
Ball State Undergraduate Mathematics Exchange
http://www.bsu.edu/libraries/beneficencepress/mathexchange

Vol. 11, No. 1 (Fall 2017)
Pages 40 – 57

Invariants and Moving Frames for Polygons in

Galilean and Lorentzian Geometries

Thomas Hameister, Phu Nguyen, and
Adrien Bossogo-Egoume

Thomas Hameister is a senior at UW - Madison. He
hopes to pursue a graduate degree next year in mathemat-
ics.

Phu Nguyen is a senior at UW - Madison. He plans to
start working after graduation.

Adrien Bossogo-Egoume graduated from UW - Madi-
son. He currently is studying Aerospace Engineering at
University of Illinois - Urbana-Champaign.

Abstract We study discrete polygons in Lorentzian and Galilean Klein geometries.
We determine explicitly the group-based discrete moving frames for polygons in
Galilean and Lorentzian geometries for one, two, and three spatial dimensions. Using
these, we find a generating set of independent invariants associated to polygons in
these geometries, and we show that given fixed initial conditions, the discrete mov-
ing frames and the invariants in Lorentzian geometry approach those in Galilean
geometry as the speed of light approaches infinity in the general case.

Introduction

Moving frames had their origins in the mid-19th century with the Frenet-Serret mov-
ing frame for continuous curves. Elie Cartan later expanded this concept to group-
based moving frames for smooth manifolds, and intense research has been conducted
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on such frames. Recent developments in mathematics in the last decade have allowed
us to study moving frames for discrete curves or polygons made up of non-connected
points.

Applied algebra and group-based moving frames of curves and smooth surfaces
have already become ubiquitous in applications from physics to computer vision.
However, empirical data are simply collections of points, not continuous objects.
Continuous curves usually function as models simply because we have the tools to
analyze them. Well-known techniques, such as calculus, are available to study con-
tinuous mathematical objects. However, corresponding rigorous techniques still need
to be developed in order to analyze discrete mathematical objects.

In our analysis, we utilize the methods of discrete moving frames. A moving frame
is a frame of reference in which the observer moves along a curve, surface, or even
time. A discrete moving frame is a similar concept, with a frame associated to each
vertex of a polygon. The frame of reference is usually described by an element of the
geometric group. A new subclass of discrete group-based moving frames are associ-
ated to polygons embedded in Klein geometries. These discrete frames provide an
algorithm for computing the invariant generators (or curvatures) for these polygons.

In this paper, we study discrete moving frames and their invariants for polygons
in Galilean and Lorentzian Klein geometries for one, two, and three spatial dimen-
sions. We interpret the resulting invariants geometrically and show that the invariant
matrix of polygons in Lorentzian geometry approaches its Galilean counterpart as the
constant, c, approaches infinity.

Notation and Definitions

Polygons and background geometric manifolds

Definition 1. A polygon on a manifold M , {xn}∞n=−∞, is a sequence of points with
xn ∈ M . We say the polygon is a closed N -gon if xn+N = xn for all n. Assume a group
G is acting on M via the action x ↦ g ⋅x, g ∈ G. We say the polygon is twisted if there
exists g ∈ G such that xn+N = g ⋅xn for all n. The element g is called the monodromy
of the polygon, and a closed polygon is a twisted polygon with the monodromy equal
the identity.

As a point of notation, if xn ∈ Rk, we let

xn = ( βn

b⃗n
)

with βn ∈ R and b⃗n ∈ R
k−1 where k is the total number of dimensions (spatial + 1

dimension of time).

Also crucial to any discussion of Galilean and Lorentzian Klein geometries are the
following groups:

Definition 2. The Lorentz group, Lk, is the set of all Θ ∈ GLk(R) satisfying ΘTJΘ =
J for the Minkowski matrix

J = ( c2 0⃗T

0⃗ −Ik−1 ) . (1)

The Lorentz group preserves inner products and the degenerate metric defined by J .
The Poincaré group is the semidirect product of Lk and R

k, that is, Lk = Lk ⋉ R
k.
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The Poincaré group can be represented by the matrix group

Lk = {( 1 0
v⃗ Θ

) ∶ v⃗ ∈ Rk, Θ ∈ Lk} , (2)

a subgroup of GLk+1(R).
Definition 3. The Galilean group can also be represented by the subgroup of
GLk+1(R) defined by the matrices

Gk = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎜⎝

1 0 0
α 1 0
c⃗ a⃗ Θ

⎞⎟⎠ ∶ α ∈ R, c⃗, a⃗ ∈ Rk−1, Θ ∈ SO(k − 1)⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (3)

We will call Gk the subgroup defined by the lower-right matrix, so that Gk = Gk ⋉R
k

also.

The Galilean and Lorentzian affine geometries are defined to be the Klein ge-
ometries [5] associated to the pairs (Gk,Gk) and (Lk,Lk), respectively. They are
diffeomorphic to Lk ⋉R

k/Lk and Gk ⋉R
k/Gk, respectively.

The natural action of Gk and Lk on these quotients are given by the left mul-
tiplication on representatives of the class. If we identify the quotients Lk ⋉ R

k/Lk,
Gk ⋉R

k/Gk (or with the section given by the first column of the matrix), the action
is the expected one

g = ⎛⎜⎝
1 0 0
α 1 0
c⃗ a⃗ Θ

⎞⎟⎠ , g ⋅ ( β

b⃗
) ↦ ( β + α

c⃗ + βa⃗ +Θb⃗
) (4)

for the Galilean action and

g = ( 1 0
v⃗ Θ

) , g ⋅ x⃗ = Θx⃗ + v⃗ (5)

for the action of the Poincaré group.

