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Abstract
We analyze sums of entries on diagonals of integer slope in Pascal’s triangle, obtain
a recurrence relation that these diagonal sums obey, and compute their generating
function. We use the generating function to approximate the exponential growth of the
diagonal sums.

1 Introduction
A question from a national high school math competition poses (problem 3, page 274
of [4]): how many subsets, d(n), of the integers in the interval 1 . . .n+ 1 have the
property that their least element coincides with their cardinality? Here is a solution: let
k ≥ 1 be the common value of the least element and cardinality of the subset. Then,
besides the least element, the subset must contain a choice of the remaining k−1 of the
n+1−k integers in the interval k+1 . . .n+1. So, the solution is d(n) = ∑k≥1

(n+1−k
k−1

)
.
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However, this sum can be changed to a more telling form. By the symmetry property
for binomial coefficients

(a
b

)
=
( a

a−b

)
, each d(n) is equivalent to ∑k≥1

( n+1−k
n+2−2k

)
. With

the substitution r = ⌊n/2⌋+ 1− k, we can change the subtraction in the binomial
coefficients to addition. So,

d(n) = ∑
r≥0

(
⌈ n

2⌉ + r
(−n) mod 2 + 2r

)
. (1)

d(0) = 1
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Figure 1: Sums of entries in Pascal’s triangle on diagonals of slope 2 in red and
intercepts in indigo. These sums coincide with the Fibonacci numbers. The triangle in
green indicates how the additive identity for Pascal’s triangle leads to the recurrence
relation for the d(n)’s.

The sums in Equation 1 are depicted in Figure 1 as diagonals in Pascal’s triangle,
where d(n) is the sum of the entries on the nth diagonal from the top. These diagonals
have a slope of 2 in the sense that if a diagonal passes through an entry in some row
and position, then the diagonal also passes through the entry in the next row whose
position is two more than the previous one. Each diagonal also has an intercept,
i.e., the entry in the uppermost row with non-negative position through which the
diagonal passes. The nth diagonal has an intercept at

( ⌈n/2⌉
(−n) mod 2

)
, meaning that the

uppermost row that the diagonal passes through is ⌈n/2⌉ and the position in this row is
(−n) mod 2. It is both well-known and easy to prove that the sequence ⟨d(n) : n ≥ 0⟩
coincides with the Fibonacci sequence beginning with two one’s: 1, 1, 2, 3, 5, 8,
13, . . . (see [5]). Each entry on a diagonal in Pascal’s triangle is the sum of the two
entries directly above it. Since these two entries lie on the two previous diagonals, then
d(n+2) = d(n)+d(n+1), which is the same recurrence relation that the Fibonacci
numbers satisfy.

The problem from this high school competition inspires many questions. What are
the sums of the entries on diagonals of slope greater than two? Are these sums on
steeper diagonals also famous sequences, like the Fibonacci sequence? The terms in
the Fibonacci sequence grow like powers of the golden ratio—what is the growth rate
of the sums on steeper diagonals?

The general question we consider here is to determine the sum of the entries on the nth

diagonal of slope h in Pascal’s triangle. We denote this sum by dh(n). Historically, sums
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of entries on diagonals of various slopes have already been considered, for instance,
in [1] and [2]. In fact, [1] even considers slopes with rational values and obtains
recurrence relations for these sums. However, we extend their analyses by computing
the generating function for the diagonal sums and then use the generating function to
approximate their exponential growth.

As a brief review, we highlight a couple basic properties of Pascal’s triangle. Pascal’s
triangle is depicted in a hexagonal lattice in a half-plane with a numerical entry in
each cell. The cells in the rows are indexed by integers, and the rows are indexed by
non-negative integers. The position of an entry in one row is the same as the entry to
the left in the row below. The entry in the rth position of the nth row coincides with
the binomial coefficient

(n
r

)
. If 0 ≤ r ≤ n, then

(n
r

)
is positive. Otherwise, it is zero for

r < 0 or r > n. The additive identity asserts that
(n

r

)
is the sum of the entries in the row

above to the left
(n−1

r−1

)
and right

(n−1
r

)
.

