implies that a−x ≤ b. Multiplying by (y−1) and then adding b(a−x)
to both sides of this inequality, we see

(a− x)b+ y(a− x)− (a− x)≤ (a− x)b+ y(b−1)−b+ y.
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Simplifying this expression, we see
(a− x− y)(b−1)≤ (b− y)(a− x−1).

Then substituting p = x+ y, we see
(a− p)(b−1)≤ (b− y)(a− x−1).

Hence, CEk(Ka−p,b)≤CEk(Ka−x,b−y).

In either of these two cases, CEk(Ka−p,b) = (a− p)(b−1)≤CEk(Ka−x,b−y). Hence,
V ′ is an optimal p-set and

CMk(Ka,b, p) =


0 if a = b = 1
0 if k > 2 and b > 1
(a− p)(b−1) if k = 2 and b > 1.
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Abstract
A zombie apocalypse is one pandemic that would likely be worse than anything
humanity has ever seen. However, despite the mechanisms for zombie uprisings in pop
culture, it is unknown whether zombies, from an evolutionary point of view, can actually
rise from the dead. To provide insight into this unknown, we created a mathematical
model that predicts the trajectory of human and zombie populations during a zombie
apocalypse. We parametrized our model according to the demographics of the US, the
zombie literature, and then conducted an evolutionary invasion analysis to determine
conditions that permit the evolution of zombies. Our results indicate a zombie invasion
is theoretically possible, provided the ratio of transmission rate to the zombie death rate
is sufficiently large. While achieving this ratio is uncommon in nature, the existence
of zombie ant fungus illustrates it is possible and thereby suggests that a zombie
apocalypse among humans could occur.

1 Introduction
The world is continuously at risk from epidemics, with COVID-19, SARS, and Ebola
serving as recent examples of their devastating impacts. As time progresses, diseases
capable of starting another pandemic are more than likely to occur [13]. One important
potential pandemic that would likely be worse than anything humanity has ever seen
is a zombie apocalypse. While this may seem far-fetched for humanity, in South
America among other regions, a fungus exists that can turn ants into zombie ants
[5], which implies such an outbreak among humans is within the realm of biological
possibilities.

What is biologically possible constitutes all species, most of which exhibit enormous
diversity of traits [3, 16]. Through examining these traits, specifically the trade-offs
between them [16], the direction of evolution can be inferred, which can provide a
glimpse as to what may be in store for a species’ future. Typically, such an evolution
is caused by the occurrence of a rare mutant, or a patient zero in the case of a novel
disease [15, 19], which can feature some form of trait advantage in reproductive ability,
size, speed, susceptibility to disease, or survival rate, among others.

While patient zero is ubiquitous in many pop culture movies and tv shows as the
first individual to become a zombie [24] the mechanism by which the first zombie is
created is often relatively unknown. Classically, many possible scenarios lead to the
uprising of patient zero, and ultimately a full-blown zombie apocalypse. For instance,
consumption of the mutated zombie ant fungi could infect humans, causing them to
seek out nutrients by cannibalism, and thereby further spread fungal spores through
their saliva [1]. Alternatively, medical experimentation is often a culprit in causing
patient zero, with cross-transmission events from monkeys to humans [8, 9], and side-
effects of untested vaccines [11] standing as common causes. However, despite these
mechanisms for zombie uprisings, and numerous works on modeling zombie outbreaks
[12, 20, 21], it is unknown whether zombies, from an evolutionary point of view, can
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actually rise from the dead. So, to provide insight into this unknown we created a
mathematical model that predicts the trajectory of human and zombie populations
during a zombie apocalypse.

Using this mathematical model, we apply stability analysis to estimate the long-term
prognosis of the United States, conduct an evolutionary invasion analysis to infer
conditions that allow the zombie apocalypse to occur, or invade from another country,
and investigate the potential for an endless human-zombie war through Hopf bifurcation
analysis. Our main findings show an uprising of zombies requires the fungus to transmit
their spores to more than 0.023 humans per day, and would likely lead to an oscillating
struggle that decreases over thousands of years between humans and zombies, as both
try to overwhelm the other.

2 Methods

To determine the conditions that permit the biological evolution of zombies, we de-
veloped a mathematical model of zombie transmission in a human population. We
calibrate our model to the demographics of the US and then apply stability [14], evolu-
tionary invasion [17], and Hopf-bifurcation analyzes [17] to inform on the potential
outcomes for humanity.

2.1 Mathematical Model

To begin, we created a mathematical model that predicts the long-term population of
the US. We then extend the model to include zombies and proceed to investigate the
model’s behavior.

2.1.1 The Resident System

We first consider a resident system of humans split into two compartments. One
compartment represents the population of humans in the United States (N), which we
assume is governed by logistic growth and corresponds to the population of susceptible
humans, and the second represents the number of deceased humans due to natural
causes, which have yet to completely decompose (D). The rates governing the transition
between these compartments is given by

dN
dt = b(1− N

K )N −δN,

dD
dt = δN −µD,

(1)

where b is the birth rate, δ is the mortality rate of people in the US during the year
2020, K is the limiting capacity of humans in the US, and µ is the rate at which dead
bodies decompose.
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Table 1. Parameters, base values, and sources.
Constant Parameter Value Citation
β Transmission rate 0.35 per day [18]
b Birth rate 0.000065753 per day [2]
δ Mortality rate 0.00003562 per day [2]
µ Decomposition rate of a human body 0.00595 per day [6]
K Population capacity 4,672,507,360 people Section 2.2
γ Zombie death rate 0.01 corpses per day [7]

2.1.2 The Zombie Equation
The zombie equation. We also consider a third compartment that tracks the number of
humans that have been turned into zombies (Z). This compartment is governed by the
differential equation,

dZ
dt

=
β

K
NZ − γZ, (2)

where γ is the zombie death rate, and β is the transmission rate of zombism. Note, it is
assumed that zombies that are killed, cannot rise again.

2.1.3 The Extended System
The extended system is a combination of the resident system and the zombie equation.
The equations are linked by including a transmission rate to capture the spread of
zombism and a mortality rate that reflects patient zero naturally rising from the dead.
As is common in the analysis of traits [10], we assume that the transmission rate is a
function of virulence, specifically the mortality rate. Altogether, this yields an S− I− I
type model

dN
dt = b(1− N

K )N −δN − β (δ )
K DN −δMN − β (δM)

K ZN,

dD
dt = (δ + β (δ )

K D)N −µD,

dZ
dt = (δM + β (δM)

K Z)N − γZ,

(3)

In addition, we assume when δ = 1/77/365 day−1 that β (δ ) = 0 day−1 because
natural death is not transmittable, and that δM is the trait value of death that leads to
zombism.

2.2 Parameter Estimation
We estimated the population capacity, K, from publicly available data [2], and deter-
mined the value of transmission rate, β , based on the spread of zombie outbreaks from
the literature [18]. In addition, we also obtained γ from the literature [7]. Details of
model parameters, including values and their sources are available in Table 1.

2.2.1 Population Capacity
To estimate the population capacity K in the US, we applied linear regression using a
least-squares method. This method used the population of the US from 1960, 1980,
2000, and 2020 [2] (Figure 1), using the average lifespan of a person within the US,
77 years [22], in conjunction with predictions of the US population from the resident
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model (Figure 2). Through this procedure, the K value that had the least-squares error
is K = 558,075,379.

Figure 1: Square error of resident model from United States population. The square
error for estimating K for the predictions of the resident model and US population data
for the given value of population capacity.

Figure 2: Resident model vs US population. The resident model with K = 558,075,379
(red line) and the US population from 1960 to 2020 (black points).

2.3 Equilibria and Stability Analysis of the Resident Model
Here, we determine equilibria of the resident model and apply stability analysis to
evaluate its long-term behavior. We evaluated the Jacobian at the non-extinction and
extinction equilibria to determine the long-term behavior of the resident system, as
characterized by its eigenvalues.
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To begin, the the non-extinction equilibrium of system (1) is

N̂ = (1− δ

b
)K and D̂ =

δ

µ
(1− δ

b
)K (4)

Evaluating the Jacobian of system (1) at the this non-extinction equilibrium, we
have

Jres|N=(1− δ

b )K, D= δ
µ
(1− δ

b )K
=

(
−b+δ 0

δ −µ

)
(5)

which yields the eigenvalues of λ1 =−b+δ , and λ2 =−µ . Thus, the non-extinction
equilibrium is locally stable provided the death rate is lower than the birth rate, δ < b.
For the extinction equilibrium of (1), we have that Ñ = 0 and D̃ = 0. Thus, the Jacobian
of the system (1) when N = 0 and D = 0 simplifies to

Jres|N=0, D=0 =

(
b−δ 0

δ −µ

)
(6)

The associated eigenvalues are λ1 = b−δ , and λ2 =−µ . The extinction equilibrium
is thus locally stable when the death rate is greater than the birth rate, δ > b.

2.4 Analysis of Zombie Invasion and Evolution from the Dead

To determine whether zombies could biologically evolve and become the dominant
form of death, we extend the resident model to include a Zombie class, Z. We then
provide details of the Jacobian of the extended model to illustrate conditions that permit
zombies to invade a population and their potential evolution from the dead.

2.4.1 Conditions for a Zombie Invasion

For the extended system (3), when β (δ ) = 0 and δM = 0, we have the non-extinction
and zombie-free equilibrium

N̂ = (1− δ

b
)K, D̂ =

δ

µ
(1− δ

b
)K, and Ẑ = 0. (7)

The Jacobian of (3) at this equilibrium is

J|N=(1− δ

b )K, D= δ
µ
(1− δ

b )K, Z=0 =

 −b+δ 0 −β (δM)(1− δ

b )
δ −µ 0
0 0 β (δM)(1− δ

b )− γ

 . (8)

Thus, given λ1 = −b+ δ < 0,λ2 = −µ < 0, it follows that zombies cannot invade
provided

λ3 = β (δM)(1− δ

b
)− γ < 0, (9)

as natural death would be an evolutionary stable state [17].

2.4.2 Conditions that Prevent the Zombie Uprising

To examine the potential uprising of patient zero, we now consider the Jacobian of
the extended system for δm close, but not equal, to zero. Specifically, the Jacobian
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evaluated at N̂ = (1− δ

b )K, D̂ = δ

b

(
1− δ

b

)
, and Ẑ = 0 is

Jext |N=(1− δ

b )K, D= δ
µ
(1− δ

b )K, Z=0 =

 b
(

1− 2N̂
K

)
−δ −δM 0 −β (δM)N̂

K

δ −µ 0
δM 0 β (δM)β (δM)N̂

K − γ

 .

(10)
It follows that the eigenvalues are:
λ1(δ ,δM) =−µ,

λ2(δ ,δM) =
1
2

(
(1− δ

b
)β (δM)−b+δ −δM − γ+√

(1− δ

b
)β (δM)2 +2(1− δ

b
)(b− γ −δM −δ )β (δM)+(δM −δ − γ +b)2

)
,

λ3(δ ,δM) =
1
2

(
(1− δ

b
)β (δM)−b+δ −δM − γ−√

(1− δ

b
)β (δM)2 +2(1− δ

b
)(b− γ −δM −δ )β (δM)+(δM −δ − γ +b)2

)
.

(11)
Thus, for the zombie-free equilibrium to be an evolutionary stable state [17], we
require

λ2(δ
∗,δ ∗

M)≥ λ2(δ
∗,δM) (12)

where δ ∗ = 1/77/365 day−1, and δM ≈ 0 day−1.
For values of δM close to 0, we have that

λ2(δ
∗,δM)≈ λ2(δ

∗,0)+
∂λ (δ ,0)

∂δM
(δM −0) (13)

where λ2(δ
∗,0) =−γ and ∂λ (δ ,δM)

∂δM
|δM=0 =

dβ (0)
dδM

(1− δ ∗
b ). Therefore, for δM close to

0, the zombie-free equilibrium is an evolutionary stable state provided
∂λ2(δ

∗,δM)

∂δM
|δM=0 = 0 ⇔ dβ (0)

dδM
= 0. (14)

and
∂ 2λ (δ ∗,δM)

∂ 2δM
|δM=0 < 0. (15)

2.5 Periodic Behavior

We now examine the potential for periodic behavior in the dynamics between humans
and zombies by means of Hopf bifurcation analysis.

To begin, we assume δM ≈ 0. Thus, the extended system has the non-extinction and
zombie endemic equilibria:

N̄ =
γ

β
K, D̄ =

γ

β

δ

µ
K, Z̄ =

(b−δ )β − γb
β 2 K. (16)

Rearranging the order of the system, computing the Jacobian and evaluating it at the
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non-extinction and zombie endemic equilibrium, we have that

JN=N̄, D=D̄, Z=Z̄ =

 −µ δ 0
0 b(1−2 2N̄

K )−δ − β

K Z̄ − β

K
0 β

K Z̄ β

K N̄ − γ

 (17)

It follows that the eigenvalues of JN=N̄,D=D̄,Z=Z̄ are

λ1 =−µ and λ2,3 =− γb
2β

± 1
2

√
( γb

β
)2 −4γ(b−δ − γb

β
). (18)

For periodic behavior to occur we require purely imaginary eigenvalues, and so γb
β
= 0.

If γ = 0 then λ2,3 = 0, which implies periodic behavior does not occur. If b = 0 then
λ2,3 =±

√
γδ . Thus, for δ ≥ 0 and γ ≥ 0 periodic behavior does not occur.

3 Results
To illustrate our predictions on the likelihood of a zombie apocalypse, and its effect
on human populations, we parameterized our model according to the demographics of
the US, and the zombie literature. Furthermore, to illustrate the potential outcomes for
humanity and zombies, we evaluate the trajectory of our model for β = 0.35 based on
the literature [18], in addition to β = 0.023 and β = 0.015 solely for the purposes of
illustrating the long-term behavior of the model through stability, evolutionary invasion
analysis, and Hopf-bifurcation analysis.

In the absence of zombies, the US population converges towards maximum capacity,
as nothing is hindering population growth. When zombies are included, the behav-
ior of the system depends critically on the values of β and δM . For instance, given
δM ≈ 0, the value of β must be greater than 0.023 for zombies to disrupt the stability
of the non-extinction equilibrium (Figure 4). Similarly, when β = 0.35 it is required
that δM < 0.1575 for zombies to be able to disrupt the stability of the non-extinction
equilibrium (Figure 3).

The phases of the extended model show the pattern the outbreak could take, depending
on how fast or slow zombies spread (Figure 6). For the zombie apocalypse to occur,
the β value must be greater than 0.023. A value of β less than 0.023 causes the non-
extinction and zombie endemic equilibrium to be unstable. For example, with a low
value of β , such as 0.015, the zombies die out and the humans converge to their carry-
ing capacity, K (Figure 5A, D, G). When β is slightly above 0.023, for example, 0.029,
the system approaches a non-extinction and zombie endemic equilibrium, implying
zombie and human populations end up coexisting (Figure 5B, E, H). For higher values
of β , such as 0.35, shows more frequent decreasing oscillations between human and
zombie populations, implying both populations will battle it out for dominance (Figure
5 C, F, I, and Figure 6).

To determine if the current form of death is an evolutionary stable state, we examine the
largest eigenvalue λ2(δ

∗,δ ∗
M) when δ ∗

M ≈ 0 (Figure 3). Specifically, for δM > δ ∗
M , we

have that λ2(δ
∗,δ ∗

M)> λ2(δ
∗,δM) (Figure 3). This means that natural death without

zombies is the dominant form of death for humans, which implies that zombies cannot
evolve from the dead.
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Figure 3: The change in the real part of the eigenvalues of the extended system with
respect to δM . The black dotted line corresponds to λ = 0, with the blue dashed
line being the eigenvalue −µ , and the red line with triangles and black solid line
representing the real parts of the eigenvalues λ2,3, respectively. When Re(λ )> 0 for
any eigenvalue, a zombie outbreak can occur.

Figure 4: The change in eigenvalues of the extended system with respect to β . The
value of λ1 =−µ is shown by the blue line with circles. The real part is represented by
the red line with triangles and black lines, respectively. The critical point on this graph
is where λ2 is greater than 0, which occurs when β ≈ 0.023 per day.
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Figure 5: Phase portraits of the extended model. From top to bottom, the rows have β

values of 0.015, 0.029, and 0.35. The first row shows what happens when the zombie
population dies off after initial infection as the US human population continues to grow
towards K. The second row results in an endemic equilibrium where each population
never reaches K, but never falls to 0. This leads to both species eventually coexisting
with one another. The third row illustrates more chaotic behavior as both populations
rise and dip over the years showing a constant struggle for survival.
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Figure 6: The trajectory of the extended model. The left, middle, and right columns
have β values of 0.015, 0.029, and 0.35, respectively. The top and bottom rows
correspond to plots of zombies vs. humans, and deaths vs. zombies, respectively.

4 Discussion
We analyzed a mathematical model using stability, evolutionary invasion, and Hopf-
bifurcation analyses to determine the long-term prognosis of the United States and
the likelihood of a potential zombie uprising. According to our model, the prognosis
of the United States remains positive, so long as its birth rate continues to exceed its
mortality rate, and no country imports any form of zombie infection. Importantly,
our evolutionary invasion analysis shows that an invasion is likely only possible if the
ratio of the zombie transmission rate to the zombie death rate is less than the ratio of
alive humans to alive and non-decayed dead humans. Unfortunately, if zombies can
invade the United States, our stability analysis shows that we would likely have to
learn to coexist with zombies, at least until some form of public health intervention is
implemented to eradicate them.

According to our results, zombie invasions are theoretically possible, provided a suffi-
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ciently large ratio of transmission rate to the zombie death rate. While achieving this
ratio is uncommon in nature, a single ant infected with zombie ant fungus can poten-
tially infect entire colonies by seeking elevated locations that promote transmission in
tropical climates, such as Brazil, Africa, and Thailand [4]. If a human zombie followed
such behavior, this suggests they would seek out a more densely populated area, which
would increase the chances of people being infected.

While our work focused on showing the theoretical conditions required for zombies
to evolve or invade the United States, there exist many potential future directions.
For instance, we could calibrate our model to the transmission cycle of zombie ant
fungus and ants to inform the dynamics of zombie evolution. Furthermore, we could
also generalize our model to account for additional traits, such as zombie speed
or intelligence, or additional zombification stages, such as latent or asymptomatic
infection, to gauge their effects on the likelihood of an uprising.

As with all mathematical models, our work has several limitations. To begin, there
is a lack of available and reliable data on zombie outbreaks, and our analysis hinged
on the functional form of the human mortality rate. Furthermore, research studies on
zombie evolution are limited, although recent trends in studying zombie ant fungus
are on the rise [23, 25]. Other important factors from our work include simplifying
assumptions on the demographics of zombies and humans alike. Specifically, people
with underlying health conditions, disabled people, the elderly, and the young would
likely be at high risk of becoming zombies, which could stand to influence the speed
that zombism transmits, and its capacity for invasion. Having stated this, the likely
advances in science and public health from a zombie outbreak would help to offset such
health inequalities, in addition to improving humanity’s ability to combat epidemics
and eradicate zombies.