Group-based moving frames and discrete moving frames

Group-based moving frames

Given a Lie group G acting on a manifold M with a left action, so that

G ×M → M, h ⋅ (g ⋅ z) = (hg) ⋅ z,
one can define a left (resp. right) group-based moving frame as a map which is
equivariant with respect to the action on M and the left (resp. inverse right) action
of G on itself, specifically,

ρ ∶ M → G, ρ(g ⋅ z) = gρ(z) ( resp. ρ(g ⋅ z) = ρ(z)g−1) .
We call such an equivariant map a left (resp. a right) moving frame. The inverse of
a left moving frame is a right one.

Given a group G acting on a manifold M , the existence of a moving frame on the
open subset U ⊂ M is guaranteed if:

(i) the orbits of the group action all have the same dimension and foliate U ,
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(ii) there is a transverse cross-section K to the orbits such that for each orbit O,
the intersection O ∩K contains a single point, and

(iii) the group element taking z ∈ O(z) (where O(z) is the orbit through z) toO(z) ∩ K, is unique.

In this case, a right moving frame ρ ∶ U → G is given by ρ(z)⋅z ∈ K, that is, ρ(z) is the
unique element of G taking z to the unique element of K∩O(z). Since K is transverse
to the orbits, the frame defines local coordinates given by z ↦ (ρ(z), ρ(z) ⋅ z) ∈ G×K.

In the continuous case of moving frames, the manifold M could be the jet space
J(�)(Rp,M). In this case it is known (see [2]) that provided the action is locally
effective on subsets, as � grows the prolonged action of G on J(�)(Rp,M) becomes
locally free. The work of Boutin (see [1]) discusses what happens for products M×q
as q grows, with G acting with the diagonal action.

A common way to obtain the moving frame is through a normalization process.
One can describe normalization equations as those defining the transverse section, K,
to the orbits of the group. If the normalization equations are given as {Φ = 0}, then
the conditions above for the existence of a moving frame are the conditions under
which the implicit function theorem can be applied to solve Φ(g ⋅ z) = 0 for g = ρ(z).
Since both g = ρ(h ⋅z) and g = ρ(z)h−1 solve Φ(g ⋅ (h ⋅z)) = 0, and the implicit function
guarantees a unique solution, then ρ(h ⋅ z) = ρ(z)h−1, that is, ρ is right-equivariant.

Given a moving frame (left or right) one can generate all possible invariants of
the action. Indeed, if ρ is a right moving frame, the function

u ↦ ρ(u) ⋅ u
is invariant for any u ∈ M ; its coordinates are called the basic invariants. One can
easily see that any invariant of the action is a function of these, using the replacement
rule: If I ∶ M → R is invariant under the action, so that I(g ⋅ u) = I(u) for all g ∈ G,
then setting g = ρ(u), one obtains

I(ρ(u) ⋅ u) = I(u).
Different choices of the manifold M give rise to different familiar cases. For example,
if M is the jet space J(∞)(Rp, P ) for some manifold P where G acts, and G acts on M
via the natural prolonged action given by the chain rule, then ρ would generate moving
frames on p-submanifolds and the invariants will be standard differential invariants
(for example, curvatures, torsions, etc). If M = ×kP is the Cartesian product of a
manifold P where G acts, and G acts on M through the diagonal action, then the
invariants are the so-called joint invariants (see [4]).

Discrete moving frames

The authors of [3] defined discrete moving frames along polygons, essentially a choice
of group element associated to each vertex in an equivariant way.

Let GN denote the Cartesian product of N copies of the group G. Allow G to act
on the left on GN using the diagonal action g ⋅ (gr) = (ggr). We also consider what
we have called the “right inverse diagonal action” g ⋅ (gr) = (grg−1).
Definition 4 (Discrete moving frame). We say a map ρ ∶ MN → GN is a left (resp.
right) discrete moving frame if ρ is equivariant with respect to the diagonal action
of G on MN and the left (resp. right inverse) diagonal action of G on GN .

Equivalently, a discrete moving frame is a collection of N moving frames on MN

for the diagonal action of G onMN . The construction of moving frames via transverse
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cross-sections can be applied to construct ρs. Since ρ((xr)) ∈ GN , we will denote by
ρn its nth component, that is ρ = (ρn), where ρn((xr)) ∈ G for all n. Equivariance
means

ρn(g ⋅ (xr)) = ρn((g ⋅ xr)) = gρn((xr)) (resp. ρn((xr))g−1)
for every n. Clearly, if ρ = (ρn) is a left moving frame, then ρ̂ = (ρ−1n ) is a right
moving frame.

As in the original group-based moving frame definition, if (un) ∈ MN , the function
Irn ∶ MN → M is defined by

Irn(u1, ..., uN) = ρn(u1, ..., uN) ⋅ ur.

For any fixed n, the coordinates of the Irn with 1 ≤ r ≤ N are a generating set (see [3]).
We note that the action induces an action on the coordinate functions, the same as it
induces an action on any function, specifically, g ⋅ f(ur) = f(g ⋅ ur). The components
of Irn will be invariants as Irn is an invariant. Those components are called the basic
invariants.

One can describe a smaller set of generating invariants, the Maurer–Cartan in-
variants.

Definition 5. Let (ρn) be a left (resp. right) discrete moving frame evaluated along
a twisted N -gon. The element

Kn = ρ−1n ρn+1 (resp. ρn+1ρ−1n )
is called the left (resp. right) Maurer–Cartan invariant matrix for ρ. We call the
equation ρn+1 = ρnKn the discrete left Serret–Frenet equation.

If G ⊂ GL(k,R), then the entries of the Maurer–Cartan matrices, together with
the basic invariants of Inn , generate all other invariants. See [3] for more details.

Explicit moving frames and invariants

Moving Frames and Invariants for Galilean Geometry

Consider the Galilean group with Gk ⊂ GL(k + 1). Let β be the time component and
b⃗ be the spatial dimension.

