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Abstract
The classical Lotka-Volterra equations that model the interactions between two species
competing for a limited resource have many potential modifications to improve biologi-
cal accuracy; this paper explores modifications to the exponent of the competition term.
After an introduction to the behavior of the classical Lotka-Volterra model is given, a
nonlinear modification to this model by Taylor and Crizer is discussed. In section 2,
an extension of this modification is proposed, in which the population variable of the
competition term is raised first to the power of positive real numbers and, next, small
integers. A proof is offered that at most 3 coexistent equilibrium points exist for any
positive exponent values, and additional proofs further limit the number of equilibria
for certain exponent and parameter values. In section 3, we prove that, in such models,
the stability of the equilibria alternates between stable and unstable when considered in
a northwest to southeast configuration. Combining these results allows us to describe
the equilibrium behavior of a broad class of competition models.

1 Introduction
Competition models consider scenarios involving two species that compete for the
same limited prey or other vital resources. In 1925, American biophysicist Alfred Lotka
and Italian mathematician Vito Volterra proposed one of the first valid competition
models to describe cases of coexistence or competitive exclusion [4].
A competition model implies a reciprocal, negative interaction between the two species.
Further, the Lotka-Volterra model treats the competition as density-dependent, and the
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equations include terms for both intraspecific and interspecific competition:
dx
dt

= β1x(K1 − x−µ1y)

dy
dt

= β2y(K2 − y−µ2x),
(1)

Figure 1: The isocurves of the classical Lotka-Volterra equations.

where βi,Ki, and µi are positive constants for i = 1,2 [3]. Next, dx
dt and dy

dt denote
the growth rates of populations x and y at time t. The βi constants are the respective
intrinsic growth rates, the Ki constants are the carrying capacities, and the µi constants
are the competition coefficients, which represent the negative effect of one species on
the other. The isocurves are linear and fall into one of four cases, depending upon
parameter relationships, as depicted in Figure 1. As shown, the relative values of
parameters K1 versus K2/µ2 and K2 versus K1/µ1 determine the relative positions
of the x− and y−intercepts of the isocurves, consequently impacting the number of
possible intersection points.
These classical Lotka-Volterra equations have been modified in various studies [1][4][5].
Taylor and Crizer introduce a nonlinear relationship to model the effects of each species
on the other, 

dx
dt

= β1x(K1 − x−µ1y2)

dy
dt

= β2y(K2 − y−µ2x2),

(2)

where βi,Ki, and µi again are positive constants for i = 1,2 [5]. Because the isocurves
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are nonlinear, they are not limited to a maximum of one intersection point, as addressed
in [4].
In this paper, we examine the more general nonlinear relationship

dx
dt

= β1x(K1 − x−µ1yw1)

dy
dt

= β2y(K2 − y−µ2xw2),

(3)

where βi,Ki, and µi are positive constants and wi is any positive real number for
i = 1,2. We first determine that the four cases of parameter relationships contain
several subcases, which will be investigated in Section 2. We establish the number
of possible intersection points for any positive real exponents on the competition
terms. Next, we prove that isocurves for any exponents are limited to a maximum
of three intersection points, with an even smaller number allowed for small positive
integer exponents. Finally, we detail the stability patterns of these equilibria and their
biological implications.

2 Number of Intersection Points
2.1 Exponents as Positive Real Numbers

Given the modified Lotka-Volterra equations in equation (3), the equilibrium points are
given by (0,0),(K1,0),(0,K2) and positive solutions to the following system:{

x+µ1yw1 = K1

y+µ2xw2 = K2.
(4)

Defining v1 =
w1
√

K1/µ1 and v2 =
w2
√

K2/µ2, we have the following case divisions:
Case 1: K1 > v2 and K2 < v1
Case 2: K1 < v2 and K2 > v1
Case 3: K1 < v2 and K2 < v1
Case 4: K1 > v2 and K2 > v1.
We consider these cases as they mirror the four cases seen in the original Lotka-
Volterra equations, defining the relative intercept positions of the isocurves. We also
define

F(x,y) = β1(K1 − x−µ1yw1)

G(x,y) = β2(K2 − y−µ2xw2)

and let f and g denote the curves F(x,y) = 0 and G(x,y) = 0, respectively.

Lemma 1. Isocurves f and g are monotonically decreasing.

Proof. Using equation (4), we see that the two terms on the left hand side of each
equation add to Ki, a fixed constant. Hence, in both equations, as x increases, y
decreases, causing both curves to decrease monotonically.