Even though zombie ants exist, our main finding indicates human zombies are impos-
sible, from an evolutionary standpoint. Furthermore, upon a situation where human
zombies do rise, our work further highlights that the US would likely survive, either
by promoting conditions that discourage a zombie invasion or by learning to coexist
with zombies in some form of steady-state, at least until the time that medicine or some
massive public health intervention turns the tide in humanities’ favor.
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Abstract
We analyze sums of entries on diagonals of integer slope in Pascal’s triangle, obtain
a recurrence relation that these diagonal sums obey, and compute their generating
function. We use the generating function to approximate the exponential growth of the
diagonal sums.

1 Introduction
A question from a national high school math competition poses (problem 3, page 274
of [4]): how many subsets, d(n), of the integers in the interval 1 . . .n+ 1 have the
property that their least element coincides with their cardinality? Here is a solution: let
k ≥ 1 be the common value of the least element and cardinality of the subset. Then,
besides the least element, the subset must contain a choice of the remaining k−1 of the
n+1−k integers in the interval k+1 . . .n+1. So, the solution is d(n) = ∑k≥1

(n+1−k
k−1

)
.
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However, this sum can be changed to a more telling form. By the symmetry property
for binomial coefficients

(a
b

)
=
( a

a−b

)
, each d(n) is equivalent to ∑k≥1

( n+1−k
n+2−2k

)
. With

the substitution r = ⌊n/2⌋+ 1− k, we can change the subtraction in the binomial
coefficients to addition. So,

d(n) = ∑
r≥0

(
⌈ n

2⌉ + r
(−n) mod 2 + 2r

)
. (1)

d(0) = 1

d(1) = 1

d(2) = 2

d(3) = 3

d(4) = 5

d(5) = d(3)+d(4) = 8

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Figure 1: Sums of entries in Pascal’s triangle on diagonals of slope 2 in red and
intercepts in indigo. These sums coincide with the Fibonacci numbers. The triangle in
green indicates how the additive identity for Pascal’s triangle leads to the recurrence
relation for the d(n)’s.

The sums in Equation 1 are depicted in Figure 1 as diagonals in Pascal’s triangle,
where d(n) is the sum of the entries on the nth diagonal from the top. These diagonals
have a slope of 2 in the sense that if a diagonal passes through an entry in some row
and position, then the diagonal also passes through the entry in the next row whose
position is two more than the previous one. Each diagonal also has an intercept,
i.e., the entry in the uppermost row with non-negative position through which the
diagonal passes. The nth diagonal has an intercept at

( ⌈n/2⌉
(−n) mod 2

)
, meaning that the

uppermost row that the diagonal passes through is ⌈n/2⌉ and the position in this row is
(−n) mod 2. It is both well-known and easy to prove that the sequence ⟨d(n) : n ≥ 0⟩
coincides with the Fibonacci sequence beginning with two one’s: 1, 1, 2, 3, 5, 8,
13, . . . (see [5]). Each entry on a diagonal in Pascal’s triangle is the sum of the two
entries directly above it. Since these two entries lie on the two previous diagonals, then
d(n+2) = d(n)+d(n+1), which is the same recurrence relation that the Fibonacci
numbers satisfy.

The problem from this high school competition inspires many questions. What are
the sums of the entries on diagonals of slope greater than two? Are these sums on
steeper diagonals also famous sequences, like the Fibonacci sequence? The terms in
the Fibonacci sequence grow like powers of the golden ratio—what is the growth rate
of the sums on steeper diagonals?

The general question we consider here is to determine the sum of the entries on the nth

diagonal of slope h in Pascal’s triangle. We denote this sum by dh(n). Historically, sums
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of entries on diagonals of various slopes have already been considered, for instance,
in [1] and [2]. In fact, [1] even considers slopes with rational values and obtains
recurrence relations for these sums. However, we extend their analyses by computing
the generating function for the diagonal sums and then use the generating function to
approximate their exponential growth.

As a brief review, we highlight a couple basic properties of Pascal’s triangle. Pascal’s
triangle is depicted in a hexagonal lattice in a half-plane with a numerical entry in
each cell. The cells in the rows are indexed by integers, and the rows are indexed by
non-negative integers. The position of an entry in one row is the same as the entry to
the left in the row below. The entry in the rth position of the nth row coincides with
the binomial coefficient

(n
r

)
. If 0 ≤ r ≤ n, then

(n
r

)
is positive. Otherwise, it is zero for

r < 0 or r > n. The additive identity asserts that
(n

r

)
is the sum of the entries in the row

above to the left
(n−1

r−1

)
and right

(n−1
r

)
.

To be definitive, we say a diagonal in Pascal’s triangle is a line which passes through
entries in the triangle. For a diagonal to have slope h means that if the diagonal passes
through

(a
b

)
in one row, then it also passes through

(a+1
b+h

)
in the next row. We say the

intercept of a diagonal is the uppermost row and the non-negative position in this row
which the diagonal passes through. Thus, if a ≥ 0 and 0 ≤ b < h, then ∑r≥0

( a+r
b+hr

)
represents the sum of the entries on the diagonal in Pascal’s triangle with slope h and
intercept

(a
b

)
. Diagonals are enumerated from the top down. So, if the diagonal through

an entry has index n, then the diagonal through the entry to the left in the same row
has index n+1, and the diagonal through the entry to the left in the next row has index
n+h. There are h diagonals of slope h with intercepts in each row, except for the top
row which just has a single intercept.

2 Diagonals of Slope Three

d3(0) = 1
d3(1) = 0

d3(2) = 1
d3(3) = 1

d3(4) = 1
d3(5) = 2

d3(6) = 2
d3(7) = 3

d3(8) = 4
d3(9) = 5

d3(10) = d3(7)+d3(8) = 7

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Figure 2: Pascal’s triangle with sums of diagonals of slope 3 in red and intercepts in
indigo. The sums of the diagonals coincide with the Padovan numbers. The triangle
in green shows how the additive identity for Pascal’s triangle leads to the recurrence
relation for the d3(n)’s
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Now let’s consider diagonals of slope 3 in Pascal’s triangle, as depicted in Figure 2. Let
d3(n) denote the sum of the entries on the nth diagonal of slope 3. Note that the initial
diagonal for n = 0 goes through the apex of Pascal’s triangle, and so d3(0) = 1, but
the next diagonal for n = 1 only passes through the intercept at

(1
2

)
, and so d3(1) = 0.

In general, the intercepts of diagonals snake through the first three positions of each
row from right to left, except for the top row which only includes one position. So, the
intercept of the nth diagonal goes through row ⌈n/3⌉ at position (−n) mod 3. Since
the slope of each diagonal is 3, the position of each entry on a diagonal is three more
than the previous row. Therefore, the sum of the entries on the nth diagonal of slope 3
is

d3(n) = ∑
r≥0

(
⌈ n

3⌉ + r
(−n) mod 3 + 3r

)
.

The sums of the diagonals of slope 3 coincide with the so-called Padovan sequence
⟨pn : n ≥ 0⟩ = 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, . . . . The Padovan sequence
satisfies the recurrence relation pn+3 = pn + pn+1 for all n ≥ 0, and the terms pn in
the Padovan sequence grow asymptotically as αrn, where r ≈ 1.3247 is the real root
of the polynomial x3 − x−1 and α = 1/(2r+3) (see [6]). The fact that the sequence
⟨d3(n) : n ≥ 0⟩ of diagonals of slope 3 satisfies the same recurrence relation is a
direct consequence of the additive identity for Pascal’s triangle

(a+1
b

)
=
( a

b−1

)
+
(a

b

)
.

Suppose the diagonal that passes through entry
(a

b

)
has index n. Then the diagonal

that passes through the entry immediately to the left
( a

b−1

)
has index n+ 1, and the

diagonal that passes through the entry
(a+1

b

)
to the left in the row below has index

n+ 3. Since the additive identity holds uniformly for all entries on these diagonals,
then d3(n+3) = d3(n)+d3(n+1).

3 Diagonals of Integer Slope

h intercepts

0 dh(0) = 11
dh(1) = 0 . . .h−2

dh(h−2) = 0h−1
dh(h−1) = 1

n

dh(n)

n+1

dh(n+1)
n+h

dh(n+h) = dh(n)+dh(n+1)

Figure 3: The first rows of Pascal’s triangle with sums of diagonals of integer slope h
in red and intercepts in indigo. The triangle in green shows how the additive identity
for Pascal’s triangle leads to the recurrence relation for the dh(n)’s.
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For the general case, we consider diagonals of integer slope h in Pascal’s triangle,
enumerated from the top down. We denote the sum of the entries on the nth diagonal
of slope h by dh(n). Figure 3 displays these diagonals. Note that the initial diagonal
for n = 0 goes through the apex of Pascal’s triangle, and so dh(0) = 1, but the next
diagonals for n = 1 . . .h−2 have intercepts at

(1
r

)
in the first row with r > 1, and so

dh(1) = · · · = dh(h− 2) = 0. The diagonal of index h− 1 only passes through the
intercept at

(1
1

)
, and so dh(h−1) = 1. Together, these give the initial conditions

dh(0) = 1, dh(1) = · · ·= dh(h−2) = 0, dh(h−1) = 1. (2)

The intercepts of the remaining diagonals continue to snake through the first h positions
of each row from right to left. Therefore, the row of the intercept of the nth diagonal is
⌈n/h⌉, and its position in this row is (−n) mod h. The position of each entry in a row
on the nth diagonal is h more than the previous row. Therefore,

dh(n) = ∑
r≥0

(
⌈ n

h⌉ + r
(−n) mod h + hr

)
.

This is an explicit representation of dh(n) as a sum. For the purposes of approximation,
however, it is more useful to have a recursive representation. A recurrence relation
for the dh(n)’s is a direct consequence of the additive identity for Pascal’s triangle
that

(a+1
b

)
=
( a

b−1

)
+
(a

b

)
. Suppose the nth diagonal of slope h passes through entry(a

b

)
. Then, the diagonal that passes through the entry immediately to the left

( a
b−1

)
has

index n+1, and the diagonal that passes through the entry in the next row to the left(a+1
b

)
has index n+h. Since the additive identity holds uniformly for all entries on the

diagonals, then

dh(n+h) = dh(n)+dh(n+1), for all n ≥ 0. (3)

This recurrence relation is linear, has constant coefficients, and is of degree h. We
obtain an asymptotic approximation for dh(n) in the Section 5. Figure 4 shows a graph
of the logarithm of dh(n) for h = 20 and n = 1 . . .1200, based on Equation 3. This
graph prominently shows damped oscillations of period h, but modulo these oscillations
the graph shows simple exponential growth for the diagonal sums.

4 Generating Function
An often-used tool for analyzing combinatorial sequences is the generating function.
The ordinary generating function of the sequence ⟨an : n ≥ 0⟩ is ∑n≥0 anxn. It can be
thought of as a formal power series or, wherever it converges, a function of complex
numbers. Wilf in section 1.2 of [3] gives a five-step method for converting a recurrence
relation describing a sequence to its generating function: clarify the set of valid
values of the free variable in the recurrence relation, name the generating function,
multiply each instance of the recurrence by an appropriate power of the variable
of the generating function and sum over the valid values, express both sides of the
resulting equation in terms of the generating function, and finally solve the resulting
equation for the generating function. The initial conditions in Equation 2 give the
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values of dh(n) for n = 0 . . .h−1, and the general recurrence relation in Equation 3
determines all the rest of the values for n ≥ h. We define the generating function
Dh(x) = ∑n≥0 dh(n)xn. Multiplying each term in the initial conditions of Equation 2
and recurrence relation of Equation 3 by the corresponding power of x and summing,
we get (Dh(x)− 1− xh−1)/xh = Dh(x)+ (Dh(x)− 1)/x. Solving for the generating
function results in an amazingly simple expression:

Dh(x) =
1

1− xh−1 − xh . (4)

5 Approximation of Sums
The generating function in Equation 4 for the sequence ⟨dh(n) : n ≥ 0⟩ is first and
foremost a rational function, i.e., a ratio of polynomials. In this case the rational
function has a numerator f (x) = 1 and denominator g(x) = 1− xh−1 − xh. Using basic
tools of calculus, it is straightforward to approximate the exponential growth of any
sequence whose generating function is rational. The first step is to determine the partial
fraction decomposition of the generating function. Let Rh denote the collection of roots
of the denominator g(x). Since g(x) and its derivative g′(x) =−xh−2(h−1+hx) have
no common roots, then none of the roots of g(x) are repeated. So, the partial fraction
decomposition of the generating function has the form

Dh(x) = ∑
r∈Rh

ar

x− r
,

where ar =
f (r)

g′(r) . Each term in the partial fraction decomposition represents a geometric
series, as follows:

ar

x− r
=− ar

r(1− x
r )

=−ar

r ∑
m≥0

xm

rm

We can extract the coefficient of each term of the decomposition with the coefficient ex-
traction operator. By definition, if f (x) = ∑n≥0 anxn, then [xn] f (x) = an. Then,

[xn]Dh(x)

= ∑r∈Rh
[xn]∑m≥0− ar

r
xm

rm

= ∑r∈Rh
− f (r)

rg′(r) r−n.

(5)

The terms with the largest contribution to dh(n) in Equation 5 are the ones whose
roots have the smallest modulus. In this case, we will shortly see that there is a single
real root r̃ of g(x) with the smallest modulus, and this root is called the dominant
singularity of the generating function. The exponential growth approximation for dh(n)
concentrates solely on this singularity, that is,

dh(n)≈− f (r̃)
r̃g′(r̃)

r̃−n. (6)

To find the dominant singularity, first consider the case when the slope h of the
diagonals is even. When g(x) = 1− xh−1 − xh is graphed on the real line, we see
that g(−∞) = g(∞) = −∞, g(−1) = g(0) = 1, and g(1) = −1. Because of the sign
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changes, there are real roots in the intervals (−∞,−1) and (0,1). Since the derivative
g′(x) = −xh−2(h− 1+ hx) > 0 iff x < − h−1

h , then these are the only real roots. To
see that r̃ has a smaller modulus than any of the complex roots, note that if |z| < r̃,
then |zh + zh−1| ≤ |zh|+ |zh−1| < r̃h + r̃h−1 = 1, excluding the possibility that such
z’s could be a root of g. So, the dominant singularity r̃ of this generating function
must be the real root in the interval (0,1). By a similar analysis, when h is odd, the
dominant singularity is still in (0,1). For h ≥ 5, it is impossible to express r̃ in terms
of radicals. However, it is easy to approximate for large values of h. If h is large, then
h− 1 and h are both nearly equal to h− 1/2, and so g(x) ≈ 1− 2xh−1/2. Therefore,
the dominant singularity is approximately r̃ ≈ 2−1/(h−1/2). At this value, f (r̃) = 1 and
g′(r̃)≈−h+1/2. Plugging in these values into Equation 6 results in

dh(n)≈
1

h−1/2
2

n+1
h−1/2 (7)

The graph of the logarithm of this approximation appears as a line in Figure 4 and shows
close agreement to the graph of the logarithm of dh(n). However, it is inherent that since
only an approximation was used for the dominant singularity, then this approximating
line must eventually diverge from the exact values. Of course, the exponential growth
in Equation 7 does not account for the oscillations that are prominent in the graph of
dh(n) in Figure 4. These oscillations are the result of the complex roots in the partial
fractions decomposition of the generating function and will be the object of further
study.

200 400 600 800 1000 1200
0

10

20

30

40

Logarithms of
diagonal sums

logd20(n)

Diagonal indices n

Figure 4: A graph of the logarithms of the sums of the entries on the first 1200
diagonals with slope h = 20 in Pascal’s triangle, along with the linear approximation
from Equation 7.
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Abstract
A known characterization for entire functions that preserve all nonnegative matrices of
order two is shown to characterize polynomials that preserve nonnegative matrices of
order two. Equivalent conditions are derived and used to prove that P3 ⊂ P2, which
was previously unknown. A new characterization is given for polynomials that preserve
nonnegative circulant matrices of order two.

1 Introduction
In 1979, Loewy and London [3] posed the problem of characterizing

Pn := {p ∈ C[x] | p(A)≥ 0,∀A ∈Mn(R),A ≥ 0} ,
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for every positive integer n. In particular, and for practical purposes, necessary and
sufficient conditions are sought in terms of the coefficients of the polynomials belonging
to Pn.

The characterization of P1 is known as the Pólya–Szegö theorem (see, e.g., Powers
and Reznick [5, Proposition 2]), which asserts that p ∈ P1 if and only if

p(x) =
(

f1(x)2 + f2(x)2)+ x
(
g1(x)2 +g2(x)2) .

Bharali and Holtz [1] gave partial results for the set
Fn := { f entire | f (A)≥ 0,∀A ∈Mn(R),A ≥ 0} ⊃ Pn

and characterized entire functions that preserve certain structured nonnegative matrices,
including upper-triangular matrices and circulant matrices. In addition, they gave
necessary and sufficient conditions for an entire function f to belong to F2. Specifically,
they showed that an entire function f belongs to F2 if and only if

f (x+ y)− f (x− y)≥ 0, ∀x,y ≥ 0, (1)
and

(x+ y− z) f (x− y)+(z− x+ y) f (x+ y)≥ 0, ∀x ≥ z ≥ 0,y ≥ x− z, (2)

or, equivalently, if f satisfies (1) and
(x+ y) f (x− y)+(y− x) f (x+ y)≥ 0, ∀y ≥ x ≥ 0. (3)

More recently, Clark and Paparella [2] gave partial results for Pn in terms of the
coefficients of the polynomials in Pn. While it is known that Pn+1 ⊆ Pn, ∀n ∈ N,
Clark and Paparella proved that P2 ⊂ P1 and conjectured that Pn+1 ⊂ Pn, ∀n ∈
N.

In this work, it is shown that the characterization for F2 established by Bharali and
Holtz also characterizes P2. Our demonstration, which utilizes the definition of matrix
function via Jordan canonical form, directly establishes that (1) and (3) are necessary
and sufficient whereas Bharali and Holtz establish (1) and (2) (via the definition of
matrix function via interpolating polynomial) and proceed to show that (2) is equivalent
to (3). Equivalent conditions are derived for (1) that are used to prove that P3 ⊂ P2,
which was previously unknown. A new characterization is given for polynomials that
preserve nonnegative circulant matrices of order two.

2 Notation and Background
The set of m-by-n matrices with entries from a field F is denoted by Mm×n(F). If
m = n, then Mm×n(F) is abbreviated to Mn(F). The set of all n-by-1 column vectors
is identified with the set of all ordered n-tuples with entries in F and thus denoted by
Fn.

If A ∈Mn(F), then ai j denotes the (i, j)-entry of A. If F = R and ai j ≥ 0 (ai j > 0),
1 ≤ i, j ≤ n, then A is called nonnegative (respectively, positive) and this is denoted by
A ≥ 0 (respectively, A > 0).
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Unless otherwise stated,

p(x) =
m

∑
k=0

akxk ∈ C[x],

where am ̸= 0. If n is a positive integer less than or equal to m, then the coefficients
a0,a1, . . . ,an−1 are called the first n terms of p and the coefficients am−n+1, . . . ,am−1,am
are called the last n terms of p.

3 Basic Observations
Lemma 1. If D is a positive diagonal matrix, then p(A)≥ 0 if and only if p(D−1AD)≥
0.

Proof. The result follows immediately by observing that p(D−1AD) = D−1 p(A)D.

Lemma 2. If P is a permutation matrix, then p(A)≥ 0 if and only if p(P⊤AP)≥ 0.