To be definitive, we say a diagonal in Pascal’s triangle is a line which passes through
entries in the triangle. For a diagonal to have slope h means that if the diagonal passes
through

(a
b

)
in one row, then it also passes through

(a+1
b+h

)
in the next row. We say the

intercept of a diagonal is the uppermost row and the non-negative position in this row
which the diagonal passes through. Thus, if a ≥ 0 and 0 ≤ b < h, then ∑r≥0

( a+r
b+hr

)
represents the sum of the entries on the diagonal in Pascal’s triangle with slope h and
intercept

(a
b

)
. Diagonals are enumerated from the top down. So, if the diagonal through

an entry has index n, then the diagonal through the entry to the left in the same row
has index n+1, and the diagonal through the entry to the left in the next row has index
n+h. There are h diagonals of slope h with intercepts in each row, except for the top
row which just has a single intercept.

2 Diagonals of Slope Three

d3(0) = 1
d3(1) = 0

d3(2) = 1
d3(3) = 1

d3(4) = 1
d3(5) = 2

d3(6) = 2
d3(7) = 3

d3(8) = 4
d3(9) = 5

d3(10) = d3(7)+d3(8) = 7
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Figure 2: Pascal’s triangle with sums of diagonals of slope 3 in red and intercepts in
indigo. The sums of the diagonals coincide with the Padovan numbers. The triangle
in green shows how the additive identity for Pascal’s triangle leads to the recurrence
relation for the d3(n)’s
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Now let’s consider diagonals of slope 3 in Pascal’s triangle, as depicted in Figure 2. Let
d3(n) denote the sum of the entries on the nth diagonal of slope 3. Note that the initial
diagonal for n = 0 goes through the apex of Pascal’s triangle, and so d3(0) = 1, but
the next diagonal for n = 1 only passes through the intercept at

(1
2

)
, and so d3(1) = 0.

In general, the intercepts of diagonals snake through the first three positions of each
row from right to left, except for the top row which only includes one position. So, the
intercept of the nth diagonal goes through row ⌈n/3⌉ at position (−n) mod 3. Since
the slope of each diagonal is 3, the position of each entry on a diagonal is three more
than the previous row. Therefore, the sum of the entries on the nth diagonal of slope 3
is

d3(n) = ∑
r≥0

(
⌈ n

3⌉ + r
(−n) mod 3 + 3r

)
.

The sums of the diagonals of slope 3 coincide with the so-called Padovan sequence
⟨pn : n ≥ 0⟩ = 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, . . . . The Padovan sequence
satisfies the recurrence relation pn+3 = pn + pn+1 for all n ≥ 0, and the terms pn in
the Padovan sequence grow asymptotically as αrn, where r ≈ 1.3247 is the real root
of the polynomial x3 − x−1 and α = 1/(2r+3) (see [6]). The fact that the sequence
⟨d3(n) : n ≥ 0⟩ of diagonals of slope 3 satisfies the same recurrence relation is a
direct consequence of the additive identity for Pascal’s triangle

(a+1
b

)
=
( a

b−1

)
+
(a

b

)
.

Suppose the diagonal that passes through entry
(a

b

)
has index n. Then the diagonal

that passes through the entry immediately to the left
( a

b−1

)
has index n+ 1, and the

diagonal that passes through the entry
(a+1

b

)
to the left in the row below has index

n+ 3. Since the additive identity holds uniformly for all entries on these diagonals,
then d3(n+3) = d3(n)+d3(n+1).