For any element g ∈ Gk, we have

g = ⎛⎜⎝
1 0 0
α 1 0
c⃗ a⃗ Θ

⎞⎟⎠
with α ∈ R, c⃗, a⃗ ∈ Rm. The action of g on w = ( β

b⃗
) was determined to be

g ⋅ (β
b⃗
) = ( β + α

c⃗ + βa⃗ +Θb⃗
) . (6)

Now, denote our polygon by {xn}Nn=1 = {( βn

b⃗n
)}N

n=1. Since ρn ∈ G, we see

ρn = ⎛⎜⎝
1 0 0
αn 1 0
c⃗n a⃗n Θn

⎞⎟⎠ .
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Introduce the transverse section defined by the normalization equations for n = 2:

ρn ⋅ ( βn

b⃗n
) = ( 0

0⃗
) , ρn ⋅ ( βn+1

b⃗n+1 ) = ( ∗⃗
0

) ,
where the star ∗ indicates that no normalization condition is placed on that entry.
These equations become

( 0

0⃗
) = ρn ⋅ ( βn

b⃗n
) = ( βn + αn

c⃗n + βna⃗n +Θnb⃗n
)

( ∗⃗
0

) = ρn ⋅ ( βn+1
b⃗n+1 ) = ( βn+1 + αn

c⃗n + βn+1a⃗n +Θnb⃗n+1 )
so that the following conditions must hold:

βn + αn = 0 (7)

c⃗n + βna⃗n +Θnb⃗n = 0⃗ (8)

c⃗n + βn+1a⃗n +Θnb⃗n+1 = 0⃗. (9)

By (7), we must have αn = −βn. By subtracting (8) from (9), we find that Δβna⃗n +
ΘnΔb⃗n = 0, and therefore, as long as Δβn ≠ 0, a⃗n = −Θn

Δb⃗n
Δβn

(here, we use the notation

Δβn = βn+1−βn). Note that the condition Δβn ≠ 0 implies that two consecutive points
on the polygon cannot have the same time component. In other words, there cannot
exist two consecutive points at the same time. This is a very natural condition, and
we will assume it from now on. Next, using the solution for a⃗n and substituting into
equations (8) and (9), we find

αn = −βn

a⃗n = −Θn
Δb⃗n
Δβn

c⃗n = Θn (βn
Δb⃗n
Δβn

− b⃗n)
which determine the moving frame completely for k = 2. The left Maurer–Cartan
invariant matrix for any dimension is

Kn = ρnρ
−1
n+1 = ⎛⎜⎝

1 0 0
αn 1 0
c⃗n a⃗n Θn

⎞⎟⎠
⎛⎜⎝

1 0 0−αn+1 1 0
Θ−1n+1(−c⃗n+1 + αn+1a⃗n+1) −Θ−1n+1a⃗n+1 Θ−1n+1

⎞⎟⎠
= ⎛⎜⎜⎝

1 0 0
Δβn 1 0

0 ΘnΔ (Δb⃗n
Δβn

) ΘnΘ
−1
n+1

⎞⎟⎟⎠ (10)

with different Θn for different dimensions.

The case k = 2.

If Θn ∈ SO(1), Θn = 1. We conclude that

αn = −βn

a⃗n = −Δb⃗n
Δβn
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c⃗n = βn
Δb⃗n
Δβn

− b⃗n

and the right moving frame is

ρn = ⎛⎜⎝
1 0 0
αn 1 0
cn an 1

⎞⎟⎠ = ⎛⎜⎜⎝
1 0 0−βn 1 0

βn
Δb⃗n
Δβn

− bn −Δb⃗n
Δβn

1

⎞⎟⎟⎠ .

Observe that the left moving frame is simply

ρ−1n = ⎛⎜⎜⎝
1 0 0
βn 1 0

b⃗n
Δb⃗n
Δβn

1

⎞⎟⎟⎠
which has a more physical interpretation. Finally, consider the calculation of the left
Maurer–Cartan matrix Kn

Kn = ρnρ
−1
n+1 = ⎛⎜⎜⎝

1 0 0−βn 1 0

βn
Δb⃗n
Δβn

− b⃗n −Δb⃗n
Δβn

1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0
βn+1 1 0

b⃗n+1 Δb⃗n+1
Δβn+1

1

⎞⎟⎟⎠
= ⎛⎜⎜⎝

1 0 0
Δβn 1 0

0 Δ (Δb⃗n
Δβn

) 1

⎞⎟⎟⎠
where Δb⃗n+1 = b⃗n+2 − b⃗n+1.

Interpreting this result from a physical point of view, any invariant is generated
by the change in time between points in the polygon (Δβn), and the total change

in velocity Δ(Δb⃗n
Δβn

) (from it, the discrete acceleration between points xn and xn+1
can be found, which is 1

Δβn
Δ (Δb⃗n

Δβn
), and the expression Δb⃗n

Δβn
represents the discrete

velocity).

The case k = 3.

Here, Θn ∈ SO(2), so we can assume that

Θn = ( cos θ − sin θ
sin θ cos θ

)
for some θ ∈ R. To define a cross section we will impose the following additional
normalization condition to those of k = 2,

ρn ⋅ ( βn+2
b⃗n+2 ) = ⎛⎜⎝

r0
r1
0

⎞⎟⎠ .