We then solve the second equation from the set in (4) for y and substitute the result into
x+µ1yw1 =K1. Defining this result as a function of x, we obtain h(x) = 0 where

h(x) = K1 − x−µ1(K2 −µ2xw2)w1 .
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The roots of this equation give the x-coordinate of any intersection points of the

isocurves f and g. Taking the first derivative with respect to x, we have

h′(x) =−1+µ1µ2w1w2xw2−1(K2 −µ2xw2)w1−1.

Again taking the derivative, we have

h′′(x) = µ1µ2w1w2xw2−2(K2 −µ2xw2)w1−2[K2(w2 −1)−µ2xw2(w1w2 −1)].

The roots and undefined points of h′′(x) give the x-coordinate of any inflection points

of h(x), allowing us to determine the maximum number of critical points and therefore
zeros of h(x).

Theorem 1. For any w1 and w2, f and g have a maximum of 3 intersection points in
the interior of the first quadrant.
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Figure 2: The 4 possible cases, each with one subcase, where f is dashed and g is solid.
As shown in Section 3, solid points are stable equilibria, and open points are unstable
equilibria. The cases marked with ‘A’ indicate the subcase of each numbered case with
0 or 1 intersection points, and the cases marked with ‘B’ indicate the subcase with 2 or
3 intersection points.

Proof. As a consequence of Rolle’s Theorem, to show f and g can have at most 3
intersection points, we need only to show that h(x) has at most one inflection point.

We see that h′′(x) = 0 or h′′(x) is undefined when x = 0, w2
√

K2/µ2, or w2

√
K2(w2−1)

µ2(w1w2−1) ,

depending on the values of w1 and w2. Because x = 0 and w2
√

K2/µ2 mark points where
f or g would intersect a coordinate axis, the only inflection point that could produce

a coexistent equilibria is at x = w2

√
K2(w2−1)

µ2(w1w2−1) . Hence, there is a maximum of one
inflection point for h(x).

Theorem 2. There are 8 possible configurations of the graphs of f and g, shown in
Figure 2.

Proof. Because the isocurves are continuous and can intersect a maximum of 3 times
in the first quadrant, the geometric positions of the intercepts Ki and vi determine which
of the 8 configurations are possible, and their limited intersections limit the number of
configurations.

2.2 Cases of Small Integer Exponents
Theorem 3. If w1 = 2 and if w2, written from here on as w for simplicity, is any integer
greater than or equal to 2,
(1) In case 1, equation (4) has in the first quadrant either 0 or 2 solutions.
(2) In case 2, equation (4) has in the first quadrant either 0 or 2 solutions.
(3) In case 3, equation (4) has in the first quadrant either 1 or 3 solutions.
(4) In case 4, equation (4) has in the first quadrant exactly 1 solution.

Proof. Following the work of [4], to find the number of intersection points of the
isocurves, we begin by obtaining the polynomials, derived from equation (4), which are
satisfied by the equilibrium solutions. Starting with y+µ2xw = K2, we solve for y and
substitute into x+µ1y2 = K1 to obtain x+µ1(K2 −µ2xw)2 = K1, which expands to:

µ1µ
2
2 x2w −2µ1µ2K2xw + x+µ1K2

2 −K1 = 0. (5)
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Similarly, we next start with x+µ1y2 = K1, solve for x, and substitute the result into
y+ µ2xw = K2 to obtain y+ µ2(K1 − µ1y2)w −K2 = 0, which, using the Binomial
Theorem, expands to:

y+µ2(K1 −µ1y2)w −K2 = y−K2 +
w

∑
k=0

(
w
k

)
µ2Kw−k

1 (−µ1y2)k

=
w

∑
k=1

(
w
k

)
µ2Kw−k

1 (−µ1y2)k + y+µ2Kw
1 −K2 = 0, (6)

where k ∈ Z. Because the term µ1y2 is preceded by a negative sign, the sign of each
term from the summation will alternate. As we will be using Descartes’ Rule of Signs
later in this proof, it is notable that the polynomial in equation (5) has either 1 or 2
sign changes depending on the sign of µ1K2

2 −K1, and the polynomial in equation
(6) has either w or w+1 sign changes, dependent upon the sign of µ2Kw

1 −K2. It is
also notable that the only coefficients whose sign is dependent upon the parameter
values are µ2Kw

1 −K2 for any w. Hence, the only information required to determine
the number of sign changes in the polynomial defined by equation (6) are the signs of
µ1K2

2 −K1 and µ2Kw
1 −K2.

From Theorem 2, we see that, for cases 1, 2, and 3, all 6 possible ways of intersection
could occur, as Descartes’ Rule of Signs eliminates no possibilities.