3 Diagonals of Integer Slope

h intercepts

0 dh(0) = 11
dh(1) = 0 . . .h−2

dh(h−2) = 0h−1
dh(h−1) = 1

n

dh(n)

n+1

dh(n+1)
n+h

dh(n+h) = dh(n)+dh(n+1)

Figure 3: The first rows of Pascal’s triangle with sums of diagonals of integer slope h
in red and intercepts in indigo. The triangle in green shows how the additive identity
for Pascal’s triangle leads to the recurrence relation for the dh(n)’s.
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For the general case, we consider diagonals of integer slope h in Pascal’s triangle,
enumerated from the top down. We denote the sum of the entries on the nth diagonal
of slope h by dh(n). Figure 3 displays these diagonals. Note that the initial diagonal
for n = 0 goes through the apex of Pascal’s triangle, and so dh(0) = 1, but the next
diagonals for n = 1 . . .h−2 have intercepts at

(1
r

)
in the first row with r > 1, and so

dh(1) = · · · = dh(h− 2) = 0. The diagonal of index h− 1 only passes through the
intercept at

(1
1

)
, and so dh(h−1) = 1. Together, these give the initial conditions

dh(0) = 1, dh(1) = · · ·= dh(h−2) = 0, dh(h−1) = 1. (2)

The intercepts of the remaining diagonals continue to snake through the first h positions
of each row from right to left. Therefore, the row of the intercept of the nth diagonal is
⌈n/h⌉, and its position in this row is (−n) mod h. The position of each entry in a row
on the nth diagonal is h more than the previous row. Therefore,

dh(n) = ∑
r≥0

(
⌈ n

h⌉ + r
(−n) mod h + hr

)
.

This is an explicit representation of dh(n) as a sum. For the purposes of approximation,
however, it is more useful to have a recursive representation. A recurrence relation
for the dh(n)’s is a direct consequence of the additive identity for Pascal’s triangle
that

(a+1
b

)
=
( a

b−1

)
+
(a

b

)
. Suppose the nth diagonal of slope h passes through entry(a

b

)
. Then, the diagonal that passes through the entry immediately to the left

( a
b−1

)
has

index n+1, and the diagonal that passes through the entry in the next row to the left(a+1
b

)
has index n+h. Since the additive identity holds uniformly for all entries on the

diagonals, then

dh(n+h) = dh(n)+dh(n+1), for all n ≥ 0. (3)

This recurrence relation is linear, has constant coefficients, and is of degree h. We
obtain an asymptotic approximation for dh(n) in the Section 5. Figure 4 shows a graph
of the logarithm of dh(n) for h = 20 and n = 1 . . .1200, based on Equation 3. This
graph prominently shows damped oscillations of period h, but modulo these oscillations
the graph shows simple exponential growth for the diagonal sums.

4 Generating Function
An often-used tool for analyzing combinatorial sequences is the generating function.
The ordinary generating function of the sequence ⟨an : n ≥ 0⟩ is ∑n≥0 anxn. It can be
thought of as a formal power series or, wherever it converges, a function of complex
numbers. Wilf in section 1.2 of [3] gives a five-step method for converting a recurrence
relation describing a sequence to its generating function: clarify the set of valid
values of the free variable in the recurrence relation, name the generating function,
multiply each instance of the recurrence by an appropriate power of the variable
of the generating function and sum over the valid values, express both sides of the
resulting equation in terms of the generating function, and finally solve the resulting
equation for the generating function. The initial conditions in Equation 2 give the
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values of dh(n) for n = 0 . . .h−1, and the general recurrence relation in Equation 3
determines all the rest of the values for n ≥ h. We define the generating function
Dh(x) = ∑n≥0 dh(n)xn. Multiplying each term in the initial conditions of Equation 2
and recurrence relation of Equation 3 by the corresponding power of x and summing,
we get (Dh(x)− 1− xh−1)/xh = Dh(x)+ (Dh(x)− 1)/x. Solving for the generating
function results in an amazingly simple expression:

Dh(x) =
1

1− xh−1 − xh . (4)