From here, we get as before the equations in (7-8-9), and to this we add

( r1
0

) = c⃗n + βn+2a⃗n +Θnb⃗n+2 = Θn (Δ(2)b⃗n −Δ(2)βn
Δb⃗n
Δβn

) ,
where Δ(r)xn = xn+r − xn. Rearranging gives

Θ−1n ( r1
0

) = Δ(2)b⃗n −Δ(2)βn
Δb⃗n
Δβn

.
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Therefore ∥( r1
0

)∥ = r1 = ∥Δ(2)b⃗n −Δ(2)βn
Δb⃗n
Δβn

∥
where r1 > 0. The first column of Θ−1n is thus given by

Θ−1n ( 1
0

) = Δ(2)b⃗n −Δ(2)βn
Δb⃗n
Δβn∥Δ(2)b⃗n −Δ(2)βn
Δb⃗n
Δβn

∥ .
This first column determines Θ completely since Θ−1n = ΘT

n = (Ψn, SΨn) where

S = ( 0 −1
1 0

) (11)

and

Ψn = Δ(2)b⃗n −Δ(2)βn
Δb⃗n
Δβn∥Δ(2)b⃗n −Δ(2)βn
Δb⃗n
Δβn

∥ = Δb⃗n+1 −Δβn+1 Δb⃗n
Δβn∥Δb⃗n+1 −Δβn+1 Δb⃗n
Δβn

∥
= Δβn+1Δ (Δb⃗n

Δβn
)

∥Δβn+1Δ (Δb⃗n
Δβn

)∥ = ± Δ (Δb⃗n
Δβn

)
∥Δ (Δb⃗n

Δβn
)∥

where Δ(Δb⃗n
Δβn

) = Δb⃗n+1
Δβn+1

− Δb⃗n
Δβn

. Let us assume from now on that time increases along

the polygon and so Δβn > 0, for all n. The matrix Θn ∈ SO(2) is just the transpose
of Θ−1n , i.e.,

Θn = ( ΨT
n(SΨn)T ) ,

so that

ΘnΘ
−1
n+1 = ( Ψn ⋅Ψn+1 Ψ⋅(SΨn+1)

SΨn ⋅Ψn+1 Ψn ⋅Ψn+1 ) .
From (10), the Maurer-Cartan invariant matrix is given by

⎛⎜⎜⎝
1 0 0

Δβn 1 0

0 ΘnΔ (Δb⃗n
Δβn

) ΘnΘ
−1
n+1

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎜⎝

1 0 0
Δβn 1 0

0
∥Δ (Δb⃗n

Δβn
)∥

0
ΘnΘ

−1
n+1

⎞⎟⎟⎟⎟⎠
with ΘnΘ

−1
n+1 as above, which is completely determined by Ψn ⋅Ψn+1. A straightfor-

ward calculation yields the explicit form:

ΘnΘ
−1
n+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Δ (Δb⃗n
Δβn

)) ⋅ (Δ (Δb⃗n+1
Δβn+1

))
∥Δ (Δb⃗n

Δβn
)∥ ∥Δ (Δb⃗n+1

Δβn+1
)∥ −D∥Δ (Δb⃗n

Δβn
)∥ ∥Δ (Δb⃗n+1

Δβn+1
)∥

D∥Δ (Δb⃗n
Δβn

)∥ ∥Δ (Δb⃗n+1
Δβn+1

)∥
(Δ (Δb⃗n

Δβn
)) ⋅ (Δ (Δb⃗n+1

Δβn+1
))

∥Δ (Δb⃗n
Δβn

)∥ ∥Δ (Δb⃗n+1
Δβn+1

)∥

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

D = det( 1 1 1
Δb⃗n
Δβn

Δb⃗n+1
Δβn+1

Δb⃗n+2
Δβn+2

).
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D can be found by the existing invariants

D2

(∥Δ (Δb⃗n
Δβn

)∥ ∥Δ (Δb⃗n+1
Δβn+1

)∥)2 + cos2 Γn = 1.

It is worth noting that in the computation of this matrix, we made use of the fact
that, for any a⃗, b⃗, c⃗ ∈ R2:

det( 1 1 1

a⃗ b⃗ c⃗
) = (S(b⃗ − a⃗)) ⋅ (c⃗ − b⃗)

where S is the symplectic matrix defined above. We can now identify the generators
of invariants for Galilean polygons in 3 dimensions. As in the lower dimension, the in-

crement in time Δβn is an invariant, together with the change in velocity ∥Δ (Δb⃗n
Δβn

)∥.
The extra invariant added by the extra dimension is

Ψn ⋅Ψn+1 = cosΓn

where Γn is the angle between the two vectors A⃗n = Δ (Δb⃗n
Δβn

) and A⃗n+1.
The case k = 4.

One starts seeing clearer how to proceed. Here, Θn ∈ SO(3), which is 3-dimensional,
and once again we will impose an additional normalization condition to define the
cross-section, namely

ρn ⋅ ( βn+3
b⃗n+3 ) = ⎛⎜⎜⎜⎝

r0
r1
r2
0

⎞⎟⎟⎟⎠ .

Then, to the previous equations we add

⎛⎜⎝
r1
r2
0

⎞⎟⎠ = c⃗n + βn+3a⃗n +Θnb⃗n+3 = Θn (Δ(3)b⃗n −Δ(3)βn
Δb⃗n
Δβn

) .
Rearranging gives

Θ−1n ⎛⎜⎝
r1
r2
0

⎞⎟⎠ = Δ(3)b⃗n −Δ(3)βn
Δb⃗n
Δβn

.

Let us define

φn,r = Δ(r)b⃗n −Δ(r)βn
Δb⃗n
Δβn

.

As before, φn,2 = Δβn+1A⃗n. One can equally show that

φn,3 = (Δβn+1 +Δβn+2)A⃗n +Δβn+2A⃗n+1,
and

φn,3 = Θ−1n ⎛⎜⎝
r1
0
0

⎞⎟⎠ +Θ−1n ⎛⎜⎝
0
r2
0

⎞⎟⎠ .
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From calculations similar to the case k = 3, we know that the first column of Θ−1n is

Θ−1n ⎛⎜⎝
1
0
0

⎞⎟⎠ = φn,2∥φn,2∥ = ± A⃗n∥A⃗n∥ = Ψn,1.