Proof. Similar to the proof of Lemma 1.

We briefly digress to present the following result which, to the best of our knowledge,
has not previously been addressed in the literature.

Theorem 3. If p ∈ P1, then ak ∈ R, ∀k ∈ {0,1, . . . ,m}.

Proof. It is known that if f is an analytic function defined on a self-conjugate domain
D ⊆ C (i.e., D is symmetric with respect to the real-axis in the complex-plane) and
f (x) ∈R, ∀x ∈ I := D ∩R, then f (k)(x) ∈R, ∀x ∈ I (see, e.g., Paparella [4, Lemma
4.7]). In particular, p(k)(x) ∈ R, ∀x ≥ 0. The result follows by noting that ak =
p(k)(0)/k! ∈ R.

Corollary 4. If p ∈ Pn, then ak ∈ R, ∀k ∈ {0,1, . . . ,m}.

Proof. Since Pn+1 ⊆ Pn, ∀n ∈ N [1, Lemma 1], it follows that p ∈ P1. The result is
now immediate from Theorem 3.

4 A Characterization of P2

Lemma 5. Let A ∈M2(R) and suppose that A > 0. If σ(A) = {ρ,µ}, with ρ > |µ|,
then A is similar to a matrix of the form

1
1+α

[
αρ +µ ρ −µ

α(ρ −µ) αµ +ρ

]
,

where α > 0.

Proof. By the Perron–Frobenius theorem for positive matrices, there is a positive vector
x such that Ax = ρx. If D = diag(x1,x2), then the positive matrix

B := D−1AD
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has row sums equal to ρ . Thus, there is an invertible matrix Ŝ =

[
1 â
1 b̂

]
such that

B = Ŝ
[

ρ 0
0 µ

]
Ŝ−1.

Notice that â ̸= 0 and b̂ ̸= 0: for contradiction, if â = 0, then

B
[

0
b̂

]
= µ

[
0
b̂

]
,

but

B
[

0
b̂

]
= b̂

[
b12
b22

]
.

Thus, b12 = 0, but this is a contradiction since B> 0. A similar calculation demonstrates
that b̂ ̸= 0.

If

S := Ŝ
[

1 0
0 1/â

]
=

[
1 1
1 a

]
,

where a = b̂/â, then

B = S
[

ρ 0
0 µ

]
S−1.

Furthermore, a < 0 (otherwise,

B =
1

1−a

[
aρ −µ µ −ρ

a(ρ −µ) aµ −ρ

]
and b12 < 0). Thus,

S =

[
1 1
1 −α

]
, α > 0,

and

B =
1

1+α

[
αρ +µ ρ −µ

α(ρ −µ) αµ +ρ

]
, (4)

as desired.

To simplify the main result, we rely on the following result [1, Lemma 4].

Lemma 6. If p ∈ R[x], then p ∈ Pn if and only if p(A)≥ 0 whenever A > 0.

Proof. Follows from the continuity of p and the fact that the set of positive matrices of
order n is dense in the set of all nonnegative matrices of order n.

Theorem 7 (cf. [1, Theorem 13]). If p ∈ R[x], then p ∈ P2 if and only if

p(ρ)≥ |p(µ)|, ∀ρ,µ ∈ R,ρ ≥ |µ| (5)
and

ρ p(−µ)+µ p(ρ)≥ 0, (6)

whenever 0 < µ ≤ ρ .
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Proof. If p ∈ P2, then the necessity of (5) follows by noting that if

A :=
1
2

[
ρ +µ ρ −µ

ρ −µ ρ +µ

]
≥ 0, (7)

with ρ ≥ |µ|, then

p(A) =
1
2

[
p(ρ)+ p(µ) p(ρ)− p(µ)
p(ρ)− p(µ) p(ρ)+ p(µ)

]
≥ 0. (8)

Let ρ and µ be real numbers such that 0 < µ ≤ ρ . If

A :=
[

0 ρ

µ ρ −µ

]
≥ 0

then

A =

[
ρ 1
−µ 1

][
−µ 0
0 ρ

][
ρ 1
−µ 1

]−1

=
1

ρ +µ

[
ρ 1
−µ 1

][
−µ 0
0 ρ

][
1 −1
µ ρ

]
,

and

p(A) =
1

ρ +µ

[
ρ p(−µ)+µ p(ρ) ρ(p(ρ)− p(−µ))
µ(p(ρ)− p(−µ)) ρ p(ρ)+µ p(−µ)

]
≥ 0.

i.e., p satisfies (6).

Conversely, suppose that p satisfies (5) and (6). In view of Lemma 6, it suffices to
show that p maps positive matrices of order two to nonnegative matrices of order two.
To this end, suppose that A is a positive matrix of order two with spectrum {ρ,µ}.
Without loss of generality, assume that ρ > |µ|.

By Lemma 5, A is similar to a matrix of the form

B =
1

1+α

[
αρ +µ ρ −µ

α(ρ −µ) αµ +ρ

]
,

where α > 0. In view of Lemmas 1 and 2, it suffices to show that p(B)≥ 0. By (4),
notice that

p(B) = Sp(D)S−1 =
1

1+α

[
α p(ρ)+ p(µ) p(ρ)− p(µ)

α(p(ρ)− p(µ)) α p(µ)+ p(ρ)

]
.

Since p satisfies (5), it follows that p ∈ P1. Thus, p(B)≥ 0 whenever µ ≥ 0.

If µ < 0, then, since B > 0, it follows that α >−µ/ρ = |µ|/ρ . Thus,

α p(ρ)+ p(µ)>
|µ|
ρ

p(ρ)+ p(−|µ|) = |µ|p(ρ)+ρ p(−|µ|)
ρ

≥ 0

by (6). The remaining entries of p(B) are nonnegative by (5).

5 Equivalent Conditions for P2

Proposition 8. If p ∈ R[x], then

p(x)≥ |p(y)|, ∀x,y ∈ R,x ≥ |y| (9)
if and only if

p′ ∈ P1 (10)
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and
p(x)≥ |p(−x)|, ∀x ≥ 0. (11)

Proof. First, note that p ∈ P1 whenever p satisfies (9) or (11).

If (9) holds, then (11) clearly holds. To demonstrate (10), for contradiction, let x ≥ 0
and h > 0. By (9), p(x+h)≥ |p(x)| ≥ p(x). Hence, p(x+h)− p(x)≥ 0. Dividing by
h and letting h → 0+ shows that p′ ∈ P1.

Assume that a,b ∈ R, with a ≥ |b|. By assumption, p′ ∈ P1 and so p is increasing on
[0,∞). Using this and (11), we obtain p(a)≥ p(|b|)≥ |p(b)|.

Recall that if f : C−→ C, then

fe(x) :=
f (x)+ f (−x)

2
is called the even-part of f and

fo(x) :=
f (x)− f (−x)

2
is called the odd-part of f .

Proposition 9. If p : C−→ C, then p satisfies (11) if and only if pe, po ∈ P1.

Proof. Notice that

pe, po ∈ P1 ⇐⇒ p(x)+ p(−x)
2

≥ 0 and
p(x)− p(−x)

2
≥ 0, ∀x ≥ 0

⇐⇒ p(x)+ p(−x)≥ 0 and p(x)− p(−x)≥ 0, ∀x ≥ 0
⇐⇒ p(x)≥ |p(−x)|, ∀x ≥ 0.

Theorem 10. Conditions (5) and (6) are independent.

Proof. If p(x) = x5 −2x3 +2x, ρ = 1, and µ = .5, then
ρ p(−µ)+µ p(ρ) =−0.78125 < 0,

i.e., p does not satisfy equation (6).

Clearly, pe ∈ P1 since pe(x) = 0. Since

p′(x) = 5x4 −6x2 +2 = 5
(

x2 − 3
5

)2

+
1
5

and
po(x) = p(x) = x((x2 −1)2 +12),

it follows that p′, po ∈ P1. Thus, p satisfies (5) by Propositions 8 and 9.

If p(x) =−x, then p does not satisfy (5). If 0 < µ ≤ ρ , then
ρ p(−µ)+µ p(ρ) = ρµ −ρµ = 0,

i.e., p satisfies (6).

Theorem 11. If p ∈ R[x], then p ∈ P2 if and only if p′, pe, po ∈ P1 and p satisfies
(6).
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Proof. Immediate from Theorem 7 and Propositions 8 and 9.

Remark 12. The preceding arguments also apply to entire functions; as such, f ∈ F2
if and only if f ′, fe, fo ∈ P1 and f satisfies (6).

Proposition 13. If p is a polynomial such that po satisfies (6) and pe ∈ P1, then p
satisfies (6).

Proof. The result follows with the observation that
µ p(ρ)+ρ p(−µ) = µ(pe(ρ)+ po(ρ))+ρ(pe(−µ)+ po(−µ))

= (µ pe(ρ)+ρ pe(µ))+(µ po(ρ)+ρ po(−µ)) ,

which is nonnegative by the hypotheses.

Clark and Paparella [2, Conjecture 5.2] conjectured that Pn+1 ⊂ Pn, ∀n ∈ N and
showed that P2 ⊂ P1. The following result settles the conjecture when n = 2.

Theorem 14. P3 ⊂ P2.

Proof. Consider the polynomial p(x) = x4 − x2 + x+1. It is known that if

p(x) =
m

∑
k=0

akxk ∈ Pn, am ̸= 0,

and m≥ n−1, then ak ≥ 0, ∀k ∈ {0,1, . . . ,n−1} (see Bharali and Holtz [1, Proposition
2] or Clark and Paparella [Corollary 4.2][2]). Thus, p /∈ P3.

Since po(x) = x, it is clear that po ∈ P1. Notice that p′, pe ∈ P1 since
p′(x) = 4x3 −2x2 +1 = x[(2x−1)2 +12]+ [(2x−1)2 +02]

and

pe(x) = x4 − x2 +1 =

(
x2 − 1

2

)2

+
3
4
.

We also have that po satisfies (6) since
ρ po(−µ)+µ po(ρ) =−ρµ +µρ = 0.

By Proposition 13, p satisfies (6). Thus, p ∈ P2 by Theorem 11.

We conclude by providing a novel characterization for polynomials that preserve all
nonnegative circulant matrices or order two. If

A =

[
a b
b a

]
=

1
2

[
(a+b)+(a−b) (a+b)− (a−b)
(a+b)− (a−b) (a+b)+(a−b)

]
, (12)

then by (7) and (8)

p(A) =
1
2

[
p(ρ)+ p(µ) p(ρ)− p(µ)
p(ρ)− p(µ) p(ρ)+ p(µ)

]
≥ 0,

where ρ = a+b and µ = a−b. We immediately obtain the following result.

Theorem 15 (cf. [1, Theorem 10]). If p ∈ R[x], then p preserves all two-by-two
nonnegative circulant matrices of the form (12) if and only if p′, pe, po ∈ P1.
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Abstract

Consider a polygon P ⊂ R2 and a positive real number t. The action of dilating (or
shrinking) P by a factor of t is equivalent to dilating (or shrinking) each side of P by t,
while preserving the unit normal vectors to the edges. A possible variation to this task
is to consider elongating or shortening each side of P by t, also keeping the unit normal
vectors intact. It is not clear a priori that such a task can always be accomplished. The
current work addresses this adaptation and draws a connection with Viviani’s theorem
and equiangular polygons. The main purpose of the paper is to highlight a famous
theorem of Minkowski from convex geometry that makes this connection possible and
gives a generalization to higher dimensions.
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1 Introduction
Let P be a regular polygon of side length s. Then, dilating P by a factor t > 1 is the
same as adding (t−1)s to each edge, and shrinking P by a factor of t < 1 is the same as
subtracting (1− t)s from each edge. Take the square S of edge length 3 as an example.
For t = 2, the square 2S has edge length 6 = 3+(2−1)(3) and for t = 1

3 , the square
1
3 S has edge length 1 = 3− (1− 1

3 )(3).

It is not hard to see that the two problems are generally equivalent in the case of regular
polygons. What happens when P is not regular? If P is the trapezoid with side lengths
5,5,5,11, then it is impossible to add a real number t to each of the sides while keeping
the edge normal vectors intact (the reader is encouraged to try it on their own).

To this end, we aim at connecting two seemingly unrelated theorems from differents
historical eras of mathematics: Viviani’s theorem and Minkowski’s theorem. The
former dates back to the mid 17-th century; it asserts that no matter where you place a
point inside a regular polygon, the sum of the distances from the point to the sides of
the polygon remains constant. The latter is due to Hermann Minkowski from the early
1900’s; it states that every polygon (or polytope in general) is uniquely determined, up
to translation, by the directions and measures of its sides (or facets in general).

2 Viviani’s Theorem
Viviani’s theorem states that the sum of the distances from any interior point to the
sides of an equilateral triangle is independent of the position of the point. In particular,
this sum is equal to the length of the height of the triangle.

Figure 1: Equilateral Triangle ABC with an interior point P

There are many proofs and generalizations of Viviani’s theorem in the literature. We
survey some of them below and provide two additional elementary proofs as well.
Historically, the problem of finding the Fermat point of the vertices A,B,C of a triangle
ABC, i.e., the point that minimizes the sum of the distances to the vertices, was first
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proposed by Fermat in a private letter to Torricelli. Torricelli solved the problem and
his solution was published by his student Viviani in 1659. The solution uses the fact
that the sum of the distances from any point inside an equilateral triangle to its sides is
constant, which is commonly known today as Viviani’s theorem.

Viviani’s original proof [8] (Appendix, pp. 143-150) uses areas as follows. Let ABC be
an equilaterial triangle of side length s and height length h. Let P be an interior point.
The area of the triangle ABC

(
sh
2

)
is equal to the sum of the areas of the triangles ABP,

BPC, and CPA. Since AB = AC = BC = s, then we conclude that PJ +PI +PK = h
(see Figure 1). In fact, Viviani proved a bit more, namely that the sum of the distances
from any point inside a regular polygon to its sides is constant, and is less than the sum
from any point outside the regular polygon.

Using rotations of smaller triangles inside the equilateral triangle, Kawasaki [6] proved
Viviani’s theorem as illustrated in Figure 2.

Chen and Liang [3] proved the converse of Viviani’s theorem: if the sum of the
distances from an interior point of a triangle to its sides is independent of the location
of the point, then the triangle is equilateral. Moreover, they showed that the sum of the
distances from an interior point to the sides of a quadrilateral is constant if and only if
the quadrilateral is a parallelogram.

The area method highlighted in Viviani’s original proof can be extended to show that
the theorem holds for all regular polygons as well. Likewise, by a volume argument,
a similar result holds for regular polyhedra in R3: the sum of the distances from any
point inside a regular polyhedron to its faces is independent of the location of the
point.

Abboud [1] defines a polygon to have the constant Viviani sum (CVS) property if the
sum of the distances from any interior point to the sides of the polygon is constant.
He then shows that a necessary and sufficient condition for a convex polygon to have
such property is the existence of three non-collinear interior points with equal sums of
distances. His proof relies on ideas from linear programming.

Figure 2: Kawasaki’s proof using rotations [6].

We conclude this section with two new proofs of Viviani’s theorem, based on simple
geometric arguments.
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First Proof. With the notation set above, recall that the normal vectors to the edges of
the equilateral triangle ABC satisfy

−→u +−→v +−→w =
−→
0 . (1)

After taking the dot product with the vector
−→
PA, we get:
−→
PA.(−→u +−→v +−→w ) =

−→
PA.

−→
0

−→
PA.−→u +

−→
PA.−→v +

−→
PA.−→w = 0

PK +PA
(

cos
(2π

3
+∠APK

))
+PJ = 0

PK +PA
(
− 1

2
cos∠APK −

√
3

2
sin∠APK

)
+PJ = 0

PK − 1
2

PAcos∠APK −
√

3
2

PAsin∠APK +PJ = 0

PK − 1
2

PK −
√

3
2

AK +PJ = 0.

This leads to the following result

1
2

PK +PJ−
√

3
2

AK = 0. (2)

Similarly, multiplying Equation (1) by the vector
−→
PC, we obtain

1
2

PK +PI −
√

3
2

CK = 0. (3)

Finally, adding Equations (2) and (3), we get

1
2

PK +PJ−
√

3
2

AK +
1
2

PK +PI −
√

3
2

CK = 0

PK +PJ+PI =

√
3

2
(AK +CK)

PK +PJ+PI =

√
3

2
AC

PK +PJ+PI = h.

Next we embed Figure 1 in cartesian coordinates and provide yet another proof of
Viviani’s theorem.

Second Proof. Without loss of generality, we may assume that B(0,0) and C(s,0)
for some positive real number s. Since ABC is an equilateral triangle, the point A
has coordinates

(
s
2 ,

s
√

3
2

)
and the line segments BC, AB, AC have equations y = 0,

√
3x − y = 0,

√
3x + y −

√
3s = 0, respectively. Let P(x,y) be a point inside the

triangle ABC. Using the formula for the distance from a point to a line, we get
PI = y, PK = −

√
3x−y+

√
3s

2 , and PJ =
√

3x−y
2 . Adding the three lengths together leads

to PK +PJ+PI =
√

3
2 s = h.

As a side note, we mention a remarkable application of Viviani’s theorem in chemistry.
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Consider a mixture of three chemical components represented by the vertices of an
equilateral triangle. If the height of the triangle is taken as unity and the mixture is
depicted by a point inside the triangle, then the distances from this point to the sides
correspond to the proportions of the components in the mixture. The same principles
can be applied to a system of four components: within a regular tetrahedron whose
vertices represent the pure components, the distances from an interior point to the faces
again sum to a constant, and may be used to represent the proportions. For further
details, the reader is referred to the book [4] (Chapter 8).

3 Minkowski’s Theorem
Polytopes are the generalization of polygons in higher dimensions. Formally, a convex
polytope is the convex hull of a finite set of points in Rn, or equivalently, the intersection
of a finite number of hyperplanes.

The Minkowski problem for polytopes concerns the following specific question. Given
a collection −→u1 , . . . ,

−→uk of unit vectors and a1, . . . ,ak > 0, under what condition(s) does
there exist a polytope P having the −→ui ’s as its facet normal vectors and the ai’s as its
facet areas? The answer to this question is known as the Minkowski’s existence and
uniqueness theorem for polytopes.

Theorem 1 (Minkowski). Let −→u1 , . . . ,
−→uk be unit vectors that span Rn, and a1, . . . ,ak >

0. Then there exists a polytope P in Rn having facet unit normal vectors −→u1 , . . . ,
−→uk and

corresponding facet areas a1, . . . ,ak if and only if

a1
−→u1 + · · ·+ak

−→uk =
−→
0 . (4)

Moreover, this polytope is unique up to translation.

Minkowski’s original proof involves two steps. First, the existence of a polytope
satisfying the given facet data is demonstrated by a linear optimization argument. In the
second step, the uniqueness of that polytope (up to translation) is shown by a generalized
isoperimetric inequality for mixed volumes. Alternative proofs, generalizations, and
applications of Minkowski’s theorem are abundant in the literature. We refer the reader
to [7] and the references therein for a good exposition on this topic.

Note that in the 2-dimensional Euclidean space, the facet areas of a polygon are simply
the edge lengths of the polygon. In the case of equilateral triangles, it is clear that
Equation (4) is equivalent to Equation (1).