In case 4, µ2Kw
1 −K2 > 0 and µ1K2

2 −K1 > 0. Then equation (5) has 2 sign changes
and equation (6) has w sign changes. Hence, by Descartes’ Rule of Signs, equation (4)
has at most min(2, w) solutions in the interior of the first quadrant. The positions of the
intercepts indicate that the curves must intersect an odd number of times, so equation
(4) has exactly one solution, eliminating case 4B.

As seen, the smaller of w1 and w2 serves as a limiting factor in determining the number
of intersection points of the isocurves. Thus, when w1 = 2, any integer value of w2 ≥ 2
will yield the same results as would w1 = w2 = 2. Further, the case in which w2 = 2
and w1 ≥ 2 is symmetric and yields the same number of intersection points in the
symmetric cases.
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Figure 3: Examples of the subcases for w1 = 2, w2 = 3, and β1 = β2 = 1 resulting in 0,
1, 2, and 3 intersection points.

Theorem 4. If w1 = 1 and if w2, written from here on as w for simplicity, is any integer
greater than or equal to 1,
(1) In case 1, equation (4) has in the first quadrant either 0 or 2 solutions.
(2) In case 2, equation (4) has in the first quadrant 0 solutions.
(3) In case 3, equation (4) has in the first quadrant exactly 1 solution.
(4) In case 4, equation (4) has in the first quadrant exactly 1 solution.

Proof. Following the arguments in the proof for Theorem 3, solutions to equation (4)
under the above conditions will satisfy the following equations:

−µ1µ2xw + x+µ1K2 −K1 = 0, (7)
and

y+µ2(K1 −µ1y)w −K2 = 0. (8)

(1) In case 1, we see from Theorem 2 that either case 1A or 1B could occur.

(2) In case 2, µ2Kw
1 −K2 < 0 and µ1K2 −K1 > 0. This yields 1 sign change from

equation (7) and either w or w+1 sign changes from equation (8). Thus, equation (4)
has at most min(1, w) or min(1, w+ 1) solutions, or at most 1. From the intercepts,
there must be an even number of intersection points, so there are 0 positive solutions,
eliminating case 2B.

(3) In case 3, µ2Kw
1 −K2 < 0 and µ1K2 −K1 < 0. This yields 2 sign changes from

equation (7) and either w or w+1 sign changes from equation (8). Thus, equation (4)
has at most min (2, w) or min(2, w+1) solutions, or at most 2. From the intercepts,
there must be an odd number of intersection points, so there is exactly 1 positive
solution, eliminating case 3B.

(4) In case 4, µ2Kw
1 −K2 > 0 and µ1K2 −K1 > 0. This yields 1 sign change from

equation (7) and either n or w+1 sign changes from equation (8). Thus, equation (4)
has at most min(1, w) or min(1, w+1) solutions, or at most 1. From the intercepts, there
must be an odd number of intersection points, so there is exactly 1 positive solution,
eliminating case 4B.
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The case where one of the exponents is zero is well-known and will not be discussed
here.

While Theorem 1 indicates that any parameter combination results in a maximum of
3 intersections and Theorems 3 and 4 show how possible cases may be eliminated,
we can perform further analysis to determine further restrictions on the number of
intersection points by case divisions.

Theorem 5. The table below indicates when h(x) has one inflection point inside the
interval of interest, which indicates when f and g can have 3 intersection points.

Letting m = w2

√
K2(w2−1)

µ2(w1w2−1) :

Cases 1 and 4 Cases 2 and 3
A: w1 < 1,w2 < 1 always m < K1
B: w1 > 1,w2 > 1 always m < K1
C: w1 < 1,w2 > 1 never never
D: w1 > 1,w2 < 1 never never

Table 1: The conditions under which h(x) has one inflection point.

Proof. Recall that when h(x) has one inflection point, it can have at most 3 zeros
and, accordingly, f and g can intersect at most 3 times. When h(x) has no inflection
points, f and g are limited to a maximum of 2 intersection points. Also note that
we are only interested in intersection points with the x−coordinate in the interval
0 < x < min(K1,v2).

(A) We see that w2

√
K2(w2−1)

µ2(w1w2−1) will under the radical have a negative numerator and
negative denominator, resulting in a positive radicand and a real x value. Then since

w2−1
w1w2−1 < 1, m < w2

√
K2
µ2

and is therefore inside the interval of interest for cases 1 and 4
of the divisions of parameter relationships. Hence, there is one positive inflection point
in cases 1 and 4. In cases 2 and 3, only the values of m < K1 are inside the interval of
interest. Hence, there is one inflection point in cases 2 and 3 when m < K1 and zero
inflection points when m > K1.