Then,

φn,3 − r1
A⃗n∥A⃗n∥ = Θ−1n ⎛⎜⎝

0
r2
0

⎞⎟⎠
and from here, we see that

±GGGGGGGGGGGφn,3 − r1
A⃗n∥A⃗n∥

GGGGGGGGGGG = r2 and
φn,3 − r1

φn,2∥φn,2∥
r2

⋅ A⃗n∥A⃗n∥ = 0.

Solving the second equation, we get

r1 = ∥φn,2∥φn,3 ⋅ A⃗n

φn,2 ⋅ A⃗n

= 1∥A⃗n∥ ((Δβn+1 +Δβn+2) ∥A⃗n∥2 +Δβn+2A⃗n ⋅ A⃗n+1) ,
Notice that both r1 and r2 are generated by Δβr, ∥A⃗r∥ and A⃗r ⋅ A⃗r+1, for all r.

We then get the second column of Θ−1n by considering

Ψn,2 = φn,3 − r1
φn,2∥φn,2∥∥φn,3 − r1
φn,2∥φn,2∥∥ = Θ−1n ⎛⎜⎝

0
1
0

⎞⎟⎠ .

The third column is just the cross product of the first two. We have

Θ−1n = (Ψn,1,Ψn,2,Ψn,1 ×Ψn,2).
Since Θn ∈ SO(3), it is just the transpose of Θ−1n , and hence

⎛⎜⎝
Ψn,1 ⋅Ψn+1,1 Ψn,1 ⋅Ψn+1,2 Ψn,1 ⋅ (Ψn+1,1 ×Ψn+1,2)
Ψn,2 ⋅Ψn+1,1 Ψn,2 ⋅Ψn+1,2 Ψn,2 ⋅ (Ψn+1,1 ×Ψn+1,2)(Ψn,1 ×Ψn,2) ⋅Ψn+1,1 (Ψn,1 ×Ψn,2) ⋅Ψn+1,2 (Ψn,1 ×Ψn,2) ⋅ (Ψn+1,1 ×Ψn+1,2)

⎞⎟⎠ .

We can calculate the Maurer–Cartan invariant matrix as in (10). In this case

ΘnΔ(Δbn
Δβn

) = ΘA⃗n = ⎛⎜⎝
∥A⃗n∥
0
0

⎞⎟⎠
and ΘnΘ

−1
n+1 is as above.

As we can see, as the dimension goes up we gain an additional invariant which is
independent from its lower-dimensional analogues. In this case all entries we know

are generated by the known invariants: Δβn (time change), ∥A⃗n∥2 (curvature) and

A⃗n ⋅ A⃗n+1 (angle), for all n. We need to find the extra invariant that the fourth
dimension is contributing. It clearly appears in Ψn,1 ⋅ (Ψn+1,1 ×Ψn+1,2), for example.
This entry is given by

Δβn+3∥A⃗n∥ ∥A⃗n+1∥ ∥φn+1,3 − rn+11 φn+1,2∥ A⃗n ⋅ (A⃗n+1 × A⃗n+2) .
Therefore, the third independent invariant is the volume created by the three vectors
A⃗n, A⃗n+1, A⃗n+2. We can call it the discrete Galilean torsion.
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Moving Frames and Invariants for Lorentzian Geometry

As in the previous subsection, we will construct a right moving frame by applying
normalization conditions that will determine it uniquely.

Let ρn = ( 1 0
v⃗n Θn

), v⃗n ∈ Rk, Θn ∈ Lk and J = ( c2 0
0 −I ). For any dimension,

we begin with the constraint

ρn ⋅ xn = 0. (12)

Then, we have ρn ⋅ xn = v⃗n + Θnxn = 0, and so v⃗n = −Θnxn. Therefore, the right

moving frame for the Lorentzian case is ρn = ( 1 0−Θnxn Θn
), and the left moving

frame is

ρ−1n = ( 1 0
xn Θ−1n ) ,

for some Θn to be determined by additional normalization conditions. The general
left Maurer–Cartan invariant matrix is given by

Kn = ρnρ
−1
n+1 = ( 1 0−Θnxn Θn

)( 1 0
xn+1 Θ−1n+1 ) = ( 1 0

ΘnΔxn ΘnΘ
−1
n+1 ) . (13)

The case k = 2.

We impose the additional condition

ρn ⋅ xn+1 = v⃗n +Θnxn+1 = ( r1
0

) . (14)

By substitution, ΘnΔxn = ( r1
0

) and Δxn = Θ−1n ( r1
0

). Recall that Θ−1n ∈ Ln, so

∥Θ−1n ( r1
0

)∥
J

= ∥( r1
0

)∥
J

= cr1,

and from here

r1 = 1

c
∥Δxn∥J , and Θ−1n ( 1

0
) = cΔxn∥Δxn∥J

where ∥Δxn∥J > 0. Now, recall the general form of an element of the group L = {Ω ∈
GL2(R) ∶ ΩTJΩ = J} for J = ( c2 0

0 −1 ), assuming that detΩ = 1. It is given by

matrices of the form

Ω = ( cosh ξ 1
c
sinh ξ

c sinh ξ cosh ξ
) = (μ1,Rμ1)

where

R = ( 0 1
c2

1 0
) .

Since Θ−1n ( 1
0

) = cΔxn∥Δxn∥J and Θ−1n ∈ L, we conclude that

Θ−1n = ( cΔxn∥Δxn∥J R cΔxn∥Δxn∥J ) , and Θn = J−1Θ−TJ.
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Let us denote by Tn = cΔxn∥Δxn∥J and Nn = R cΔxn∥Δxn∥J , the tangent and the normal at the

vertex xn. Then, the Maurer–Cartan matrix is as in (13) with

ΘnΔxn = ( 1
c
∥Δxn∥J

0
) , and ΘnΘ

−1
n+1 = ( 1

c2
⟨Tn, Tn+1⟩J 1

c2
⟨Tn,Nn+1⟩J−⟨Nn, Tn+1⟩J −⟨Nn,Nn+1⟩J ) .