A special family of polygons are the equiangular polygons. These are characterized
by having equal angles without necessarily having congruent edges. For a set of
positive real numbers a1, . . . ,ak, it is well known [2] that there exists an equiangular
polygon with side lengths a1, . . . ,ak if and only if the polynomial a1+a2x+ · · ·+akxk−1

vanishes at e
2π

k i. Hence, for example, equilateral triangles are the only equiangular
triangles and rectangles are the only equiangular quadrilaterals.

We prove this result using Minkowski’s theorem as follows. Let P be a polygon in R2

with side lengths a1, . . . ,ak and interior angle measures θ1, . . . ,θk (k ≥ 3). Recall that
θ1 + · · ·+θk = (k− 2)π for any k-gon. Consider the following polynomial in k− 1
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variables
p(x1,x2, . . . ,xk−1) : = a1 +a2x1 + · · ·+akx1 . . .xk−1

= a1 +
k−1

∑
i=1

ai+1x1 . . .xi.

With the definition above, Minkowski’s theorem in dimension 2 can be written in
algebraic form. Observe that the angle formed by the vectors −→u j and −−→u j+1 is equal to
π −θ j, for each j. Since each −→u j is a unit vector, we can then write the vector −→u j =

ei[(π−θ1)+(π−θ2)+···+(π−θ j−1)] for j = 2, . . . ,k (we consider −→u1 the vector of reference
here). By substituting the latter expression of −→u j in Equation (4), we get the following
theorem.

Theorem 2. Let a1, . . . ,ak and θ1, . . . ,θk be positive real numbers such that
θ1 + · · ·+ θk = (k− 2)π . Then, there exists a polygon with edge lengths a1, . . . ,ak
and interior angle measures θ1, . . . ,θk if and only if the polynomial p(x1,x2, . . . ,xk−1)
vanishes at (ei(π−θ1),ei(π−θ2), . . . ,ei(π−θk−1)).

If P is equiangular, then θ1 = · · · = θk =
k−2

k π . This implies that π − θi =
2π

k for
i = 1, . . . ,k. The following can then be deduced.

Corollary 3. There exists an equiangular polygon with edge lengths a1, . . . ,ak > 0 if

and only if a1 +a2e
2π

k i +a3e
4π

k i + · · ·+ake
2(k−1)π

k i = 0.

4 Viviani Polytopes
Similar to the CVS property defined above, Zhou [9] introduced the notion of Viviani
polytopes as follows. Let p1, . . . , pk be distinct hyperplanes enclosing a convex polytope
P ⊂ Rn, and −→u1 , . . . ,

−→uk the outward unit normal vectors to each pi, respectively. For
a point T ∈ Rn, denote by di the signed distance from T to the hyperplane pi and let
v(P) :=∑

k
i=1 di. We call P a Viviani polytope if v is a constant function, i.e. independent

of the choice of the point T .

The main result in [9] is a geometric characterization of Viviani polytopes in any
dimension. An algebraic characterization using linear programming was previously
derived in [1].

Theorem 4 (Theorem 1 in [9]). With the above notation, a polytope P ⊂ Rn is Viviani
if and only if

−→u1 + · · ·+−→uk =
−→
0 . (5)

In light of Theorem 2, a polynomial formulation for Viviani polygons can be de-
rived as follows. Given a set of positive real numbers θ1, . . . ,θk that add up to
(k− 2)π , there exists a polygon with interior angle measures θ1, . . . ,θk if and only
if (ei(π−θ1),ei(π−θ2), . . . ,ei(π−θk−1)) is a root of the polynomial 1+ x1 + x1x2 + · · ·+
x1x2 . . .xk−1. In particular, we get the following corollary.

Corollary 5. Equilateral triangles are the only Viviani triangles and parallelograms
are the only Viviani quadrilaterals. Moreover, equiangular polygons are Viviani for
any number of sides.
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As mentioned in the first section, it can be shown that regular polygons in R2 and
regular polyhedra in R3 are Viviani using an area and a volume argument, respectively.
Along the same line of thought, it was shown in [5] that any polyhedron with faces
of equal area is Viviani. We extend this result to all dimensions using Minkowski’s
theorem.

Consider a polytope P ⊂Rn with facet unit normal vectors −→u1 , . . . ,
−→uk . If the facets of P

have equal area (i.e. (n−1)-dimensional volume), then a1 = · · ·= ak in the statement
of Theorem 1, which implies that −→u1 + · · ·+−→uk =

−→
0 . By Theorem 3, one can deduce

that the polytope P is Viviani. Thus, we proved the following general result.

Theorem 6. Any polytope whose facets have equal area is Viviani.

Finally, we turn back to our original question. Assume P ⊂ R2 is a polygon with
side lengths s1, . . . ,sk and unit normal vectors −→u1 , . . . ,

−→uk . The goal is to find another
polygon P′ with the same unit normal vectors but with side legths s1 ± t, . . . ,sk ± t.
Applying Minkowski’s theorem to P and P′, we get s1

−→u1 + · · ·+ sk
−→uk =

−→
0 and (s1 ±

t)−→u1 + · · ·+(sk ± t)−→uk =
−→
0 , respectively. Combining the two equations, we obtain

±t(−→u1 + · · ·+−→uk ) =
−→
0 . This is equivalent to P (or P′) being Viviani!
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Abstract
The classical Lotka-Volterra equations that model the interactions between two species
competing for a limited resource have many potential modifications to improve biologi-
cal accuracy; this paper explores modifications to the exponent of the competition term.
After an introduction to the behavior of the classical Lotka-Volterra model is given, a
nonlinear modification to this model by Taylor and Crizer is discussed. In section 2,
an extension of this modification is proposed, in which the population variable of the
competition term is raised first to the power of positive real numbers and, next, small
integers. A proof is offered that at most 3 coexistent equilibrium points exist for any
positive exponent values, and additional proofs further limit the number of equilibria
for certain exponent and parameter values. In section 3, we prove that, in such models,
the stability of the equilibria alternates between stable and unstable when considered in
a northwest to southeast configuration. Combining these results allows us to describe
the equilibrium behavior of a broad class of competition models.

1 Introduction
Competition models consider scenarios involving two species that compete for the
same limited prey or other vital resources. In 1925, American biophysicist Alfred Lotka
and Italian mathematician Vito Volterra proposed one of the first valid competition
models to describe cases of coexistence or competitive exclusion [4].
A competition model implies a reciprocal, negative interaction between the two species.
Further, the Lotka-Volterra model treats the competition as density-dependent, and the
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equations include terms for both intraspecific and interspecific competition:
dx
dt

= β1x(K1 − x−µ1y)

dy
dt

= β2y(K2 − y−µ2x),
(1)

Figure 1: The isocurves of the classical Lotka-Volterra equations.

where βi,Ki, and µi are positive constants for i = 1,2 [3]. Next, dx
dt and dy

dt denote
the growth rates of populations x and y at time t. The βi constants are the respective
intrinsic growth rates, the Ki constants are the carrying capacities, and the µi constants
are the competition coefficients, which represent the negative effect of one species on
the other. The isocurves are linear and fall into one of four cases, depending upon
parameter relationships, as depicted in Figure 1. As shown, the relative values of
parameters K1 versus K2/µ2 and K2 versus K1/µ1 determine the relative positions
of the x− and y−intercepts of the isocurves, consequently impacting the number of
possible intersection points.
These classical Lotka-Volterra equations have been modified in various studies [1][4][5].
Taylor and Crizer introduce a nonlinear relationship to model the effects of each species
on the other, 

dx
dt

= β1x(K1 − x−µ1y2)

dy
dt

= β2y(K2 − y−µ2x2),

(2)

where βi,Ki, and µi again are positive constants for i = 1,2 [5]. Because the isocurves



Nonlinear Lotka-Volterra Competition Models 75

are nonlinear, they are not limited to a maximum of one intersection point, as addressed
in [4].
In this paper, we examine the more general nonlinear relationship

dx
dt

= β1x(K1 − x−µ1yw1)

dy
dt

= β2y(K2 − y−µ2xw2),

(3)

where βi,Ki, and µi are positive constants and wi is any positive real number for
i = 1,2. We first determine that the four cases of parameter relationships contain
several subcases, which will be investigated in Section 2. We establish the number
of possible intersection points for any positive real exponents on the competition
terms. Next, we prove that isocurves for any exponents are limited to a maximum
of three intersection points, with an even smaller number allowed for small positive
integer exponents. Finally, we detail the stability patterns of these equilibria and their
biological implications.

2 Number of Intersection Points
2.1 Exponents as Positive Real Numbers

Given the modified Lotka-Volterra equations in equation (3), the equilibrium points are
given by (0,0),(K1,0),(0,K2) and positive solutions to the following system:{

x+µ1yw1 = K1

y+µ2xw2 = K2.
(4)

Defining v1 =
w1
√

K1/µ1 and v2 =
w2
√

K2/µ2, we have the following case divisions:
Case 1: K1 > v2 and K2 < v1
Case 2: K1 < v2 and K2 > v1
Case 3: K1 < v2 and K2 < v1
Case 4: K1 > v2 and K2 > v1.
We consider these cases as they mirror the four cases seen in the original Lotka-
Volterra equations, defining the relative intercept positions of the isocurves. We also
define

F(x,y) = β1(K1 − x−µ1yw1)

G(x,y) = β2(K2 − y−µ2xw2)

and let f and g denote the curves F(x,y) = 0 and G(x,y) = 0, respectively.

Lemma 1. Isocurves f and g are monotonically decreasing.

Proof. Using equation (4), we see that the two terms on the left hand side of each
equation add to Ki, a fixed constant. Hence, in both equations, as x increases, y
decreases, causing both curves to decrease monotonically.

We then solve the second equation from the set in (4) for y and substitute the result into
x+µ1yw1 =K1. Defining this result as a function of x, we obtain h(x) = 0 where

h(x) = K1 − x−µ1(K2 −µ2xw2)w1 .
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The roots of this equation give the x-coordinate of any intersection points of the

isocurves f and g. Taking the first derivative with respect to x, we have

h′(x) =−1+µ1µ2w1w2xw2−1(K2 −µ2xw2)w1−1.

Again taking the derivative, we have

h′′(x) = µ1µ2w1w2xw2−2(K2 −µ2xw2)w1−2[K2(w2 −1)−µ2xw2(w1w2 −1)].

The roots and undefined points of h′′(x) give the x-coordinate of any inflection points

of h(x), allowing us to determine the maximum number of critical points and therefore
zeros of h(x).

Theorem 1. For any w1 and w2, f and g have a maximum of 3 intersection points in
the interior of the first quadrant.
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Figure 2: The 4 possible cases, each with one subcase, where f is dashed and g is solid.
As shown in Section 3, solid points are stable equilibria, and open points are unstable
equilibria. The cases marked with ‘A’ indicate the subcase of each numbered case with
0 or 1 intersection points, and the cases marked with ‘B’ indicate the subcase with 2 or
3 intersection points.

Proof. As a consequence of Rolle’s Theorem, to show f and g can have at most 3
intersection points, we need only to show that h(x) has at most one inflection point.

We see that h′′(x) = 0 or h′′(x) is undefined when x = 0, w2
√

K2/µ2, or w2

√
K2(w2−1)

µ2(w1w2−1) ,

depending on the values of w1 and w2. Because x = 0 and w2
√

K2/µ2 mark points where
f or g would intersect a coordinate axis, the only inflection point that could produce

a coexistent equilibria is at x = w2

√
K2(w2−1)

µ2(w1w2−1) . Hence, there is a maximum of one
inflection point for h(x).

Theorem 2. There are 8 possible configurations of the graphs of f and g, shown in
Figure 2.

Proof. Because the isocurves are continuous and can intersect a maximum of 3 times
in the first quadrant, the geometric positions of the intercepts Ki and vi determine which
of the 8 configurations are possible, and their limited intersections limit the number of
configurations.

2.2 Cases of Small Integer Exponents
Theorem 3. If w1 = 2 and if w2, written from here on as w for simplicity, is any integer
greater than or equal to 2,
(1) In case 1, equation (4) has in the first quadrant either 0 or 2 solutions.
(2) In case 2, equation (4) has in the first quadrant either 0 or 2 solutions.
(3) In case 3, equation (4) has in the first quadrant either 1 or 3 solutions.
(4) In case 4, equation (4) has in the first quadrant exactly 1 solution.

Proof. Following the work of [4], to find the number of intersection points of the
isocurves, we begin by obtaining the polynomials, derived from equation (4), which are
satisfied by the equilibrium solutions. Starting with y+µ2xw = K2, we solve for y and
substitute into x+µ1y2 = K1 to obtain x+µ1(K2 −µ2xw)2 = K1, which expands to:

µ1µ
2
2 x2w −2µ1µ2K2xw + x+µ1K2

2 −K1 = 0. (5)
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Similarly, we next start with x+µ1y2 = K1, solve for x, and substitute the result into
y+ µ2xw = K2 to obtain y+ µ2(K1 − µ1y2)w −K2 = 0, which, using the Binomial
Theorem, expands to:

y+µ2(K1 −µ1y2)w −K2 = y−K2 +
w

∑
k=0

(
w
k

)
µ2Kw−k

1 (−µ1y2)k

=
w

∑
k=1

(
w
k

)
µ2Kw−k

1 (−µ1y2)k + y+µ2Kw
1 −K2 = 0, (6)

where k ∈ Z. Because the term µ1y2 is preceded by a negative sign, the sign of each
term from the summation will alternate. As we will be using Descartes’ Rule of Signs
later in this proof, it is notable that the polynomial in equation (5) has either 1 or 2
sign changes depending on the sign of µ1K2

2 −K1, and the polynomial in equation
(6) has either w or w+1 sign changes, dependent upon the sign of µ2Kw

1 −K2. It is
also notable that the only coefficients whose sign is dependent upon the parameter
values are µ2Kw

1 −K2 for any w. Hence, the only information required to determine
the number of sign changes in the polynomial defined by equation (6) are the signs of
µ1K2

2 −K1 and µ2Kw
1 −K2.

From Theorem 2, we see that, for cases 1, 2, and 3, all 6 possible ways of intersection
could occur, as Descartes’ Rule of Signs eliminates no possibilities.

In case 4, µ2Kw
1 −K2 > 0 and µ1K2

2 −K1 > 0. Then equation (5) has 2 sign changes
and equation (6) has w sign changes. Hence, by Descartes’ Rule of Signs, equation (4)
has at most min(2, w) solutions in the interior of the first quadrant. The positions of the
intercepts indicate that the curves must intersect an odd number of times, so equation
(4) has exactly one solution, eliminating case 4B.

As seen, the smaller of w1 and w2 serves as a limiting factor in determining the number
of intersection points of the isocurves. Thus, when w1 = 2, any integer value of w2 ≥ 2
will yield the same results as would w1 = w2 = 2. Further, the case in which w2 = 2
and w1 ≥ 2 is symmetric and yields the same number of intersection points in the
symmetric cases.
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Figure 3: Examples of the subcases for w1 = 2, w2 = 3, and β1 = β2 = 1 resulting in 0,
1, 2, and 3 intersection points.

Theorem 4. If w1 = 1 and if w2, written from here on as w for simplicity, is any integer
greater than or equal to 1,
(1) In case 1, equation (4) has in the first quadrant either 0 or 2 solutions.
(2) In case 2, equation (4) has in the first quadrant 0 solutions.
(3) In case 3, equation (4) has in the first quadrant exactly 1 solution.
(4) In case 4, equation (4) has in the first quadrant exactly 1 solution.

Proof. Following the arguments in the proof for Theorem 3, solutions to equation (4)
under the above conditions will satisfy the following equations:

−µ1µ2xw + x+µ1K2 −K1 = 0, (7)
and

y+µ2(K1 −µ1y)w −K2 = 0. (8)

(1) In case 1, we see from Theorem 2 that either case 1A or 1B could occur.

(2) In case 2, µ2Kw
1 −K2 < 0 and µ1K2 −K1 > 0. This yields 1 sign change from

equation (7) and either w or w+1 sign changes from equation (8). Thus, equation (4)
has at most min(1, w) or min(1, w+ 1) solutions, or at most 1. From the intercepts,
there must be an even number of intersection points, so there are 0 positive solutions,
eliminating case 2B.

(3) In case 3, µ2Kw
1 −K2 < 0 and µ1K2 −K1 < 0. This yields 2 sign changes from

equation (7) and either w or w+1 sign changes from equation (8). Thus, equation (4)
has at most min (2, w) or min(2, w+1) solutions, or at most 2. From the intercepts,
there must be an odd number of intersection points, so there is exactly 1 positive
solution, eliminating case 3B.

(4) In case 4, µ2Kw
1 −K2 > 0 and µ1K2 −K1 > 0. This yields 1 sign change from

equation (7) and either n or w+1 sign changes from equation (8). Thus, equation (4)
has at most min(1, w) or min(1, w+1) solutions, or at most 1. From the intercepts, there
must be an odd number of intersection points, so there is exactly 1 positive solution,
eliminating case 4B.
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The case where one of the exponents is zero is well-known and will not be discussed
here.

While Theorem 1 indicates that any parameter combination results in a maximum of
3 intersections and Theorems 3 and 4 show how possible cases may be eliminated,
we can perform further analysis to determine further restrictions on the number of
intersection points by case divisions.

Theorem 5. The table below indicates when h(x) has one inflection point inside the
interval of interest, which indicates when f and g can have 3 intersection points.

Letting m = w2

√
K2(w2−1)

µ2(w1w2−1) :

Cases 1 and 4 Cases 2 and 3
A: w1 < 1,w2 < 1 always m < K1
B: w1 > 1,w2 > 1 always m < K1
C: w1 < 1,w2 > 1 never never
D: w1 > 1,w2 < 1 never never

Table 1: The conditions under which h(x) has one inflection point.

Proof. Recall that when h(x) has one inflection point, it can have at most 3 zeros
and, accordingly, f and g can intersect at most 3 times. When h(x) has no inflection
points, f and g are limited to a maximum of 2 intersection points. Also note that
we are only interested in intersection points with the x−coordinate in the interval
0 < x < min(K1,v2).

(A) We see that w2

√
K2(w2−1)

µ2(w1w2−1) will under the radical have a negative numerator and
negative denominator, resulting in a positive radicand and a real x value. Then since

w2−1
w1w2−1 < 1, m < w2

√
K2
µ2

and is therefore inside the interval of interest for cases 1 and 4
of the divisions of parameter relationships. Hence, there is one positive inflection point
in cases 1 and 4. In cases 2 and 3, only the values of m < K1 are inside the interval of
interest. Hence, there is one inflection point in cases 2 and 3 when m < K1 and zero
inflection points when m > K1.

(B) We see that the radicand is positive, resulting in a real x value. Since w2−1
w1w2−1 < 1,

m < w2

√
K2
µ2

and is therefore inside the interval of interest for all cases. Hence, there
is one inflection point. Following the same reasoning as above, there is one inflection
point in cases 1 and 4. In cases 2 and 3, there is one inflection point when m < K1 and
zero inflection points when m > K1.

(C) The radicand may be either positive or negative. If w1w2 < 1, the radicand is
negative and the solution has no real parts, resulting in zero inflection points. If

w1w2 > 1, the radicand is positive and w2−1
w1w2−1 > 1, meaning that m > w2

√
K2
µ2

and is
always outside our interval of interest. Hence, both possibilities yield zero inflection
points.