(B) We see that the radicand is positive, resulting in a real x value. Since w2−1
w1w2−1 < 1,

m < w2

√
K2
µ2

and is therefore inside the interval of interest for all cases. Hence, there
is one inflection point. Following the same reasoning as above, there is one inflection
point in cases 1 and 4. In cases 2 and 3, there is one inflection point when m < K1 and
zero inflection points when m > K1.

(C) The radicand may be either positive or negative. If w1w2 < 1, the radicand is
negative and the solution has no real parts, resulting in zero inflection points. If

w1w2 > 1, the radicand is positive and w2−1
w1w2−1 > 1, meaning that m > w2

√
K2
µ2

and is
always outside our interval of interest. Hence, both possibilities yield zero inflection
points.

(D) The radicand may be either positive or negative. If w1w2 < 1, the radicand is
negative and there are zero inflection points. If w1w2 > 1, the radicand is positive
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and w2−1
w1w2−1 > 1, meaning that m > w2

√
K2
µ2

and is always inside our interval of interest.
Hence, there are again zero inflection points.

This exploration of the numbers of inflection points places restrictions on the number
of possible intersection points of the two isocurves. We have shown above that for any
combination of positive exponent values, there is a maximum of one inflection point
for the polynomial whose zeros give the x−coordinate of intersection points of f and
g; hence, this polynomial has a maximum of three roots, indicating that f and g are
limited to a maximum of 3 intersection points in the interior of the first quadrant. From
above, we now know that the appearance of 3 equilibria depends on the relative values

of w2

√
K2(w2−1)

µ2(w1w2−1) and K1 in cases 2 and 3. Further, there will never be 3 equilibria in
cases when both w1 < 1 and w2 > 1 or w1 > 1 and w2 < 1. In the cases that result in
zero inflection points, the isocurves have a maximum of 2 intersection points. While the
complicated parameter relationships make it difficult to offer distinct value ranges for
w1 and w2 that yield specific numbers of intersection points, we have found restrictions
for the maximum numbers of equilibria and the cases in which they may occur.

3 Stability of Equilibria
The dynamic stability of equilibria is significant as only stable equilibria are realistic
points where the populations can be maintained in equilibrium. The sample population
trajectories in Figure 4 illustrate that coexistent equilibria can either be stable or
unstable. Following the work of Hirsch, Smale, and Devaney in [2], we offer a proof
regarding the stability of equilibrium points in the interior of the first quadrant.

Figure 4: Left: Sample trajectories for case 1.
Right: Sample trajectories for case 2.

We note the following facts regarding F and G:

F1. The populations of the two species x and y are inversely related; if the population
of one increases, then the growth rate of the other decreases. Thus, Fy < 0 and Gx < 0.

F2. If either population reaches a large value, then both populations decrease. In
particular, letting K = max{K1,K2,(K1/µ1)

1/w1 ,(K2/µ2)
1/w2}, we have that F(x,y)<
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0 and G(x,y)< 0 if x ≥ K or y ≥ K.

F3. If the population of one species is zero, then the other species has a positive growth
rate to a certain population value and a negative growth rate beyond it. In particular,
F(x,0) is positive when x < K1 and negative when x > K1, and G(0,y) is positive when
y < K2 and negative when y > K2.

Theorem 6. Each intersection point of isocurves f and g in the interior of the first
quadrant yields a locally stable equilibrium if and only if f is above g to the left of the
intersection and f is below g to the right.

Proof. Any coexistent equilibria of this system modeled by equation (3) are given by
the intersection(s) of the isocurves in the interior of the first quadrant. At an intersection
point, the slope of f =−Fx

Fy
and the slope of g=−Gx

Gy
by the Implicit Function Theorem.

We know that any intersection points occur under one of three cases:

Case A. f is above g to the left of the intersection, and f is below g to the right.

Case B. g is above f to the left of the intersection, and g is below f to the right.

Case C. g and f are tangent to each other and touch at a point without crossing at that
point.

Figure 5: Case 1, where the slope of f is steeper than that of g.

(A) As shown in Figure 5, the slope of f is steeper than that of g, meaning −Fx
Fy

<

−Gx
Gy

< 0, as both curves are monotonically decreasing. From fact F1, Fy < 0 and

Gx < 0, and we conclude that Fx < 0 and Gy < 0, as we have −Fx
Fy

< 0 and −Gx
Gy

< 0.

To determine the local stability at this critical point, we next seek the eigenvalues of
the Jacobian matrix,[

Fx Fy
Gx Gy

]
=

[
β1K1 −2β1x−β1µ1yw1 −w1β1µ1xyw1−1

−w2β2µ2yxw2−1 β2K2 −2β2y−β2µ2xw2

]
.