The first two invariants are Δxn∥Δxn∥J and cosh ξ = ⟨Tn, Tn+1⟩J (the hyperbolic angle).

Proposition 6. As c → +∞, the moving frame ρn and the Maurer–Cartan matrixKn converge to their Galilean counterpart.

Proof. Let xn = ( βn

b⃗n
). For convenience, note that

cΔxn∥Δxn∥J = cΔxn√
c2Δβ2

n −Δb⃗2n
= Δxn/Δβn√

1 − Δb⃗2n
c2Δβ2

n

= 1√
1 − Δb⃗2n

c2Δβ2
n

( 1
Δb⃗n
Δβn

) .
Define γn = 1√

1− Δb⃗2n
c2Δβ2

n

, so that γn → 1 as c → +∞. Then

Θ−1n = ⎛⎝ γn γn
Δb⃗n

c2Δβn

γn
Δb⃗n
Δβn

γn

⎞⎠ and Θn = J−1Θ−Tn J = ⎛⎝ γn −γn Δb⃗n
c2Δβn−γn Δb⃗n

Δβn
γn

⎞⎠ .

Therefore, the left moving frame is given by

ρ−1n = ⎛⎜⎜⎝
1 0 0

βn γn γn
Δb⃗n

c2Δβn

b⃗n γn
Δb⃗n
Δβn

γn

⎞⎟⎟⎠
and as c → ∞, the moving frame approaches their Galilean counterpart

ρ−1n → ⎛⎜⎜⎝
1 0 0
βn 1 0

b⃗n
Δb⃗n
Δβn

1

⎞⎟⎟⎠ .

The limit of Kn follows from Kn = ρnρ
−1
n+1.

The case k = 3.

Again, using (12) we immediately have vn = −Θnxn, and (14) becomes

Θnxn+1 + vn = ΘnΔxn = ⎛⎜⎝
rn1
0
0

⎞⎟⎠ ,

that is, rn1 = 1
c
∥Δxn∥J and Θ−1n e1 = c Δxn∥Δxn∥J = Tn, where ei is the standard basis of

R
3 with a 1 in place i and zero elsewhere.
We impose a second normalization given by

Θnxn+2 + vn = ΘnΔ(2)xn = ΘnΔxn+1 +ΘnΔxn = ⎛⎜⎝
rn2
rn3
0

⎞⎟⎠ .
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Rearranging the second equation gives

ΘnΔxn+1 = ⎛⎜⎝
rn2 − rn1

rn3
0

⎞⎟⎠ .

Since Θn ∈ L, the Lorentzian metric must be preserved, and

∥ΘnΔxn+1∥J = GGGGGGGGGGGGGG
⎛⎜⎝

rn2 − rn1
rn3
0

⎞⎟⎠
GGGGGGGGGGGGGGJ

= √
c2(rn2 − rn1 )2 − (rn3 )2,

and rn3 = √
c2(rn2 − rn1 )2 − ∥Δxn+1∥2J . Furthermore, we must also have

⟨ΘnΔxn,ΘnΔ(2)xn⟩J = c2rn1 r
n
2 = ⟨Δxn,Δ(2)xn⟩J .

Therefore

rn2 = ⟨Δxn,Δ(2)xn⟩J
c2

1

rn1
= ⟨Δxn,Δ(2)xn⟩J

c∥Δxn∥J = ∥Δxn∥J
c

+ ⟨Δxn,Δxn+1⟩J
c∥Δxn∥J .

Finally, we recall that

rn3 = √
c2(rn2 − rn1 )2 − ∥Δxn+1∥2J

=
STTU⟨Δxn,Δxn+1⟩2J∥Δxn∥2J − ∥Δxn+1∥2J

= ∥Δxn+1∥J
STTU( ⟨Δxn,Δxn+1⟩J∥Δxn∥J∥Δxn+1∥J )2 − 1.

This expression suggests the definition

coshϕn = ⟨Δxn,Δxn+1⟩J∥Δxn∥J∥Δxn+1∥J
where ϕn has the geometrical interpretation of being the hyperbolic angle between
Δxn and Δxn+1, as in Figure 1.

Figure 1: The geometric interpretation of hyperbolic angles.
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Recall that if Ω = (ξ1, ξ2, ξ3), Ω ∈ L and detΩ > 0, then ξ3 = ξ1 ×L ξ2, where ×L is
the Lorentzian cross product given by

ξ1 ×L ξ2 = ⎛⎜⎝
− 1

c2
0 0

0 1 0
0 0 1

⎞⎟⎠ ξ1 × ξ2 = −J−1ξ1 × ξ2. (15)

Indeed, one can directly check the formula

∥ξ1 ×L ξ2∥2J = 1

c2
(∥ξ1∥2J ∥ξ2∥2J − ⟨ξ1, ξ2⟩2J)

which shows that ∥ξ1 ×L ξ2∥2J = −1 whenever ∥ξ1∥2J = c2 and ∥ξ2∥2J = −1. Also, detΩ =−∥ξ1 ×L ξ2∥2J = 1.
Let ξn,i denote the ith column vector of Θ−1n . Note that, as before,

Θ−1n ⎛⎜⎝
1
0
0

⎞⎟⎠ = ξn,1 = cΔxn∥Δxn∥J (16)

and

Θ−1n ⎛⎜⎝
rn2 − rn1

rn3
0

⎞⎟⎠ = (rn2 − rn1 )ξn,1 + rn3 ξn,2 = Δxn+1.
Solving for ξn,2 yields

ξn,2 = 1

sinhϕn
( Δxn+1∥Δxn+1∥J − coshϕn

Δxn∥Δxn∥J ) . (17)

Finally, using the Lorentzian cross product (15)

ξn,3 = −J−1 c(Δxn ×Δxn+1)
sinhϕn∥Δxn∥J∥Δxn+1∥J .