(D) The radicand may be either positive or negative. If w1w2 < 1, the radicand is
negative and there are zero inflection points. If w1w2 > 1, the radicand is positive
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and w2−1
w1w2−1 > 1, meaning that m > w2

√
K2
µ2

and is always inside our interval of interest.
Hence, there are again zero inflection points.

This exploration of the numbers of inflection points places restrictions on the number
of possible intersection points of the two isocurves. We have shown above that for any
combination of positive exponent values, there is a maximum of one inflection point
for the polynomial whose zeros give the x−coordinate of intersection points of f and
g; hence, this polynomial has a maximum of three roots, indicating that f and g are
limited to a maximum of 3 intersection points in the interior of the first quadrant. From
above, we now know that the appearance of 3 equilibria depends on the relative values

of w2

√
K2(w2−1)

µ2(w1w2−1) and K1 in cases 2 and 3. Further, there will never be 3 equilibria in
cases when both w1 < 1 and w2 > 1 or w1 > 1 and w2 < 1. In the cases that result in
zero inflection points, the isocurves have a maximum of 2 intersection points. While the
complicated parameter relationships make it difficult to offer distinct value ranges for
w1 and w2 that yield specific numbers of intersection points, we have found restrictions
for the maximum numbers of equilibria and the cases in which they may occur.

3 Stability of Equilibria
The dynamic stability of equilibria is significant as only stable equilibria are realistic
points where the populations can be maintained in equilibrium. The sample population
trajectories in Figure 4 illustrate that coexistent equilibria can either be stable or
unstable. Following the work of Hirsch, Smale, and Devaney in [2], we offer a proof
regarding the stability of equilibrium points in the interior of the first quadrant.

Figure 4: Left: Sample trajectories for case 1.
Right: Sample trajectories for case 2.

We note the following facts regarding F and G:

F1. The populations of the two species x and y are inversely related; if the population
of one increases, then the growth rate of the other decreases. Thus, Fy < 0 and Gx < 0.

F2. If either population reaches a large value, then both populations decrease. In
particular, letting K = max{K1,K2,(K1/µ1)

1/w1 ,(K2/µ2)
1/w2}, we have that F(x,y)<
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0 and G(x,y)< 0 if x ≥ K or y ≥ K.

F3. If the population of one species is zero, then the other species has a positive growth
rate to a certain population value and a negative growth rate beyond it. In particular,
F(x,0) is positive when x < K1 and negative when x > K1, and G(0,y) is positive when
y < K2 and negative when y > K2.

Theorem 6. Each intersection point of isocurves f and g in the interior of the first
quadrant yields a locally stable equilibrium if and only if f is above g to the left of the
intersection and f is below g to the right.

Proof. Any coexistent equilibria of this system modeled by equation (3) are given by
the intersection(s) of the isocurves in the interior of the first quadrant. At an intersection
point, the slope of f =−Fx

Fy
and the slope of g=−Gx

Gy
by the Implicit Function Theorem.

We know that any intersection points occur under one of three cases:

Case A. f is above g to the left of the intersection, and f is below g to the right.

Case B. g is above f to the left of the intersection, and g is below f to the right.

Case C. g and f are tangent to each other and touch at a point without crossing at that
point.

Figure 5: Case 1, where the slope of f is steeper than that of g.

(A) As shown in Figure 5, the slope of f is steeper than that of g, meaning −Fx
Fy

<

−Gx
Gy

< 0, as both curves are monotonically decreasing. From fact F1, Fy < 0 and

Gx < 0, and we conclude that Fx < 0 and Gy < 0, as we have −Fx
Fy

< 0 and −Gx
Gy

< 0.

To determine the local stability at this critical point, we next seek the eigenvalues of
the Jacobian matrix,[

Fx Fy
Gx Gy

]
=

[
β1K1 −2β1x−β1µ1yw1 −w1β1µ1xyw1−1

−w2β2µ2yxw2−1 β2K2 −2β2y−β2µ2xw2

]
.

Along the isocurves, F(x,y) = 0 and G(x,y) = 0, so we substitute these values into the
matrix, yielding [

−β1x −w1β1µ1xyw1−1

−w2β2µ2yxw2−1 −β2y

]
.
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The trace of the Jacobian matrix is −β1x−β2y < 0. The determinant is β1β2(xy−
w1w2µ1µ2xw2yw1), which we see, generally, is xy(FxGy−FyGx). In case A, −Fx

Fy
<−Gx

Gy
,

meaning Fx
Fy

> Gx
Gy

and consequently FxGy > FyGx, so the determinant is positive. The
eigenvalues are the roots of the characteristic polynomial p(λ ) of the matrix, which,
for a standard 2x2 matrix, is given by

p(λ ) = det(A−λ I) = λ
2 − tr(A)λ +det(A).

Using the quadratic formula, the eigenvalues of the general matrix are

λ =
tr(A)±

√
tr(A)2 −4det(A)

2
.

Returning to our Jacobian matrix, we see that, since the determinant is positive,
|tr(A)| >

√
tr(A)2 −4det(A), meaning that the real part of both eigenvalues must

always be negative as the trace is negative. Hence, both eigenvalues have negative real
parts, indicating a locally stable equilibrium point.

(B) We begin with −Gx
Gy

<−Fx
Fy

< 0. Again, the trace of the matrix is −β1x−β2y < 0.
The determinant is xy(FxGy −FyGx), which in this case is negative.

From our Jacobian matrix, we see that both the trace and determinant are negative.
Hence, both eigenvalues will be real. Further, since

√
tr(A)2 −4det(A)> tr(A), one

eigenvalue must be negative and the other must be positive, indicating an unstable
equilibrium point.

(C) In this case, the two isocurves are tangent and touch without crossing. While
this case is highly biologically improbable, we show that this tangent point yields an
unstable equilibrium.

For the two curves to touch without crossing, their slopes must be equal at the point we
consider; thus, we begin with −Gx

Gy
=−Fx

Fy
< 0. Since FxGy = FyGx, the determinant is

zero. We then have

λ =
tr(A)±

√
tr(A)2

2
.

The eigenvalue λ = 0 implies an unstable equilibrium at this intersection point, as at
least one of the eigenvalues of this matrix has a nonnegative real part.

Since both isocurves are monotonically decreasing, the equilibria have a well-defined
order moving from a northwest to southeast direction. In this order, any one of the
two possible cases of intersection with crossing isocurves cannot occur twice in a
row. In other words, if more than one intersection point exists on the interior of
the first quadrant, the stability of adjacent equilibria will alternate between stable
and unstable when the equilibria are being considered in a northwest to southeast
configuration. Therefore, knowing the stability of just one equilibrium point in these
models is sufficient to determine the local stability of the rest.

Though we do not do so here, facts F2 and F3 can be used to show that the locally
stable equilibria are actually globally stable, as done in [2]. To demonstrate the degree
of information we can now readily obtain from modified Lotka-Volterra systems in the
form of equation (3), we now discuss a numerical example. Letting µ1 = 0.59,µ2 =
0.74,K1 = 1.21,K2 = 1.36,w1 = 2, and w2 = 3, we see that v1 ≈ 1.43 and v2 ≈ 1.22.
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Because K1 < v2 and K2 < v1, these parameters place us in case 3. Using the table from
Theorem 5, we have that m ≈ 0.74 < K1 and hence these parameters yield isocurves
with 3 intersection points in the first quadrant, which is case 3B. Using Theorem 6
and the aid of Figure 2, we see that the relative positions of the intercepts indicate that
the first equilibrium point when considered in a northwest to southeast configuration,
which is (0,K2), must be unstable. Continuing down the isocurves in this direction,
the first intersection is stable, the second is unstable, the third is stable, and (K1,0) is
unstable. Hence, we have determined the number of equilibria and their stability with
minimal calculations.

4 Areas of Further Research
While these explorations of the models have added insight into Lotka-Volterra mod-
ifications, there is much more to be explored. Placing additional restrictions on the
parameters of Table (1), for example, would enable more efficient and clear determina-
tion of the possible number of intersection points, as the parameter relationships are
clearly complicated. Additionally, the number of intersection points in Theorems 1,
3, and 4 is dependent upon parameter relationships. Further exploration of the cases
in these theorems could reveal which number of intersection points actually occurs
for more specific parameter values. Moreover, investigating relationships between w1
and w2 could offer additional restrictions on when certain numbers of equilibria occur.
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Abstract
We discuss the Heisenberg group H1, the three-dimensional space R3 equipped with
one of two equivalent metrics, the Korányi- and Carnot-Carathéodory metric. We show
that the notion of length of curves for both metrics coincide, and that shortest curves,
so-called geodesics, exist.

1 Introduction
The Heisenberg group H1 is a subject of intensive study, as a special case of sub-
Riemannian manifolds or Carnot groups, see [2] or [1].

From the point of view of Analysis, H1 consists of all the points p = (p1, p2, p3) ∈ R3,
where R3 denotes the usual Euclidean three-dimensional space. However, the distance
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between two points p,q ∈ R3 is given by a non-Euclidean metric d(p,q). Actually,
there are two typical metrics used in the Heisenberg group H1, and we begin by
describing the first one, the Carnot-Carathéodory-metric dcc(p,q) of H1: Take any
(for now continuously differentiable) curve γ : [0,1]→ R3 with γ(0) = q and γ(1) = p.
From calculus we know that the length of a curve is given by

L (γ) =
∫
[0,1]

|γ̇(t)|dt, (1)

where γ̇ denotes the derivative of γ . If we consider the minimal possible length of
curves γ : [0,1]→ R3 that are continuously differentiable and connect p to q in the
sense that γ(0) = p and γ(1) = q, then one can show that this minimal length is exactly
the Euclidean distance |p−q|,

|p−q|R3 = inf
γ∈X(p,q)

L (γ)

where

X(p,q) =
{

γ : [0,1]→ R3 : continuously differentiable, γ(0) = p, γ(1) = q
}
.

The Carnot-Carathéodory metric is also the infimum of the lengths of curves connecting
p and q, however those curves have to be horizontal, meaning that γ̇(t) has to belong
to the horizontal space Hγ(t)H1 for each t ∈ (0,1), which is spanned by the vectors

HpH1 = span


 1

0
2p2

 ,

 0
1

−2p1

 .

That is for each t ∈ (0,1) there must be some λ1(t) and λ2(t) such that

γ̇(t) = λ1(t)

 1
0

2γ2(t)

+λ2(t)

 0
1

−2γ1(t)

 ,

or, taking λ1(t) = γ̇1(t) and λ2(t) = γ̇2(t), equivalently,

γ̇
3(t) =−2γ

1(t)γ̇2(t)− γ
2(t)γ̇1(t) ∀t ∈ (0,1). (2)

For such curves we define the length

Lcc(γ) :=
∫
[0,1]

√
|λ1(t)|2 + |λ2(t)|2dt ≡

∫
[0,1]

√
|γ̇1(t)|2 + |γ̇2(t)|2dt.

The Carnot-Carathéodory length dcc(p,q) is then given by

dcc(p,q) = inf
γ∈Y (p,q)

Lcc(γ) (3)

where

Y (p,q)=
{

γ : [0,1]→ R3 : continuously differentiable, γ(0) = p, γ(1) = q, (2) holds
}
.

Observe that this is very similar to curves γ into a Riemannian manifold M ⊂ R3: any
differentiable curve γ : [0,1]→ M satisfies γ(t) ∈ Tγ(t)M , where TpM is the tangent
space of the manifold M , and if we want to find the distance between two points p
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and q on the manifold, it makes sense to define this distance as the minimal length of
curves tangent to the manifold at every point and connecting p and q. So from this
perspective, the Heisenberg group is R3 with a “strange” tangent plane distribution
(and since it is strange we call it horizontal plane distribution instead) – the strangeness
of the Heisenberg group is that its horizontal plane distribution cannot be written as
a tangent space of any manifold M , that is the horizontal plane distribution is not
integrable in the sense of the Frobenius’ theorem. Here is actually where the “group”
of the Heisenberg group enters, the vectors spanning the horizontal space HpH1 are
left-invariant vector fields for a group structure – but we will not pursue this point of
view further here.

It is known that for each p,q ∈ R3 the infimum in (3) is attained, i.e. there exists a
shortest curve γ , called geodesic such that

Lcc(γ) = dcc(p,q),

see e.g. Hajłasz-Zimmerman [3, (1.3)]. In particular between any two points p,q ∈ R3

there exist horizontal curves. Let us remark that for more general sub-Riemannian
geometry it a very deep result, called Chow–Rashevskii theorem, that dcc(p,q) is even
finite for all points p,q, cf. [4].

While the above notion of distance dcc(p,q) is attractive from a geometric point of
view, it is not easily computable (given p and q we first need to find the shortest curve
γ between then, then compute its length).

The other metric we want to consider, the Korányi-metric, is much easier to compute.
It simply is given by

dK(p,q) := (|p1 −q1|2 + |p2 −q2|2
2
+ |p3 −q3 +2(p2q1 − p1q2)|2)

1
4

There is also a more group-theoretic motivation for dK(p,q) = ∥p−1 ∗ q∥H1 , but we
will also not pursue this aspect further here, we refer the interested reader to [1].

Any metric space naturally is equipped with a notion of length of curves, see Defini-
tion 5, which gives us the notion of a Korányi-length LK(γ).

We will first prove the following result.

Theorem 1. Let p,q ∈ R3. Then there exists a shortest continuous curve (i.e. a
geodesic) γ : [0,1]→ R3, γ(0) = p, γ(1) = q such that

LK(γ) = inf
γ̃∈X̃(p,q)

LK(γ̃),

where

X̃(p,q) :=
{

γ : [0,1]→ R3 : continuous, γ(0) = p, γ(1) = q
}
.

Observe the difference to X(p,q) above is that curves do not need to be differentiable.

The above theorem follows from a general principle using the Arzelá-Ascoli theorem
and holds true in much more generality.

More specifically to the Heisenberg group we will show that although the metric
dK differs from dcc, the Korányi-length LK equals the Carnot-Carathéodory length
Lcc.



88 BSU Undergraduate Mathematics Exchange Vol. 16, No. 1 (Fall 2022)

Theorem 2. Let γ : [0,1]→ R3 be twice continuously differentiable. If γ is horizontal
(i.e. (2) holds) and Lcc(γ)< ∞ then LK(γ)< ∞ and we have

LK(γ) = Lcc(γ).

From Theorem 2 we actually can conclude that (R3,dK) is not a length space: By the
definition of length of a curve in a metric space (X ,d), see Definition 5, for any p,q
and any curve γ : [0,1]→ X , γ(0) = p, γ(1) = q we have the inequality

L (γ)≥ d(p,q).

If for any p,q ∈ X there exists a curve γ : [0,1]→ X , γ(0) = p, γ(1) = q such that we
have equality

L (γ) = d(p,q),

then we call X a length space. The following example shows that (R3,dK) is not a length
space (this is in contrast to the Carnot-Carathéodory metric where the corresponding
equality holds by definition (3)).

Example 3. The following is the shortest curve between p := (0,0,0) and q :=
(0,0, 1

4π
)

γ(t) =

 (1− cos(2πt))
sin(2πt)

1
4π
(t − sin(2πt)

2π
)

 .

See [3, Theorem 2.1]. It can be checked by a direct computation that LK(γ) =
Lcc(γ)> dK(p,q)

The outline of the remaining part of the paper is as follows: in Section 2 we discuss
preliminary results on metric spaces, in particular Arzelá-Ascoli’s theorem. In Section 3
we discuss properties of horizontal curves that we need for both theorems. In Section 4
we establish the existence of shortest curves with respect to LK in the Heisenberg
group. In Section 5 we prove Theorem 2. Let us remark that the results in this work
are probably well-known to experts, the purpose of this paper is to provide a detailed
account making this exciting field accessible to non-experts, students and early career
researchers.

2 Some Preliminary Statements from Analysis: Metric
Spaces
Let X be a metric space with metric d. A curve γ is simply a continuous map γ : I → X ,
where I = [a,b] is any closed finite interval.

We say that a curve γ : [a,b] → X connects two points p,q ∈ X if γ(a) = p and
γ(b) = q.

We now want to define the length of a curve γ : [a,b]→ X , however observe that γ may
not be differentiable. Indeed, we may not even know what differentiability of γ means
since X is not a linear space! So a formula such as (1) does not make sense. But recall
from Calculus how we obtained the formula (1), we used polygonal approximation of
a curve. We will do the same in metric spaces.
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Definition 4 (Partition). Given an interval [a,b], a partition of size n is the set
{x0,x1, . . . ,xn} where

a = x0 < x1 < · · ·< xn = b

With the notion of partition we can “approximate” curves by a discrete path through
the points γ(a),γ(x1), . . . ,γ(b). Then we use the metric to define the length of these
“polygon”-lines.

Definition 5 (Length of curve). Given a metric space (X ,d) and a curve γ : [a,b]→ X .
The length of γ is given by

L (γ) = sup
p∈P

n

∑
i=1

d(γ(ti),γ(ti−1)),

where the supremum is taken over all partitions p of [a,b] (i.e. P is the collection of all
partitions of [a,b]).

Observe that the length of a curve L (γ) is always nonnegative, indeed since {a,b} is
a partition of [a,b], we have

L (γ)≥ d(γ(a),γ(b)). (4)
In general, even if d(γ(a),γ(b))< ∞ the length L (γ) could be +∞. We call any curve
γ with finite length L (γ)< ∞ rectifiable.

It is worth noting the following

Lemma 6. Given a metric space (X ,d), let γ : [a,b]→ X be a curve of finite length,
L (γ)< ∞. Then for any s0 ∈ [a,b], the restricted curves

γ

∣∣∣
[s0,b]

: [s0,b]→ X , [s0,b] ∋ t 7→ γ(t)

and
γ

∣∣∣
[a,s0]

: [a,s0]→ X , [a,s0] ∋ t 7→ γ(t)

are curves of finite length. Moreover

[a,b] ∋ s 7→ L

(
γ

∣∣∣
[a,s]

)
and

[a,b] ∋ s 7→ L

(
γ

∣∣∣
[s,b]

)
are continuous monotone increasing maps.

Proof. Finiteness and monotonicity are easy to obtain from the definition of the curve.
For the continuity, we observe that for a ≤ s1 < s2 ≤ b

L

(
γ

∣∣∣
[a,s2]

)
−L

(
γ

∣∣∣
[a,s1]

)
= L

(
γ

∣∣∣
[s1,s2]

)
and

L

(
γ

∣∣∣
[s1,b]

)
−L

(
γ

∣∣∣
[s2,b]

)
= L

(
γ

∣∣∣
[s1,s2]

)
.
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So what we need to show is that for any ε > 0 and any s1 ∈ [a,b] there exists δ > 0
such that

L

(
γ

∣∣∣
[s1,s2]

)
< ε ∀s2 : |s1 − s2|< δ .

Fix ε > 0 and s1 ∈ [a,b]. By continuity of γ we find δ1 > 0 such that
d(γ(s̃),γ(t̃))< ε ∀|s̃− s1|, |t̃ − s1|< δ1. (5)

Since L (γ)< ∞ there exists a partition
a = t0 < t1 . . . < tn = b

such that

L (γ)− ε ≤
n

∑
i=1

d(γ(ti),γ(ti−1)).

Set
δ2 := inf

i=1,...,n
|ti − ti−1|.