Along the isocurves, F(x,y) = 0 and G(x,y) = 0, so we substitute these values into the
matrix, yielding [

−β1x −w1β1µ1xyw1−1

−w2β2µ2yxw2−1 −β2y

]
.
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The trace of the Jacobian matrix is −β1x−β2y < 0. The determinant is β1β2(xy−
w1w2µ1µ2xw2yw1), which we see, generally, is xy(FxGy−FyGx). In case A, −Fx

Fy
<−Gx

Gy
,

meaning Fx
Fy

> Gx
Gy

and consequently FxGy > FyGx, so the determinant is positive. The
eigenvalues are the roots of the characteristic polynomial p(λ ) of the matrix, which,
for a standard 2x2 matrix, is given by

p(λ ) = det(A−λ I) = λ
2 − tr(A)λ +det(A).

Using the quadratic formula, the eigenvalues of the general matrix are

λ =
tr(A)±

√
tr(A)2 −4det(A)

2
.

Returning to our Jacobian matrix, we see that, since the determinant is positive,
|tr(A)| >

√
tr(A)2 −4det(A), meaning that the real part of both eigenvalues must

always be negative as the trace is negative. Hence, both eigenvalues have negative real
parts, indicating a locally stable equilibrium point.

(B) We begin with −Gx
Gy

<−Fx
Fy

< 0. Again, the trace of the matrix is −β1x−β2y < 0.
The determinant is xy(FxGy −FyGx), which in this case is negative.

From our Jacobian matrix, we see that both the trace and determinant are negative.
Hence, both eigenvalues will be real. Further, since

√
tr(A)2 −4det(A)> tr(A), one

eigenvalue must be negative and the other must be positive, indicating an unstable
equilibrium point.

(C) In this case, the two isocurves are tangent and touch without crossing. While
this case is highly biologically improbable, we show that this tangent point yields an
unstable equilibrium.

For the two curves to touch without crossing, their slopes must be equal at the point we
consider; thus, we begin with −Gx

Gy
=−Fx

Fy
< 0. Since FxGy = FyGx, the determinant is

zero. We then have

λ =
tr(A)±

√
tr(A)2

2
.

The eigenvalue λ = 0 implies an unstable equilibrium at this intersection point, as at
least one of the eigenvalues of this matrix has a nonnegative real part.

Since both isocurves are monotonically decreasing, the equilibria have a well-defined
order moving from a northwest to southeast direction. In this order, any one of the
two possible cases of intersection with crossing isocurves cannot occur twice in a
row. In other words, if more than one intersection point exists on the interior of
the first quadrant, the stability of adjacent equilibria will alternate between stable
and unstable when the equilibria are being considered in a northwest to southeast
configuration. Therefore, knowing the stability of just one equilibrium point in these
models is sufficient to determine the local stability of the rest.

Though we do not do so here, facts F2 and F3 can be used to show that the locally
stable equilibria are actually globally stable, as done in [2]. To demonstrate the degree
of information we can now readily obtain from modified Lotka-Volterra systems in the
form of equation (3), we now discuss a numerical example. Letting µ1 = 0.59,µ2 =
0.74,K1 = 1.21,K2 = 1.36,w1 = 2, and w2 = 3, we see that v1 ≈ 1.43 and v2 ≈ 1.22.



84 BSU Undergraduate Mathematics Exchange Vol. 16, No. 1 (Fall 2022)

Because K1 < v2 and K2 < v1, these parameters place us in case 3. Using the table from
Theorem 5, we have that m ≈ 0.74 < K1 and hence these parameters yield isocurves
with 3 intersection points in the first quadrant, which is case 3B. Using Theorem 6
and the aid of Figure 2, we see that the relative positions of the intercepts indicate that
the first equilibrium point when considered in a northwest to southeast configuration,
which is (0,K2), must be unstable. Continuing down the isocurves in this direction,
the first intersection is stable, the second is unstable, the third is stable, and (K1,0) is
unstable. Hence, we have determined the number of equilibria and their stability with
minimal calculations.

4 Areas of Further Research
While these explorations of the models have added insight into Lotka-Volterra mod-
ifications, there is much more to be explored. Placing additional restrictions on the
parameters of Table (1), for example, would enable more efficient and clear determina-
tion of the possible number of intersection points, as the parameter relationships are
clearly complicated. Additionally, the number of intersection points in Theorems 1,
3, and 4 is dependent upon parameter relationships. Further exploration of the cases
in these theorems could reveal which number of intersection points actually occurs
for more specific parameter values. Moreover, investigating relationships between w1
and w2 could offer additional restrictions on when certain numbers of equilibria occur.
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