Now, we turn to the computation of the Maurer–Cartan matrix. Using Θn = J−1Θ−Tn J ,
we compute

ΘnΘ
−1
n+1 = J−1 ⎛⎜⎝

ξTn,1

ξTn,2

ξTn,3

⎞⎟⎠J ( ξn+1,1 ξn+1,2 ξn+1,3 )
= ⎛⎜⎝

1
c2

⟨ξn,1, ξn+1,1⟩J 1
c2

⟨ξn,1, ξn+1,2⟩J 1
c2

⟨ξn,1, ξn+1,3⟩J−⟨ξn,2, ξn+1,1⟩J −⟨ξn,2, ξn+1,2⟩J −⟨ξn,2, ξn+1,3⟩J−⟨ξn,3ξn+1,1⟩J −⟨ξn,3, ξn+1,2⟩J −⟨ξn,3, ξn+1,3⟩J
⎞⎟⎠ .

To ease the notation, denote by σn the hyperbolic angle coshσn = ⟨Δxn,Δxn+2⟩J∥Δxn∥∥JΔxn+2∥J ,
and let V = det ( Δxn∥Δxn∥J Δxn+1∥Δxn+1∥J Δxn+2∥Δxn+2∥J ).

Straightforward calculations show that ΘnΘ
−1
n+1 is given by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

coshϕn
coshσn − (coshϕn)(coshϕn+1)

c sinhϕn+1
−V(sinhϕn+1)

c sinhϕn
(coshϕn)(coshσn) − (coshϕn)2(coshϕn+1)(sinhϕn)(sinhϕn+1) −c coshϕnV(sinhϕn)(sinhϕn+1)

0
cV(sinhϕn)(sinhϕn+1) X

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where

X = − c2(Δxn ×Δxn+1)TJ−1(Δxn+1 ×Δxn+2)∥Δxn∥J∥Δxn+1∥2J∥Δxn+2∥J sinhϕn sinhϕn+1 .
As before, the hyperbolic angles, ϕ, σ, have a natural geometric interpretation. By
definition,

coshϕn = ⟨ Δxn∥Δxn∥ , Δxn+1∥Δxn+1∥⟩J .

As in Figure 1, in two dimensions, this corresponds to twice the area enclosed by the
hyperbola c2t2 − y2 = 1 and the unit vectors Δxn∥Δxn∥ and Δxn+1∥Δxn+1∥ . In three dimensions,
this same interpretation is valid after applying an element of the Lorentzian group
to bring the two vectors into the x, t-plane. With three dimensions, there are three
invariants: Δxn∥Δxn∥ (Lorentzian vector), coshϕn (hyperbolic angle), and V (Euclidean

volume).

Proposition 7. If c → +∞, the Lorentzian moving frame and the Maurer–Cartan
matrix converge to their Galilean counterparts.

Proof. As before, to prove this statement, and since Kn = ρnρ
−1
n+1, we only need to

show that ρn converges to its Galilean counterpart as c → +∞.

Recall that

ρn = ( 1 0−Θ−1n v⃗n Θ−1n ) = ( 1 0
xn Θ−1n ) .

Therefore, we only need to show that the three columns of Θ−1n = (ξ1,n, ξ2,n, ξ3,n),
converge to those in the Galilean case, namely

( 1 0 0
Δb⃗n
Δβn

Ψn SΨn
)

with Ψn = Δ(Δb⃗n
Δβn

)
∥Δ(Δb⃗n

Δβn
)∥ and S as in (11).

First of all, notice that 1
c
∥Δxn∥J = √(Δβn)2 − 1

c2
∥Δb⃗n∥2J �→

c→+∞ Δβn. From

(16) we have

ξ1,n = cΔxn∥Δxn∥J

X→
c → ∞ ( 1

Δb⃗n
Δβn

) .
Now, notice that

c sinhϕn = c

STTU( ⟨Δxn,Δxn+1⟩J∥Δxn∥J∥Δxn+1∥J )2 − 1

=
STTUc2 (⟨Δxn,Δxn+1⟩2J − ∥Δxn∥2J∥Δxn+1∥2J∥Δxn∥2J∥Δxn+1∥2J )

=
STTTU(∥Δb⃗nΔβn+1 −Δb⃗n+1Δβn∥2) + 1

c2
((Δb⃗n ⋅Δb⃗n+1)2 − ∥Δb⃗n∥2∥Δb⃗n+1∥2)(Δβ2

n − 1
c2
∥Δb⃗n∥2)(Δβ2

n+1 − 1
c2
∥Δb⃗n+1∥2)

X→
c → ∞

STTU∥Δb⃗nΔβn+1 −Δb⃗n+1Δβn∥2
Δβ2

nΔβ2
n+1 =

STTU∥Δb⃗n
Δβn

− Δb⃗n+1
Δβn+1 ∥

2 = ∥Δ(Δb⃗n
Δβn

)∥ ,
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while

coshϕn = ⟨Δxn,Δxn+1⟩J∥Δxn∥J∥Δxn+1∥J = ΔβnΔβn+1 − 1
c2
Δb⃗n ⋅Δb⃗n+1√((Δβn)2 − 1

c2
∥Δb⃗n∥2)((Δβn+1)2 − 1

c2
∥Δb⃗n+1∥2)X→

c → ∞
ΔβnΔβn+1√(Δβn)2(Δβn+1)2 = 1.

Therefore,

ξ2,n = 1

c sinhϕn
( cΔxn+1∥Δxn+1∥J

− coshϕn
cΔxn∥Δxn∥J

) X→
c → ∞

1∥Δ (Δb⃗n
Δβn

)∥ ⎛⎝ 0

Δ (Δb⃗n
Δβn

)⎞⎠ .