Set δ := min{δ1,δ2} and fix any s2 ∈ [a,b] with |s1 − s2|< δ

2 .

W.l.o.g. s1 < s2. We then may assume that ti0−1 < s1 < ti0 < s2 < ti0+1 for some i0 ∈N
(all other cases follow by an easy adaptation). We now consider the new partition t̃i,

t̃i =



ti i ≤ i0 −1
s1 i = i0
ti0 i = i0 +1
s2 i = i0 +2
ti−2 i ≥ i0 +3.

Then, by triangular inequality,

L (γ)− ε ≤
n+2

∑
i=1

d(γ(t̃i),γ(t̃i−1)). (6)

Now let s1 = r0 < r1 < .. .= rm = s2 be any partition of [s1,s2]. Then
m

∑
j=0

d(γ(r j),γ(r j−1)) = ∑
i̸=i0+1,i0+2

d(γ(t̃i),γ(t̃i−1))+
m

∑
j=0

d(γ(r j),γ(r j−1))

−
n+2

∑
i=1

d(γ(t̃i),γ(t̃i−1))

+d(γ(t̃i0+1),γ(t̃i0))+d(γ(t̃i0+2),γ(t̃i0+1))

Since we can combine the partitions t̃i, i ̸= i0 +1, i0 +2 with r j to obtain a partition of
[a,b], we have by the definition of length,

∑
i ̸=i0+1,i0+2

d(γ(t̃i),γ(t̃i−1))+
m

∑
j=0

d(γ(r j),γ(r j−1))≤ L (γ).

By (6) we have

−
n+2

∑
i=1

d(γ(t̃i),γ(t̃i−1))≤−L (γ)+ ε.

By (5) which we can apply since s1 < ti0 < s2 and thus |s1 − s2|, |ti0 − s2|< δ1,
d(γ(t̃i0+1),γ(t̃i0))+d(γ(t̃i0+2),γ(t̃i0+1)) = d(γ(ti0),γ(s1))+d(γ(s2),γ(ti0))≤ 2ε.
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So we have shown
m

∑
j=0

d(γ(r j),γ(r j−1))≤ 3ε.

This holds for any partition (r j) of [s1,s2] and thus

L

(
γ

∣∣∣
[s1,s2]

)
< 3ε.

Since ε was arbitrary, we can conclude.

For simplicity, we will often restrict our attention to curves defined on I = [0,1], which
we can do without loss of generality. Indeed any curve

γ : [a,b]→ X

can be reparametrized to a curve
γ̃ : [0,1]→ X

by simply setting
γ̃(t) := γ(tb+(1− t)a).

Similarly any curve γ : [0,1]→ X can be reparametrized to a curve γ̃ : [a,b]→ X . The
length of the curve γ and γ̃ above are the same, L (γ) = L (γ̃). Indeed, the length of
curves is invariant under reparametrization.

[Reparametrization] Let γ : [a,b]→ X be a curve. Let τ : [c,d]→ [a,b] be a continuous
bijection with continuous inverse (i.e. a homeomorphism) such that τ(c) = a and
τ(d) = b. Then, τ is a reparametrization of γ .

Lemma 7. Let γ : [a,b]→ X be a curve and τ : [c,d]→ [a,b] be a reparametrization.
Then if we set γ̃(t) := γ(τ(t)) we get that γ̃ : [c,d]→ X is a curve and

L (γ) = L (γ̃)

We leave the proof as an exercise, but observe that τ maps any partition for [c,d] into a
partition of [a,b], and τ−1 maps any partition of [a,b] into a partition of [c,d].

Now we want to find geodesics, i.e. shortest curves between two points p and q in X .
A curve γ : I → X is called the shortest curve or (minimizing) geodesic from p to q if
it connects p and q and for any other curve γ̃ : Ĩ → X which connects p and q we have
we have L (γ)≤ L (γ̃).

In general metric spaces X there is no reason that there exists such a shortest curve
γ . As a side-note a shortest curve in general is not unique: think of the many shortest
curves connecting the north pole and the south pole of a sphere. In order to conduct in
the following chapters our analysis of the Heisenberg group, we conclude this section
with a few important notions and facts on maps (possibly) on metric spaces.

The first result from Analysis is the Arzelá-Ascoli theorem – the proof can be found
in essentially all Advanced Calculus books. Recall that a set E ⊂ X is compact, if
any sequence (xn)n∈N ⊂ E has a subsequence (xni)i∈N and a point x ∈ E such that

d(xni ,x)
i→∞−−→ 0.
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Theorem 8 (Arzelá-Ascoli). Let (X ,d) be a metric space and E ⊂ X be compact.
Assume there is a sequence of maps γk : [0,1]→ E which are equicontinuous, i.e. for
any ε > 0 there exists δ > 0 such that supk∈N d(γk(t),γk(s))< ε for all s, t ∈ [0,1] with
|s− t|< δ .

Then, there exists a subsequence (γki)i∈N and a continuous limit function γ : [0,1]→ X
such that γki uniformly converge to γ in the sense that

sup
t∈[0,1]

d(γki(t),γ(t))
i→∞−−→ 0.

We will use later that uniform Lipschitz continuity implies equicontinuity. Namely if
there exists Λ > 0 such that

sup
k∈N

d(γk(s),γk(t))≤ Λ|s− t| for all s, t ∈ [0,1]

then the equicontinuity condition in Theorem 8 is satisfied.

We now show that any curve with finite length can be parametrized so that it is
Lipschitz continuous (so curves with uniformly bounded length are uniformly Lipschitz
continuous, and thus equicontinuous).

Proposition 9 (Monotone Reparametrization). Let γ : [a,b]→ X be a curve of finite
length, L (γ)< ∞.

Then γ admits a Lipschitz reparameterization in the following sense.

There exists γ̃ : [0,1]→ X with the following properties

• γ̃(0) = γ(a) and γ̃(1) = γ(b)

• γ̃([0,1]) = γ([a,b]) (in the sense of sets in X)

• L (γ) = L (γ̃),

• |γ̃(s)− γ̃(t)| ≤ L (γ)|s− t| ∀s, t ∈ [0,1].

Proof. Without loss of generality, [a,b] = [0,1]. Let γ : [0,1]→ (X ,d) be a curve of
finite length.

Define τ(t) := L (γ|[0,t]) : [0,1]→ [0,L (γ)], which by Lemma 6 is continuous and
monotone increasing.

We would like to set γ̂ := γ ◦ τ−1 : [0,L (γ)] → X . The issue is that τ may not be
strictly monotone, so τ may not be invertible.

However γ̂ is still well-defined. Observe that if for some 0 ≤ r ≤ r̃ ≤ 1 we have
τ(r) = τ(r̃), then

0 = L (γ|[0,r̃])−L (γ|[0,r]) = L (γ|[r,r̃]),

that is L (γ|[r,r̃]) = 0 and from the definition of the length L we conclude that
d(γ(s),γ(t)) = 0 for all s, t ∈ [r, r̃].

That is τ(r) = τ(r̃) implies that γ is constant on [r̃,r], in particular γ(r) = γ(r̃).
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So we can still define γ̂ := γ ◦ τ−1 in the following sense: for a given t ∈ [0,L (γ)]
take any r ∈ [0,1] such that τ(r) = t. Such a r exists by the intermediate value theorem
since τ is continuous, τ(0) = 0 and τ(1) = L (γ). Then we set

γ̂(t) := γ(r).

If we were to pick any other r̃ with τ(r̃) = t then by the above observation we have
γ(r) = γ(r̃) and γ̂(t) still has the same value.

We now claim that γ̂ is continuous. Fix t0 ∈ [0,L (γ)] and ε > 0. Take R ⊂ [0,1]
such that τ(r) = t0 for all r ∈ R. By the above observation, whenever r, r̃ ∈ R we have
[r, r̃]⊂ R. On the other hand if (rk)k∈N ⊂ [0,1] such that τ(rk) = t0 for all k ∈N then if
r = limk→∞ rk we have τ(r) = t0, by continuity of τ . Combining this with monotonicity
of τ we find that for some r0 ≤ r1

R = [r0,r1], and τ(r)< t0 if r < r0, and τ(r)> t0 if r > r1.

By continuity of γ , there exists an δ1 > 0 such that |γ(r)− γ̂(t0)|< ε whenever r ∈ (r0−
δ1,r1 + δ1). Let now δ2 := min{τ(r0)− τ(r0 − δ1),τ(r1 + δ1)− τ(r0)) > 0. Recall
that t0 = τ(r0) = τ(r1). So whenever t satisfies |t − t0|< δ2 then we have t ∈ (τ(r0 −
δ1),τ(r1 + δ1)), and thus by monotonicity, t∈ τ(r0 − δ1,r1 + δ1) which implies that
|γ̂(t)− γ̂(t0)|< ε . That is, we have shown continuity of γ̂ .

With the same observation as above, it is now not too difficult to show that L (γ) =
L (γ̂) – since the only points where τ is not invertible are points where no length is
added. Indeed, let 0 = r0 < r1 < .. . < rn = 1 be a partition of [0,1]. Set t0 = 0 and
tn = L (γ) and set ti := τ(ri) for i = 1, . . . ,n−1. Then γ̂(ti) = γ(ri). By monotonicity
of τ we have 0 = t1 ≤ t2 ≤ . . . ≤ tn = L (γ). It might happen that we have equality
ti = ti−1 but then τ(ri) = τ(ri−1) which by the argument above means γ̂(ti) = γ̂(ti−1)
and thus d(γ̂(ti), γ̂(ti−1)) = 0. Consequently we have

n

∑
i=1

d(γ(ri),γ(ri−1)) =
n

∑
i=1

d(γ̂(ti), γ̂(ti−1))≤ L (γ̂).

Taking the supremum of all partitions of [0,1] we have
L (γ)≤ L (γ̂). (7)

For the other direction let 0 = t0 < t1 < .. . < tn = L (γ) be any partition of [0,L (γ)].
We now create a new partition 0 = r0 < .. . < ri < .. . < rn = 1 such that τ(ri) = ti,
and thus by the definition of γ̂ , γ(ri) = γ̂(ti). We set r0 := 0 and rn := 1. We define
ri to be any ri ∈ (0,1) such that τ(ri) = ti, this choice of ri may not be unique but
from the intermediate value theorem at least one such ri must exists. Since ti−1 < ti
for all i, from the monotonicity of τ we conclude that ri−1 < ri for all i, and thus
0 = r0 < r1 < .. . < rn = 1 is the desired new partition of [0,1]. We then have

n

∑
i=1

d(γ̂(ti), γ̂(ti−1)) =
n

∑
i=1

d(γ(ri),γ(ri−1))≤ L (γ).

Taking the supremum over all partitions of [0,L (γ)] we conclude
L (γ̂)≤ L (γ). (8)

Together, (7) and (8) imply

L (γ̂) = L (γ).
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Next, we observe that the definition of the length of a curve implies

d(γ(t),γ(s))
(4)
≤ L

(
γ |[s,t]

)
=
∣∣L (

γ|[0,t]
)
−L

(
γ|[0,s]

)∣∣= |τ(t)− τ(s)|.

Let ŝ, t̂ ∈ [0,L (γ)] and take any s, t ∈ [0,1] such that τ(s) = ŝ, τ(t) = t̂. Then
d(γ̂(t̂), γ̂(ŝ))d(γ(t),γ(s))≤ |τ(t)− τ(s)|= |t̂ − ŝ|.

Thus, γ̂ is Lipschitz continuous, albeit with the wrong constant, which is easy to fix.

Set
γ̃(s) := γ̂(L (γ)s), s ∈ [0,1].

Then we have
d(γ̃(s), γ̃(t))≤ L (γ)|s− t| ∀s, t ∈ [0,1].

The Arzelá-Ascoli theorem, Theorem 8, will play a crucial role in constructing a
candidate for a shortest curve in the Heisenberg group. Another important ingredient
is the following lower semicontinuity of the length.

Proposition 10 (Lower semicontinuity of the length functional). Let (X ,d) be a metric
space, and {γn}n∈N be a sequence of curves into X. If γn converges pointwise to a
curve, γ , in X, then

L (γ)≤ liminf
n→∞

L (γn)

Proof. As discussed above, without loss of generality we can assume that all curves
γn : [0,1]→ X .

Let ε > 0 be arbitrary. Since
L (γ) = sup

p∈P
∑
i≥1

(d(γ(ti),γ(ti−1))

where P is the set of partitions of [0,1], we can find a specific partition, µ =(t0, t1, . . . , tm),
such that

L (γ)<

(
∑

ti∈µ,i≥1
d(γ(ti),γ(ti−1))

)
+

ε

2
.

By pointwise convergence γn(t)
n→∞−−−→ γ(t) for each fixed t, we can find N ∈ N such

that
d(γn(ti),γ(ti))<

ε

4m
∀i = 0, . . . ,m, ∀n ≥ N.

Then,
d(γ(ti),γ(ti−1)≤ d(γ(ti),γn(ti))+d(γn(ti),γn(ti−1))+d(γn(ti−1),γ(ti−1))

<
ε

4m
+d(γn(ti),γn(ti−1))+

ε

4m

= d(γn(ti),γn(ti−1))+
ε

2m
.

Thus,
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L (γ)<

(
∑

ti∈µ,i≥1
d(γn(ti),γn(ti−1))

)
+

ε

2
+

ε

2
.

Finally, since
L (γn) = sup

µ∈P
∑

ti∈µ,i≥1
(d(γn(ti),γn(ti−1))

we have
∑

ti∈µ,i≥1
d(γn(ti),γn(ti−1))≤ L (γn).

Thus we have shown,
L (γ)< L (γn)+ ε, ∀n ≥ N.

In particular
L (γ)< liminf

n→∞
L (γn)+ ε.

This holds for any ε > 0, letting ε → 0 we conclude
L (γ)≤ liminf

n→∞
L (γn).

From Arzelá-Ascoli theorem, Theorem 8, and the observations above we obtain the
existence of shortest curves in the following sense.

Theorem 11. Let (X ,d) be any complete metric space and E ⊂ X be a compact set.
Let p̸=q ∈ E such that there exists a continuous curve γ0 : [0,1]→ E of finite length
L (γ0)< ∞ and γ0(0) = p and γ0(1) = q. Then there exists a geodesic between p and
q, i.e. a curve γ : [0,1]→ E such that γ(0) = p and γ(1) = q and such that

L (γ) = inf
γ̃

L (γ̃)

where the infimum is taken over all continuous curves γ̃ : [0,1]→ E with γ̃(0) = p and
γ̃(1) = q.

It is important to note that above the notion of “shortest curve” is with respect to E not
with respect to X , and this might lead to a different notion of what is a shortest curve.
Take for example a compact banana-shaped set E in R3. The straight line from top to
bottom of the banana E is likely to not lie within E, so it is not the shortest curve in
E!

Proof of Theorem 11. For simplicity we assume X = E. Since there exists one curve
connecting p and q with finite length we have

I := inf
γ̃

L (γ̃) ∈ [0,∞).

Since there exists one curve connecting p and q there also must be a “minimizing
sequence”

γk : [0,1]→ X of finite length, L (γ0)< ∞, and γk(0) = p and γk(1) = q

such that
L (γk)

k→∞−−−→ I.
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We may even assume that

I ≤ L (γk)≤ I +
1
k

∀k.

By Proposition 9 we may assume without loss of generality (otherwise use γ̃k instead
of γk)

|γk(x)− γk(y)| ≤
(

I +
1
k

)
|x− y| ∀x,y ∈ [0,1], k ∈ N.

By Arzelá-Ascoli, Theorem 8, we may assume that we have uniform convergence to
some continuous γ : [0,1]→ X , otherwise we could pass yet again to a subsequence.

Then, by lower semicontinuity of the length, Proposition 10, we have
L (γ)≤ liminf

k→∞
L (γk)

This means

I ≤ L (γ)≤ liminf
k→∞

L (γk) = I.

So γ is a shortest curve.

3 Horizontal Curves in the Heisenberg Group

Recall that a differentiable curve γ : [0,1]→ R3 is called horizontal if (2) holds. In this
section we compute important properties of horizontal curves that we will use in the
proofs of both our main theorems.

Proposition 12. If γ ∈C2([0,1]) and (2) holds. Then

lim
s→t

γ3(t)−γ3(s)
t−s +2

(
(γ2(t)−γ2(s))

t−s γ1(s)− (γ1(t)−γ1(s))
t−s γ2(s)

)
t − s

= 0.

The convergence rate is uniform in t.

Proof. Since γ is C2, we have

γ(s) = γ(t)+(s− t)γ̇(t)+
1
2

γ̈(t)(s− t)2 +o(|t − s|2).

and o is uniform in the domain of γ .

Then,
γ3(t)−γ3(s)

t−s +2
(
(γ2(t)−γ2(s))

t−s γ1(s)− (γ1(t)−γ1(s))
t−s γ2(s)

)
t − s

=
γ̇3(t)− 1

2 γ̈3(t)(t − s)+2
((

γ̇2(t)− 1
2 γ̈2(t)(t − s)

)
γ1(s)−

(
γ̇1(t)− 1

2 γ̈1(t)(t − s)
)

γ2(s)
)

t − s
+o(1)
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=
− 1

2 γ̈3(t)(t − s)+2
((
− 1

2 γ̈2(t)(t − s)
)

γ1(s)−
(
− 1

2 γ̈1(t)(t − s)
)

γ2(s)
)

t − s

+
γ̇3(t)+2

((
γ̇2(t)

)
γ1(s)−

(
γ̇1(t)

)
γ2(s)

)
t − s

+o(1)

=− 1
2

γ̈
3(t)+2

(
−1

2
γ̈

2(t)γ1(t)+
1
2

γ̈
1(t)γ2(t)

)
+o(1)

+
γ̇3(t)+2

((
γ̇2(t)

)
γ1(s)−

(
γ̇1(t)

)
γ2(s)

)
t − s

+o(1)

We define

f (s) := γ̇
3(t)+2

((
γ̇

2(t)
)

γ
1(s)−

(
γ̇

1(t)
)

γ
2(s)

)
and, we observe that by horizontality, f (t) = 0. Thus

f (s)
t − s

=− f (s)− f (t)
s− t

=− f ′(t)+o(1)

Then, we have

f ′(s) = 2
((

γ̇
2(t)
)

γ̇
1(s)−

(
γ̇

1(t)
)

γ̇
2(s)

)
So

f ′(t) = 2
((

γ̇
2(t)
)

γ̇
1(t)−

(
γ̇

1(t)
)

γ̇
2(t)
)

Consequently,

γ3(t)−γ3(s)
t−s +2

(
(γ2(t)−γ2(s))

t−s γ1(s)− (γ1(t)−γ1(s))
t−s γ2(s)

)
t − s

=− 1
2

γ̈
3(t)+2

(
−1

2
γ̈

2(t)γ1(t)+
1
2

γ̈
1(t)γ2(t)

)
+o(1)

−
(
2
((

γ̇
2(t)
)

γ̇
1(t)−

(
γ̇

1(t)
)

γ̇
2(t)
))

+o(1)
+o(1)

=− 1
2

d
dt

γ̇
3(t)+2

(
γ̇

2(t)γ1(t)− γ̇
1(t)γ2(t)

)
− 1

2
−2
(
γ̇

2(t)γ̇1(t)− γ̇
1(t)γ̇2(t)

)
−
(
+2
((

γ̇
2(t)
)

γ̇
1(t)−

(
γ̇

1(t)
)

γ̇
2(t)
))

+o(1)
=0

−
(
+1
((

γ̇
2(t)
)

γ̇
1(t)−

(
γ̇

1(t)
)

γ̇
2(t)
))

+o(1)
=o(1).
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Then

lim
s→t

γ3(t)−γ3(s)
t−s +2

(
(γ2(t)−γ2(s))

t−s γ1(s)− (γ1(t)−γ1(s))
t−s γ2(s)

)
t − s

= 0.

as desired.