5 Approximation of Sums
The generating function in Equation 4 for the sequence ⟨dh(n) : n ≥ 0⟩ is first and
foremost a rational function, i.e., a ratio of polynomials. In this case the rational
function has a numerator f (x) = 1 and denominator g(x) = 1− xh−1 − xh. Using basic
tools of calculus, it is straightforward to approximate the exponential growth of any
sequence whose generating function is rational. The first step is to determine the partial
fraction decomposition of the generating function. Let Rh denote the collection of roots
of the denominator g(x). Since g(x) and its derivative g′(x) =−xh−2(h−1+hx) have
no common roots, then none of the roots of g(x) are repeated. So, the partial fraction
decomposition of the generating function has the form

Dh(x) = ∑
r∈Rh

ar

x− r
,

where ar =
f (r)

g′(r) . Each term in the partial fraction decomposition represents a geometric
series, as follows:

ar

x− r
=− ar

r(1− x
r )

=−ar

r ∑
m≥0

xm

rm

We can extract the coefficient of each term of the decomposition with the coefficient ex-
traction operator. By definition, if f (x) = ∑n≥0 anxn, then [xn] f (x) = an. Then,

[xn]Dh(x)

= ∑r∈Rh
[xn]∑m≥0− ar

r
xm

rm

= ∑r∈Rh
− f (r)

rg′(r) r−n.

(5)

The terms with the largest contribution to dh(n) in Equation 5 are the ones whose
roots have the smallest modulus. In this case, we will shortly see that there is a single
real root r̃ of g(x) with the smallest modulus, and this root is called the dominant
singularity of the generating function. The exponential growth approximation for dh(n)
concentrates solely on this singularity, that is,

dh(n)≈− f (r̃)
r̃g′(r̃)

r̃−n. (6)

To find the dominant singularity, first consider the case when the slope h of the
diagonals is even. When g(x) = 1− xh−1 − xh is graphed on the real line, we see
that g(−∞) = g(∞) = −∞, g(−1) = g(0) = 1, and g(1) = −1. Because of the sign
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changes, there are real roots in the intervals (−∞,−1) and (0,1). Since the derivative
g′(x) = −xh−2(h− 1+ hx) > 0 iff x < − h−1

h , then these are the only real roots. To
see that r̃ has a smaller modulus than any of the complex roots, note that if |z| < r̃,
then |zh + zh−1| ≤ |zh|+ |zh−1| < r̃h + r̃h−1 = 1, excluding the possibility that such
z’s could be a root of g. So, the dominant singularity r̃ of this generating function
must be the real root in the interval (0,1). By a similar analysis, when h is odd, the
dominant singularity is still in (0,1). For h ≥ 5, it is impossible to express r̃ in terms
of radicals. However, it is easy to approximate for large values of h. If h is large, then
h− 1 and h are both nearly equal to h− 1/2, and so g(x) ≈ 1− 2xh−1/2. Therefore,
the dominant singularity is approximately r̃ ≈ 2−1/(h−1/2). At this value, f (r̃) = 1 and
g′(r̃)≈−h+1/2. Plugging in these values into Equation 6 results in

dh(n)≈
1

h−1/2
2

n+1
h−1/2 (7)

The graph of the logarithm of this approximation appears as a line in Figure 4 and shows
close agreement to the graph of the logarithm of dh(n). However, it is inherent that since
only an approximation was used for the dominant singularity, then this approximating
line must eventually diverge from the exact values. Of course, the exponential growth
in Equation 7 does not account for the oscillations that are prominent in the graph of
dh(n) in Figure 4. These oscillations are the result of the complex roots in the partial
fractions decomposition of the generating function and will be the object of further
study.
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Figure 4: A graph of the logarithms of the sums of the entries on the first 1200
diagonals with slope h = 20 in Pascal’s triangle, along with the linear approximation
from Equation 7.
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