Finally, ξ3,n = −J−1ξ1,n × ξ2,n and so, since −J−1 → ⎛⎜⎝
0 0 0
0 1 0
0 0 1

⎞⎟⎠, in the limit

ξ3,n
X→
c → ∞

⎛⎜⎝0, S
Δ (Δb⃗n

Δβn
)

∥Δ (Δb⃗n
Δβn

)∥
⎞⎟⎠
T

= (0, SΨ)T
concluding the proof since we can now see that the Lorentzian moving frame exactly
approaches the Galilean case as c → ∞.

Limits in the General Case

Consider the general invariant matrix for the Lorentzian case,

Kn = ( 1 0
ΘnΔxn ΘnΘ

−1
n+1 ) .

In an effort to consider the case as c → ∞, we now derive a useful decomposition
for a matrix in the Lorentzian rotation group. First, take Ω ∈ GLn(R), such that

ΩTJ ′Ω = J ′ for J ′ = ( −1 0
0 I

). Furthermore, let Ω = ( D C
B A

) where D ∈ R, B is

(n − 1) × 1, C is 1 × (n − 1), and A is (n − 1) × (n − 1). Then
ΩTJΩ = ( D BT

CT AT )( −1 0
0 I

)( D C
B A

) = ( −1 0
0 I

) .
Let B = −Dσ for σ ∈ Rn. Then, we have the following system of equations [6]

ATA −CTC = I

BTA −DC = 0

BTB −D2 = −1.
Solving yields the solutions

D = +− 1√
1 − ∥σ∥2

AAT = In −D2σσT

A = AT = +−(I + D − 1∥σ∥2 σσT)E
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C = −σTA

where E ∈ SO(k − 1). We then get

Ω = ⎛⎝ D ∓DσT

−Dσ +−(I + D−1∥σ∥2 σσT ) ⎞⎠( 1 0
0 E

) .
However, for Θn ∈ Ln and

J = ( c2 0
0 I

) = ( 1
c2

0
0 I

)( 1 0
0 −I )( c2 0

0 I
) ,

we have ΘTJΘ = J . Let

N = ( c2 0
0 I

) ,
so that NJN−1 = J ′. Then, for Ω satisfying ΩTJ ′Ω = J ′, (N−1ΩTN)J(N−1ΩN) = J
and therefore (since N is symmetric) (N−1ΩN)TJ(N−1ΩN) = J. This mapping is
bijective; for any Θ ∈ L, there exists Ω satisfying the above properties such that
N−1ΩN = Θ. Therefore, for any Θ ∈ L, we can write

Θ = ( 1
c

0
0 I

)⎛⎝ D ∓DσT

−Dσ +−(I + D−1∥σ∥2 σσT ) ⎞⎠( 1 0
0 E

)( c 0
0 I

) .
Thus, for any Θ ∈ L, we can decompose the matrix as

Θ = ⎛⎝ D 1
c
∓DσT

−cDσ +−(I + D−1∥σ∥2 σσT ) ⎞⎠( 1 0
0 E

)
where D ∈ R, E ∈ SO(k−1) and σ ∈ Rk−1. We will now use this result to demonstrate
that the Lorentzian moving frames subject to the given normalization conditions ap-
proach that of the Galilean case. Clearly, as c → ∞, the condition ρnxn = 0 approaches
the appropriate Galilean condition. Each subsequent normalization condition in the
Lorentzian case corresponds to a constraint

vn +ΘLxn+i = ΘLΔ(i−1)xn = ( u⃗

0⃗
)

where the superscript indicates that ΘL ∈ L and u⃗ ∈ R
k for the (k − 1)th condition.

By the second such condition (u⃗ ∈ R), we find

Θ−1 ( 1

0⃗
) = ( γn

γn
b⃗n
βn

) .
Therefore, if we restrict our attention to the case of the proper Lorentz transforma-
tions, then by the above decomposition with the appropriate sign conventions,

Θ−1 = ⎛⎜⎜⎜⎝
γn

1
c2
γn (Δb⃗n

βn
)T

−γn (Δb⃗n
βn

) ⎛⎝I + γn−1∥(Δb⃗n
βn

)∥2 (Δb⃗n
βn

)(Δb⃗n
βn

)T⎞⎠
⎞⎟⎟⎟⎠( 1 0

0 E
)
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remembering that γn = 1√
1− Δb⃗2n

c2Δβ2
n

. We then have

lim
c→∞ΘLΔxn = [ lim

c→∞Θ−1]−1 ( Δ(n−1)βn

Δ(n−1)b⃗n )
= ⎡⎢⎢⎢⎢⎣

⎛⎝ 1 0−(Δb⃗n
βn

) I

⎞⎠( 1 0
0 E

)⎤⎥⎥⎥⎥⎦
−1 ( Δ(n−1)βn

Δ(n−1)b⃗n )
= ⎛⎝ 1 0−E−1 (Δb⃗n

βn
) E−1

⎞⎠( Δ(n−1)βn

Δ(n−1)b⃗n )
= ( 1 0

0 E−1 )⎛⎝
Δ(n−1)βn

Δ(n−1)βn (Δ(n−1)b⃗n

Δ(n−1)βn
− Δb⃗n

Δβn
) ⎞⎠ = ( u⃗′

0⃗
) .

Recalling the definitions put forth in the section on Galilean invariants, we find

( Δ(n−1)βn

E−1Ψn−1 ) = ⎛⎜⎝
u1

ũ

0⃗

⎞⎟⎠ .

Remember that Ψn−1 = Δ(n−1)βn (Δ(n−1)b⃗n

Δ(n−1)βn
− Δb⃗n

Δβn
), which constrains

E−1Ψn−1 = ( ũ

0⃗
)

for some ũ ∈ R
k−2. This constraint is the same one placed on the submatrix Θn ∈

SO(k − 1) in the Galilean moving frame. Therefore, the normalization conditions of
the Lorentzian case approach those of the Galilean case as c → ∞, as proposed.
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