Then,

lim
s→t

[
|γ1(t)− γ1(s)|2 + |γ2(t)− γ2(s)|2 +

∣∣γ3(t)− γ3(s)+2
((

γ2(t)− γ2(s)
)

γ1(s)−
(
γ1(t)− γ1(s)

)
γ2(s)

)∣∣]2
|t − s|4

= lim
s→t

|γ1(t)− γ1(s)|2 + |γ2(t)− γ2(s)|22

|t − s|4

= lim
s→t

|γ1(t)− γ1(s)|4 +2|γ1(t)− γ1(s)|2|γ2(t)− γ2(s)|2 + |γ2(t)− γ2(s)|4

|t − s|4

= lim
s→t

(
|γ1(t)− γ1(s)|

|t − s|

)4

+2
(
|γ1(t)− γ1(s)|

|t − s|

)2( |γ2(t)− γ2(s)|
|t − s|

)2

+

(
|γ2(t)− γ2(s)|

|t − s|

)4

=γ̇
1(t)4 +2γ̇

1(t)2
γ̇

2(t)2 + γ̇
4(t) =

(
γ̇

1(t)2 + γ̇
2(t)2)2

and the convergence is uniformly in t by the above considerations.

From Proposition 12 we readily obtain

Corollary 13. If γ ∈C2([0,1],R3) and (2) holds
dK(γ(t),γ(s))

|t − s|
s→t−−→

√
γ̇1(t)2 + γ̇2(t)2

The convergence is uniform in t. In particular we have

LK(γ)< ∞.

4 Existence of Shortest Curves in the Heisenberg Group
In this section we want to show Theorem 1.

Of course we would like to apply Theorem 11, however we need to be careful with the
compactness assumption in that theorem, since H1 is not compact. However, one could
justifiably believe that any curve γ : [0,1]→H1 which goes too far away from p and
q is not a good candidate for shortest curve. We need to quantify this and for this we
compare the Korányi metric locally with the Euclidean metric.

Lemma 14. Let K ⊂ R3 be compact (in the sense of the Euclidean metric). Then
K ⊂H1 is compact (in the sense of the Korányi metric).

Proof. Since K is compact as Euclidean set R3 it is bounded and thus there must be
some Λ > 0 such that

max{|p1|, |p2|, |p2|}< Λ ∀p = (p1, p2, p3) ∈ K.
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Using repeatedly Young’s inequality 2ab ≤ a2 +b2 we find that for p,q ∈ K

dK(q, p) =(|p1 −q1|2 + |p2 −q2|2
2
+ |p3 −q3 +2(p2q1 − p1q2)|2)

1
4

≤(|p1 −q1|2 + |p2 −q2|2
2
+2 |p3 −q3|2 +2 |2(p2q1 − p1q2)|2)

1
4

=(|p1 −q1|2 + |p2 −q2|2
2
+2 |p3 −q3|2 +2 |2(p2 −q2)q1 +(q1 − p1)q2)|2)

1
4

≤(|p1 −q1|2 + |p2 −q2|2
2
+2 |p3 −q3|2 +8(|p2 −q2|Λ+ |q1 − p1|Λ))2)

1
4

We conclude that for each ε > 0 there exists δ > 0 such that if p,q ∈ K and |p−q|< δ

(in the Euclidean sense) then dK(p,q)< ε .

In particular any (Euclidean) converging sequence in K also converges in the sense of
the Korányi metric dK . Thus K is also compact in the Korányi sense.

The following lemma shows that “far away” in the Euclidean sense implies “far away”
in the Korányi sense.

Lemma 15. Fix q ∈ R3. For any Λ > 0 there exists Θ > 0 such that the following is
true: if for some p ∈ R3 we have

|p−q|> Θ

then
dK(p,q)> Λ.

Proof. Observe that for any p,q ∈ R3

dK(p,q)2 ≥ |p3 −q3 +2(p2q1 − p1q2)|= |p3 −q3 +2((p2 −q2)q1 +q1q2 − (p1 −q1)q2

−q1q2)|
= |p3 −q3 +2((p2 −q2)q1 − (p1 −q1)q2|
≥ (|p3 −q3|−2 |q1(p2 −q2)−q2(p1 −q1)|)
≥ (|p3 −q3|−2(|q1||p2 −q2|+ |q2||p1 −q1|))
≥ (|p3 −q3|−2(|q1||p2 −q2|+ |q2||p1 −q1|))

Now fix q = (q1,q2,q3) ∈ R3 and Λ > 0 and set
Γ := |q1|+ |q2|.

Take Θ > 0 so that the following conditions are satisfied: Θ >
√

3Λ and 1√
3
Θ−2ΓΛ >

Λ2.

Now take p = (p1, p2, p3) ∈ R3 such that
|p−q|> Θ.

Then
max{|p1 −q1|, |p2 −q2|, |p3 −q3|}>

1√
3

Θ.

Then either
max{|p1 −q1|, |p2 −q2|}> Λ

or
|p3 −q3|>

1√
3

Θ.
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From the above estimates we have
dK(p,q)≥ max

{
|p1 −q1|, |p2 −q2|,(|p3 −q3|−2(|q1||p2 −q2|+ |q2||p1 −q1|))

1
2

}
In the case that max{|p1 −q1|, |p2 −q2|}> Λ we conclude that

dK(p,q)> Λ,

and we are done. If on the other hand both |p1 − q1| or |p2 − q2| < Λ then we have
|p3 −q3|> 1√

3
Θ and thus

dK(p,q)2 ≥|p3 −q3|−2(|q1||p2 −q2|+ |q2||p1 −q1|)

≥ 1√
3

Θ−2ΓΛ

Again in this case, by the choice of Θ we find that
dK(p,q)2 > Λ

2,

and we can conclude dK(p,q)> Λ as desired.

Proof of Theorem 1. Fix p,q ∈ R3. There exists a smooth horizontal curve γ̃ connect-
ing p and q, take for example the Lcc-geodesic from [3], and in view of Corollary 13 γ̃

has finite length: LK(γ̃)< ∞.

Let R > 0 such that for any r ∈ R3 with |p− r|> R we have in view of Lemma 15
dK(p,r)> LK(γ̃).

This implies that any continuous curve γ : [0,1]→ R3 with γ(0) = p and γ(1) = q and
|γ(t)− p|> R for any t ∈ (0,1) we have

LK(γ)> LK(γ̃).

Set E := {r ∈R3 : |r− p| ≤ R} which is a compact set in the Euclidean sense, and thus
in view of Lemma 14 also in the Korányi sense. Then we have shown that

inf
γ:[0,1]→E

LK(γ) = inf
γ:[0,1]→R3

LK(γ),

where both infima are taken over continuous curves γ with γ(0) = p and γ(1) = q. Now
we can finally apply Theorem 11. Thus, there is a shortest curve between p and q.

5 Length of Curves in the Heisenberg Group – Proof of
Theorem 2

In this section we show that

Lcc(γ) = LK(γ),

whenever γ ∈C2 is a horizontal curve, i.e. whenever γ satisfies (2).

Proof of Theorem 2. From (2) in particular,
d
dt

(
γ̇

3(t)+2
(
γ̇

2(t)γ1(t)− γ̇
1(t)γ2(t)

))
= 0
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We apply Proposition 12 and obtain

lim
s→t

(
dK(γ(t),γ(s))

|t − s|

)4

= lim
s→t

|γ1(t)− γ1(s)|2 + |γ2(t)− γ2(s)|22

|t − s|4

= lim
s→t

|γ1(t)− γ1(s)|4 +2|γ1(t)− γ1(s)|2|γ2(t)− γ2(s)|2 + |γ2(t)− γ2(s)|4

|t − s|4

= lim
s→t

(
|γ1(t)− γ1(s)|

|t − s|

)4

+2
(
|γ1(t)− γ1(s)|

|t − s|

)2( |γ2(t)− γ2(s)|
|t − s|

)2

+

(
|γ2(t)− γ2(s)|

|t − s|

)4

=γ̇
1(t)4 +2γ̇

1(t)2
γ̇

2(t)2 + γ̇
4(t) =

(
γ̇

1(t)2 + γ̇
2(t)2)2

Then, taking the fourth root,

lim
s→t

dK(γ(t),γ(s))
|t − s|

=
√

γ̇1(t)2 + γ̇2(t)2

Proof of Lcc(γ) = LK(γ) if γ is horizontal. From Corollary 19, we see that

lim
s→t

dK(γ(t),γ(s))
|t − s|

=
√

γ̇1(t)2 + γ̇2(t)2

uniformly in t. Then, from the above limit, given some ε > 0 choose δ > 0, such that
when |ti − ti−1|< δ , we have∣∣∣∣d(γ(ti),γ(ti−1))

|ti − ti−1|
−
√

|γ̇1(ti)|2 + |γ̇2(ti)|2
∣∣∣∣< ε.

Multiplying by |ti − ti−1|,∣∣∣∣d(γ(ti),γ(ti−1))

|ti − ti−1|
|ti − ti−1|−

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|

∣∣∣∣< ε|ti − ti−1|.

Now, let P be the set of partitions of [0,1] such that for any µ ∈ P , we have
|ti − ti−1|< δ for each ti in µ . Then, for a given µ ∈ P ,

∑
ti∈µ,i≥1

∣∣∣∣d(γ(ti),γ(ti−1))

|ti − ti−1|
|ti − ti−1|−

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|

∣∣∣∣< ε ∑
ti∈µ,i≥1

|ti − ti−1|︸ ︷︷ ︸
=1

= ε

So, we get∣∣∣∣∣ ∑
ti∈µ,i≥1

d(γ(ti),γ(ti−1))

|ti − ti−1|
|ti − ti−1|− ∑

ti∈µ,i≥1

√
|γ̇1(ti)|2|γ̇2(ti)|2|ti − ti−1|

∣∣∣∣∣
=

∣∣∣∣∣ ∑
ti∈µ,i≥1

d(γ(ti),γ(ti−1))− ∑
ti∈µ,i≥1

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|

∣∣∣∣∣< ε
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Then,

ε > sup
µ∈P

∣∣∣∣∣ ∑
ti∈µ,i≥1

d(γ(ti),γ(ti−1))− ∑
ti∈µ,i≥1

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|

∣∣∣∣∣
≥ sup

µ∈P

∣∣∣∣∣ ∑
ti∈µ,i≥1

d(γ(ti),γ(ti−1))

∣∣∣∣∣− sup
µ∈P

∣∣∣∣∣ ∑
ti∈µ,i≥1

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|

∣∣∣∣∣
= LK(γ)− sup

µ∈P

∣∣∣∣∣ ∑
ti∈µ,i≥1

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|

∣∣∣∣∣
Similarly,

ε > sup
µ∈P

∣∣∣∣∣ ∑
ti∈µ,i≥1

d(γ(ti),γ(ti−1))− ∑
ti∈µ,i≥1

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|

∣∣∣∣∣
≥ sup

µ∈P

∣∣∣∣∣ ∑
ti∈µ,i≥1

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|

∣∣∣∣∣− sup
µ∈P

∣∣∣∣∣ ∑
ti∈µ,i≥1

d(γ(ti),γ(ti−1))

∣∣∣∣∣
= sup

µ∈P

∣∣∣∣∣ ∑
ti∈µ,i≥1

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|

∣∣∣∣∣−LK(γ)

That is,

ε >

∣∣∣∣∣ sup
µ∈P

∣∣∣∣∣ ∑
ti∈µ,i≥1

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|

∣∣∣∣∣−LK(γ)

∣∣∣∣∣
So, we have

∣∣∣∣∣LK(γ)− sup
µ∈P

∣∣∣∣∣ ∑
ti∈µ,i≥1

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|

∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣LK(γ)− sup
µ∈P

∑
ti∈µ,i≥1

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|

∣∣∣∣∣< ε

Note that, since γ̇ is continuous, the function√
|γ̇1(ti)|2 + |γ̇2(ti)|2

is continuous and hence integrable. So,

∑
ti∈µ,i≥1

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|

is a Riemann Sum, and

sup
µ∈P

∑
ti∈µ,i≥1

√
|γ̇1(ti)|2 + |γ̇2(ti)|2|ti − ti−1|=

∫ 1

0

√
|γ̇1(t)|2 + |γ̇2(t)|2dt
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Then, ∣∣∣∣LK(γ)−
∫ 1

0

√
|γ̇1(t)|2 + |γ̇2(t)|2dt

∣∣∣∣< ε

This holds for any ε > 0, so letting ε → 0 we conclude

LK(γ) =
∫ 1

0

√
|γ̇1(t)|2 + |γ̇2(t)|2dt.

This proves Lcc(γ) = LK(γ) which in particular implies Theorem 2.
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Abstract
In this paper we investigate the numerical range of 3× 3 matrices over finite fields,
particularly when the matrix is strictly triangular. We provide a conjecture for this case
that extends to n×n matrices for n ≥ 3 and also provide sample code for generating
the numerical range.

1 Introduction
Numerical ranges of matrices over C have been studied extensively, most notably by
Hausdorff, Toeplitz, and Kippenhahn. Investigation into numerical ranges over finite
fields was initiated in [3] and has been continued in several papers of Ballico (see
e.g. [1], [2]). Here we require our field to be of characteristic p where p ≡ 3 mod 4,
ensuring that the element −1 is not a quadratic residue in Zp, so that i has a proper
analog to its use in C.

Let p be a prime congruent to 3 mod 4, and define Zp[i] as the Galois Field of order
p2 in the form {a+ bi : a,b ∈ Z}. Mn(Zp[i]) denotes the set of n× n matrices with
entries in Zp[i]. The numerical range of matrix M ∈ Mn(Zp[i]) is defined as W (M) =
{x∗Mx : x ∈ Zp[i]n,∥x∥2 = x∗x = 1} with x∗ representing the conjugate transpose of x.
Thus, W (M) forms a set in Zp[i]. The authors in [3] also introduce the concept of the
k-th numerical range, Wk(M) = {x∗Mx : x ∈ Zp[i]n,∥x∥2 = x∗x = k ∈ Zp}. (Here, then,
W (M) =W1(M).)

*Corresponding author: ariel.j.russell@gmail.com

mailto:(ariel.j.russell@gmail.com
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In [3], work is primarily focused on upper triangular 2×2 matrices. In no 2×2 matrix
do we see a numerical range that includes every element of Zp[i]. It seems one more
dimension is needed: in all of our testing, every strictly triangular matrix of dimension
3 or higher had W (M) = Zp[i]. The goal of this paper is to make as much progress
towards that conjecture as possible.

2 Preliminaries

Our proofs in the following sections depend on some key tools. In particular, we
frequently attempt to remove one of the entries of an input vector x from the expression
x∗Mx, so that the missing entry can ensure that ∥x∥2 = 1. The validity of this technique
comes from the following two lemmas; the first justifies the second.

Lemma 1. [3, Lemma 2.1] For all primes p congruent to 3 mod 4, and for all k ∈ Zp,
there exists t,s ∈ Zp for which t2 + s2 = k.

Lemma 2. [6, Lemma 5] Let p be a prime congruent to 3 mod 4. For all k ∈ Zp and
all x ∈ Zp[i], there exists a y ∈ Zp[i] for which |x|2 + |y|2 ≡ k mod p.

More generally, we will often use unitary equivalence, scaling, and shifting to simplify
our calculations. In particular, since for all of our work the resulting numerical range is
all of Zp[i], any scaling or shifting leaves the result invariant.

Definition 3. [3, Definition 2.5] Let p be a prime congruent to 3 modulo 4 and let
U ∈ Mn(Zp[i]). We call U a unitary matrix if U∗U = I.

Lemma 4. [3, Lemma 2.6] Let M,U ∈ Mn(Zp[i]) with U unitary and p a prime
congruent to 3 mod 4. Then, W (M) =W (U∗MU).

Lemma 5. [3, Lemma 2.7] Let p be a prime congruent to 3 mod 4 and let M ∈
Mn(Zp[i]). For any a,b ∈ Zp[i] we have W (aM+bI) = aW (M)+b.

3 A 0 Entry Above the Diagonal

The following two lemmas appear in an oversimplified form in [6] and in a setting
too complex for our needs in [2], and so are reconstructed here. They also have
farther-reaching implications than noted in either of those papers, as seen later in this
section.

Lemma 6. For all primes p ≡ 3 mod 4, W (M) = Zp[i] where M ∈ M3(Zp[i]) is given
by

M =

0 0 a
0 0 0
0 0 0


with a ̸= 0 in Zp[i], or any other 3×3 matrix with a single non-zero entry in Zp[i] off
of the main diagonal.
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Proof. First, assume

M =

0 0 a
0 0 0
0 0 0

 .

Define x = (x1 x2 x3)
T , and let x∗Mx = ax3x1 represent elements in the numerical

range. (Note: x1 represents the conjugate of x1.) For an arbitrary element k ∈ Zp[i], let
x1 = 1, and x3 = a−1k, so that x∗Mx = k. By Lemma 2, there exists x2 ∈ Zp[i] such that
|x2|2 + |x3|2 ≡ 0 mod p, so that |x1|2 + |x2|2 + |x3|2 = 1. Since k can be any element
of Zp[i] we have W (M) = Zp[i].

If a is in one of the other five spots off of the main diagonal, there is a permutation
matrix P so that P∗MP has a in the top-right corner. Since permutation matrices are
unitary, by Lemma 4, we still have W (M) = Zp[i].

Lemma 7. For all primes p ≡ 3 mod 4, W (M) = Zp[i] where M ∈ M3(Zp[i]) is given
by

M =

0 a 0
0 0 c
0 0 0


where a,c ̸= 0, or any other 3×3 matrix with exactly two non-zero entries, either both
above the main diagonal, or both below the main diagonal.

Proof. First assume

M =

0 a 0
0 0 c
0 0 0

 .

Consider x∗Mx = ax2x1 + cx3x2. We will again consider a subset of the numerical
range by stipulating that x2 = 1.

First, we show that there is a non-zero element in this set. Letting x3 = c−1, we have that
|x1|2 ≡−|c−1|2. By Lemma 1, there exists A,B ∈ Zp such that A2 +B2 ≡−|c−1|2, so
we will let x1 = A+Bi. Then x∗Mx = a(A−Bi)+1. This is only 0 if −a−1 = (A−Bi),
in which case we can instead begin by choosing x3 =−c−1, and use the same choice
for x1.

Now, let ax1+cx3 be a fixed non-zero quantity with the constraint that |x1|2+ |x3|2 ≡ 0.
Let us now consider kx1 and kx3 where k is an arbitrary element of Zp[i]. Note that
|kx1|2+ |kx3|2 = |k|2|x1|2+ |k|2|x3|2 = |k|2(|x1|2+ |x3|2) = |k|2(0) = 0, which satisfies
the constraint. Then, the output becomes akx1 + kcx3 = k(ax1 + cx3). Since ax1 + cx3
is fixed and k varies over all of Zp[i], we have that k(ax1 + cx3) maps to every element
of Zp[i], since k → a−1k is an automorphism of Zp[i] (where a−1 = ax1+cx3 ∈ Zp[i]∗).
Therefore, W (M) = Zp[i].

Now, if M has its two non-zero elements in other entries off of the main diagonal, the
roles of x1,x2,x3 can be adjusted accordingly to achieve the same result. For example,

if M =

0 a c
0 0 0
0 0 0

, let x1 = 1 and apply the same argument to ax2 + cx3. Similarly,
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if M =

0 0 a
0 0 c
0 0 0

, let x3 = 1 and apply the argument to ax1 + cx2. If M is instead

strictly lower triangular, then conjugation by the standard exchange matrix (which
is unitary) will change it to a strictly upper triangular matrix, while preserving the
numerical range, so that the prior results may be applied.

In [2], Lemmas 6 and 7 are considered only as 3× 3 without considering higher
dimensions, and in [6] little variance is given to where the entries appear and with what
values, although higher dimensions are considered. However by using submatrices,
these results extend to matrices of arbitrary size.

Lemma 8. Suppose Mi is a principal submatrix of M created by deleting the ith row
and ith column of M. Then W (Mi)⊆W (M).

Proof. If x′ is generated from x∈Zp[i]n−1 by inserting a 0 in position i, then ∥x′∥= ∥x∥
and ⟨x′,Mx′⟩= ⟨x,Mix⟩.

Theorem 9. Suppose M ̸= 0 is an n×n triangular matrix with elements in Zp[i] and
n ≥ 3, and a constant diagonal. Suppose also that at least one element above the
main diagonal (if M is upper triangular) or below the main diagonal (if M is lower
triangular) is 0. Then W (M) = Zp[i].

Proof. If M is strictly lower triangular, it is unitarily equivalent by a permutation matrix
(the standard exchange matrix) to a strictly upper triangular matrix, so we will assume
M is strictly upper triangular without loss of generality.

We will proceed by induction on n. For the base case (n = 3), the statement is a direct
corollary of Lemmas 6 and 7.

Suppose n ≥ 4, and assume for any strictly upper triangular, non-zero (n−1)× (n−1)
matrix with at least one 0 above the main diagonal and all entries in Zp[i], the numerical
range is Zp[i].

If the constant diagonal is not 0, then we may use Lemma 5 and achieve the same
result.

For an n×n matrix M with the same hypotheses, consider the principal submatrix Mi
by deleting a row and corresponding column which does not remove all of the zeroes
above the diagonal. If Mi is the zero matrix, since n ≥ 4, there are other rows and
corresponding columns that can be instead deleted so that Mi is not 0, while keeping at
least one 0 above the diagonal. Once Mi is correctly chosen, by our inductive hypothesis,
W (Mi) = Zp[i]. Then by Lemma 8, Zp[i] =W (Mi)⊆W (M), so W (M) = Zp[i].

There is a clear third case missing: what if all three entries above the diagonal in a
3×3 matrix are non-zero? Unfortunately, this problem has proved particularly vexing.
Testing indicates that all strictly triangular matrices M have W (M) = Zp[i], but we are
unable to resolve the last piece of the puzzle. In the next section, we will achieve some
results in this situation for 4×4 matrices and higher.
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It is also worth noting that we are considering strictly triangular matrices for another
reason beyond simplicity of calculations. In, [3, Example 4.1] a block-reduced upper
triangular 3×3 matrix is shown with W (M) ̸= Zp[i].However, while maintaining some
0 entries above the diagonal, we are able to allow some more variance along the
diagonal. This next result can be conjugated by permutations to give results for other
similar 3×3 matrices, but this specific form will be useful in the next section, so we
leave it as is.

Conjecture 3.5 Suppose M is a 3×3 matrix of the form

M =

a b 0
0 a 0
0 0 0


with all elements in Zp[i], b ̸= 0. Then W (M) = Zp[i].

Though we have not completed a proof for this conjecture, we believe such a proof
would be possible. As we will show in the next section, the consequences of this
conjecture could expand our results to new dimensions.

4 No 0 Entries Above the Diagonal
Here we are able to make progress on some strictly triangular 4× 4 matrices with
no 0 entries above the diagonal, and then generalize to higher dimensions. The work
depends on results about 2×2 matrices.

Theorem 10. Suppose

M =


0 a b c
0 0 d e
0 0 0 f
0 0 0 0


with a,b,c,d,e, f ̸= 0 belonging to Zp[i]. Suppose further that the 2×2 matrix

T =

(
−a−1bd ( f −a−1be)
−a−1cd −a−1ce

)
is such that any element of Zp[i] can be represented as y∗Ty where y ∈ Zp[i]2. Then
W (M) = Zp[i].

Proof. Keep in mind that if x = (x1 x2 x3 x4)
T is a vector with entries in Zp[i], then a

typical numerical range element looks like:
x∗Mx = x1(ax2 +bx3 + cx4)+ x2(dx3 + ex4)+ f x3x4.

Since a ̸= 0, it is invertible, we can let x2 = −a−1(bx3 + cx4). Then, the expression
becomes

x1(ax2 +bx3 + cx4)+ x2(dx3 + ex4)+ f x3x4 = (1)

0−a−1(bx3 + cx4)(dx3 + ex4)+ f x3x4 = (2)

−a−1bd|x3|2 −a−1ce|x4|2 +( f −a−1be)x3x4 −a−1cdx4x3. (3)
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And this final expression represents y∗Ty if y = (x3 x4)
T and

T =

(
−a−1bd ( f −a−1be)
−a−1cd −a−1ce

)
.

Note that while we are assuming x2 has a specific form, we have made no assumptions
about x1,x3,x4. We can let x3,x4 be any values in Zp[i], and by Lemma 2, x1 can
always be chosen so that |x1|2 + |x2|2 + |x3|2 + |x4|2 = 1. Since we assume that y∗Ty
can represent any element of Zp[i] when x3 and x4 can be freely chosen, we are done.

The assumption of representation in the Theorem 10 is equivalent to requiring that the
2×2 matrix T satisfies

⋃
k∈Zp Wk(T ) = Zp[i]. Prior work in [6] and [3] help answer

this question.

Lemma 11 ([6, Lemma 10]). Let A ∈ Mn(Zp[i]) and let B be the block matrix
(

A 0
0 0

)
.

Then W (B) =
⋃

k∈Zp Wk(A).

In [3]; 2× 2 numerical ranges are largely reduced to a few specific cases; we will
consider those as parts of 3×3 block matrices in the following proof.

Proposition 12 (Corollary of Conjecture 3.5). Suppose M ∈ M2(Zp[i]) has a single
(repeated) eigenvalue in Zp[i], with corresponding eigenvectors v ∈ Zp[i]2 satisfying
∥v∥2 ̸= 0, and M is irreducible. Then

⋃
k∈Zp Wk(M) = Zp[i].

Proof. By Lemma 11, we need only show that for any such M, W (B) = Zp[i] where

B =

(
M 0
0 0

)
. By [3, Theorem 1.2], M is unitarily equivalent to an upper triangular

matrix; since it has a single eigenvalue, we can write M =

(
a b
0 a

)
. By Conjecture 3.5

and Lemma 4.2, W (B) =
⋃

k∈Zp Wk(M) = Zp[i].

Putting these together, we can see a clearer form of Theorem 10.

Proposition 13 (Corollary of Conjecture 3.5). Suppose

M =


0 a b c
0 0 d e
0 0 0 f
0 0 0 0


with a,b,c,d,e, f ̸= 0 belonging to Zp[i]. Suppose further that the 2×2 matrix

T =

(
−a−1bd ( f −a−1be)
−a−1cd −a−1ce

)
has a single (repeated) eigenvalue in Zp[i], with all eigenvectors v satisfying ∥v∥2 ̸= 0,
and T is irreducible. Then W (M) = Zp[i].

Proof. The proof follows immediately from Theorem 10 and Proposition 12.
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Corollary 14. Suppose M is an n× n matrix, n ≥ 4, with a constant diagonal and
all entries above the diagonal constant (possibly different from the diagonal). Then
W (M) = Zp[i].

Proof. If n ≥ 4, consider a 4× 4 submatrix M′ of M. By Lemma 5, we need only
consider

M′ =


0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

.

The corresponding 2×2 matrix in Proposition 13 is T =

(
−1 0
−1 −1

)
. This matrix has

a single, repeated eigenvalue in Zp[i], with eigenvector v = (0 1)T satisfying ∥v∥2 ̸= 0,
so the result follows from Proposition 13.

Of course, having results for 4×4 then generalizes to higher dimensions.

Corollary 15. Suppose that M ∈ Mn(Zp[i]),n ≥ 5, has a principal submatrix that
satisfies the conditions of Proposition 13. Then W (M) = Zp[i].

Proof. This follows directly from Theorem 10 and Proposition 12.

Unfortunately, though Theorem 10 and Proposition 12 are sufficient to prove Corollary
15, they are not necessary. The matrix

M =


0 1 4+2i 4+4i
0 0 1+6i 1+6i
0 0 0 2
0 0 0 0


over Z7[i] has a full numerical range, but the corresponding 2×2 matrix

T =

(
5+6i 6i

i i

)
does not have

⋃
k∈Z7

Wk(T ) = Z7[i]. By Lemma 11, this can be seen by viewing W (B)
where

B =

5+6i 6i 0
i i 0
0 0 0

.

That image is shown in Figure 1. It is noteworthy that the eigenvalues of T , 1
2 ((5+

7i)±
√
−24+50i), do not belong to Z7[i].
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Figure 1: W (M) = Z7[i], but
⋃

k∈Z7
Wk(T ) ̸= Z7[i].

5 Future Work

Our biggest concern is finishing the case of 3×3 strictly triangular matrices. We feel
fairly confident in the following conjecture.

Conjecture. If M ∈ Mn(Zp[i]),n ≥ 3 is strictly triangular, then W (M) = Zp[i].

More broadly, we believe, based on our preliminary explorations, that the numerical
range of all 3×3 matrices over Zp[i] can be classified into one of a few finite categories.
Much work still needs done to identify the criteria for determining the size of the
numerical range of a given matrix, but examples of each of these numerical range
shapes may be found in Appendix .

Conjecture. If M ∈ M3(Zp[i]), then W (M) contains either 1 element, p elements,
p2 −1 elements, p2 − (p−1) elements, or p2 elements.

Beyond that, in [3, Propositon 3.4], a variation of Schur’s Theorem for 2×2 matrices
over Zp[i] is established. If that generalizes to higher dimensions, then we have the
following conjecture.

Conjecture. If M ∈ Mn(Zp[i]),n ≥ 3 has a single eigenvalue, belonging to Zp[i], with
all eigenvectors v satisfying ∥v∥2 ̸= 0, then W (M) = Zp[i].
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Appendices

1 Examples of Various Sizes of Numerical Ranges

1.1 W (M) = Z

As established, we have reason to believe that strictly triangular matrices in Z have
W (M) = Z. However, we can see by these examples that such matrices are not the only
matrices to satisfy this.

Consider the following examples of matrices M ∈Z7[i] which satisfy W (M)=Z.

As in Figure 2, each of the following matrices M ∈ Z7[i] satisfies W (M) = Z.

M =

1+4i 5i 4+5i
1+2i 2i 6+2i
2+ i 3+5i 1+6i

• M =

 1+ i 2+6i 6+ i
2+3i 5+6i 3+3i
5+ i 4 i

•

M =

4+6i 3 1+2i
2+ i 4+6i 1+3i

2+4i 2+4i 4i

• M =

4+6i 1+3i 4+2i
4+5i 5+4i 0

3 6+ i 3+6i

•

M =

1 1 1
0 0 1
1 1 0

• M =

1 1 1
1 0 1
1 0 1

•
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Figure 2: The numerical range of M when W (M) = Z7[i]

Figure 3: The numerical range of M when W (M) = Z3[i]

Below, we also have a selection of examples of M ∈ Z3[i] which satisfy W (M) = Z3[i],
as in Figure 3

M =

1 1 1
1 0 1
1 0 1

• M =

1+ i 2 2i
1 0 1
1 0 1+ i

•

M =

1+ i 2 2i
1 i i
2 2i 1+ i

• M =

1 i 1
i 1 i
1 i 1

•

1.2 |W (M)|= p2 −1
We have no current conjecture regarding how to classify these matrices, but in our
exploration we identified several instances of where W (M) contains all but one element
of Z. A selection of examples are given below.

Example. M ∈ Z7[i],M =

 0 6+5i 3i
4+3i 0 6+5i
2+5i 4+3i 0

 with W (M) as shown in Figure
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4.

Figure 4: W (M) with M =

 0 6+5i 3i
4+3i 0 6+5i
2+5i 4+3i 0

 over Z7[i]

Example. M ∈ Z7[i],M =

 4+ i 5+3i 5i
2+3i 1+4i 4i
1+ i 4i 4+3i

 with W (M) as shown in Figure

5.

Figure 5: W (M) with M =

 4+ i 5+3i 5i
2+3i 1+4i 4i
1+ i 4i 4+3i

 over Z7[i]

Example. M ∈ Z3[i],M =

2+2i 2i 2i
1+2i 0 2+2i

1 2 1+2i

 with W (M) as shown in Figure 6.
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Figure 6: W (M) with M =

2+2i 2i 2i
1+2i 0 2+2i

1 2 1+2i

 over Z3[i]

Example. M ∈ Z3[i],M =

 1 2+ i i
2 0 1+ i

2+2i i 0

 with W (M) as shown in Figure

7.

Figure 7: W (M) with M =

 1 2+ i i
2 0 1+ i

2+2i i 0

 over Z3[i]

1.3 |W (M)|= p2 − (p−1)
We also provide here a selection of examples where W (M) is missing p−1 elements
of Z. Intuitively, this means that there is nearly a "line" missing.

Example. M ∈ Z7[i],M =

0 3 5
6 0 3
4 6 0

 with W (M) as shown in Figure 8. You can see

that all elements 6+bi,b ̸= 0 are excluded from the numerical range.
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Figure 8: W (M) with M =

0 3 5
6 0 3
4 6 0

 over Z7[i]

Example. M ∈ Z3[i],M =

 0 2+3i 1+5i
4+6i 0 2+3i
5+4i 4+6i 0

 with W (M) as shown in Figure

9. This matrix is the same as the previous matrix, scaled by a factor of 3+ i. Transfor-
mations like this rotate the numerical range according to the factor it was scaled by. In
Figure 9, the "missing line" is still visible, identifiable with a "slope" of 4.

Figure 9: W (M) with M =

 0 2+3i 1+5i
4+6i 0 2+3i
5+4i 4+6i 0

 over Z7[i]

Example. M ∈ Z3[i],M =

 1+ i 2 i
2+2i 2i 0

i 2+ i 2

 with W (M) as shown in Figure 10.

We see that the elements 1+2i and 2+ i are not included in the numerical range.
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Figure 10: W (M) with M =

 1+ i 2 i
2+2i 2i 0

i 2+ i 2

 over Z3[i]

1.4 |W (M)|= p

Matrices which are equal to their own conjugate transpose have a numerical range of
Zp. Multiples of such matrices have numerical ranges with p elements, rotated off of
the Zp line according the the factor the matrix was scaled by.

Example. M ∈ Z7[i],M =

0 5i 3i
2i 0 5i
4i 2i 0

 with W (M) as shown in Figure 11.

Figure 11: W (M) with M =

0 5i 3i
2i 0 5i
4i 2i 0

 over Z7[i]

Example. M ∈ Z7[i],M =

 0 2+5i 4+3i
5+2i 0 2+5i
3+4i 5+2i 0

 with W (M) as shown in Figure

12. This matrix is the previous example, scaled by a factor of 1+ i.
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Figure 12: W (M) with M =

 0 2+5i 4+3i
5+2i 0 2+5i
3+4i 5+2i 0

 over Z7[i]

1.5 |W (M)|= 1

The zero matrix (or a shifted zero matrix) has only 1 element in its numerical range.

Example. M ∈ Z3[i],M =

0 0 0
0 0 0
0 0 0

 with W (M) as shown in Figure 13.

Figure 13: W (M) with M =

0 0 0
0 0 0
0 0 0

 over Z3[i]

2 Mathematica Code to Replicate Results
In our research, we relied heavily on computation to explore and verify results. We
include key aspects of our Mathematica code here for the purposes of replication. Great
thanks to Amish Mishra for writing the original version of the code, which we have
adapted to be what is included here.
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2.1 Preliminaries

Several functions and variables must be defined in order to calculate and plot the
numerical range of a matrix over a finite field. Since the built-in functions do not
account for finite fields, we must build our own.

p = 3; (* Change for different size finite field *)

plotNumericalRange[numRange_] := (
plotPoints = {};
Do[
AppendTo[
plotPoints, {Re[numRange[[each]][[1]][[1]]],

Im[numRange[[each]][[1]][[1]]]}];
, {each, 1, Length[numRange]}];
ListPlot[plotPoints,
PlotStyle -> Directive[Purple, PointSize[.02]],
AxesLabel -> {Re, Im}]
)

zpi = {};
Do[
Do [
AppendTo[zpi, a + b*I];
, {b, 0, p - 1}];
, {a, 0, p - 1}];

ZpiArray3x3[p_, n_] := (
Module[{Z1, num, Zpi},
Z1 = ConstantArray[0, {p, p, p}]; (* TODO: make this dynamic,
maybe with another ConstantArray? *)
Do[
Clear[num];
Do[
num = a + b*I;
Z1[[a + 1, b + 1]] = num;
, {b, 0, p - 1}]
, {a, 0 , p - 1}];
Zpi = Tuples[Flatten[Z1], {n}];
Zpi
]
)
numericalRange3x3[k_, M_, p_, n_] := (
Module[{numRange, Zpi},
numRange = {};
Zpi = ZpiArray3x3[p, n];
Do[
x = Zpi[[idx]];
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norm = Mod[x.{x}\[ConjugateTranspose], p][[1]];
If[norm == k,
numRangeElem =
Mod[Transpose[{x}]\[ConjugateTranspose].M.Transpose[{x}], p];
If[! MemberQ[numRange, numRangeElem],
AppendTo[numRange, numRangeElem]
]
];
, {idx, 1, Length[Zpi]}];
(* This portion makes all terms of the numerical range the \
positive modulo p. *)
Do[
If[Re[numRange[[idx]]][[1]][[1]] < 0,
numRange[[idx]][[1]][[1]] = numRange[[idx]][[1]][[1]] + p;
];
If[Im[numRange[[idx]]][[1]][[1]] < 0,
numRange[[idx]][[1]][[1]] = numRange[[idx]][[1]][[1]] + p*I;
];
, {idx, 1, Length[numRange]}];
nr = {};
Do[
If[! MemberQ[nr, numRange[[i]]],
AppendTo[nr, numRange[[i]]];
];
, {i, 1, Length[numRange]}];
nr]
)

2.2 Plotting a numerical range
Once we have our functions defined, we can utilize them to calculate and plot a
numerical range.

(* Change M to a 3x3 matrix here. To get an
imaginary symbol, type esc i i esc *)

M = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};

Print["M: ", MatrixForm[M]];
plotNumericalRange[numericalRange3x3[0, M, p, 3]]
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