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Abstract
Trigonometry is the study of circular functions, which are functions defined on the
unit circle x2 + y2 = 1, where distances are measured using the Euclidean norm. When
distances are measured using the Lp-norm, we get generalized trigonometric functions.
These are parametrizations of the unit p-circle |x|p + |y|p = 1. Investigating these new
functions leads to interesting connections involving double angle formulas, norms
induced by inner products, Stirling numbers, Bell polynomials, Lagrange inversion,
gamma functions, and generalized π values.

1 Introduction
It is a well-known fact that trigonometric functions are periodic: if f (x) is any trigono-
metric function, then f (x+2π) = f (x) for all values of x in the domain of f . Therefore,
it is natural to define trigonometric functions on the unit circle, where all multiples of
2π are identified when we wrap the real line onto the circle. Because of this definition,
trigonometric functions are also called circular functions. In this setting, the trigono-
metric functions sin t and cos t are just the unit circle’s parametrization with respect to
arc length.

Recall that the unit circle is the locus of all points in the plane R2 that are at a distance
of one unit from the origin, where distances are measured using the standard Euclidean
norm: ∥⃗x∥= (x2

1 +x2
2)

1/2. What if we switch to an Lp-norm: ∥⃗x∥p = (|x1|p + |x2|p)1/p,
(p ≥ 1)? We then get a new family of curves defined by the equations |x|p + |y|p = 1.
These are called unit p-circles and are shown in the figure below. Because these curves
are in between a square and a circle, they are also called squircles.

Figure 1: p-circles for p = 1,2,4, and 10 from inside to outside, respectively

Can we parametrize these p-circles to get p-trigonometric functions x = sinp t and
y = cosp t such that, when p = 2, we recover the standard trigonometric functions?
What properties and identities do these generalized trigonometric functions have? Can
we do calculus over these curves? What can be said about the periods of these functions?
How does the curvature change along a p-circle? What is the area it encloses? What
are the rational points on p-circles? Note that for any p ≥ 1, Lp, as defined above, gives
a norm, but this norm is induced by an inner product only when p = 2 ([9]). Therefore,
p = 2 is a special case of interest; however, all of the aforementioned questions are
well defined for any p ≥ 1. The goal of this paper is to investigate these questions. Our
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primary reference for this research is [7]. While we follow the general outline given in
[7], we also do some independent investigation.

There are at least three ways to generalize trigonometric functions. These correspond
to 3 different parametrizations of the unit p-circle: areal, arc length, and angular.
It turns out that these three parametrizations are equivalent only when p = 2! The
parametrization we will be working with corresponds to the areal parametrization.
Our investigation of these generalized trigonometric functions and their inverses led
to several interesting connections involving double angle formulas, norms induced
by inner products, Stirling numbers, Bell polynomials, Lagrange inversion, gamma
functions, and generalized π values.

These p-trigonometric functions have several applications, specifically in design.
Rather than using rounded rectangles, Apple uses p-circles for their icons, as the
curvature continuity leads to a more sleek look, unifying the design of their hardware
and icons [10]. Another design application can be found in squircular dinner plates,
designed to allow a greater surface area for food while taking up the same amount of
cabinet space as their circular counterparts [4].

The paper is organized as follows. In Section 2, we define p-trigonometric functions
using a differential equations approach and derive some basic properties of these
functions. We show that for any positive integer k, the well-known double angle
formula for sin(2x) holds for sink(2x) if and only if k = 2. In Section 3, we focus
on the successive derivatives of sinp(x). This revealed a connection between the
coefficients of the terms in the derivatives and Stirling numbers of the first kind. We
derive the Taylor series of sin−1

p x using Newton’s binomial series and then find the
Taylor series of its inverse using Lagrange inversion theorem. It is shown that both
sinp x and sin−1

p x are analytic functions at x = 0. Our work gave rise to the concept of
rigidity of functions, which deals with the simultaneous vanishing of the derivatives of
a function and its inverse. A generalization of π for p-circles, πp, and its properties are
examined in Section 4 using beta and gamma functions. Furthermore, we use a Monte
Carlo method to compute πp. In Section 5, we determine the value of p for which the
unit p-circle is halfway between the unit circle and the square that contains it from the
lenses of area, perimeter, and curvature. Rational points on p-circles are determined in
Section 6. We end the paper with some questions for future work in Section 7.

2 p-trigonometric Functions

Unless stated otherwise, p will denote a positive real number that is at least 1.

2.1 Coupled Initial Value Problem

The standard trigonometric functions sine and cosine that parametrize the unit circle
are famously coupled by the derivative relation sin′ t = cos t, cos′ t =−sin t. If we take
x(t) = cos t and y(t) = sin t, we see that the pair is one of many solutions to the system
of differential equations

x′(t) =−y(t), y′(t) = x(t).
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However, with the inclusion of the initial conditions
x(0) = 1, y(0) = 0,

differential equation theory guarantees that the sine and cosine functions are, in fact,
the only solutions to this system [2], better known as the Coupled Initial Value Problem
(CIVP).

For p ≥ 1, a natural extension of the CIVP considers the functions x(t), y(t) satisfy-
ing

x′(t) =−y(t)p−1, y′(t) = x(t)p−1, x(0) = 1, y(0) = 0.

The motivation for this extension comes from that fact that any functions x(t) and
y(t) that satisfy the above CIVP parametrize the curve xp + yp = 1. This is seen by
differentiating h(t) := x(t)p + y(t)p with respect to t, to get h′(t) = px(t)p−1x′(t)+
py(t)p−1y′(t). Substituting x′(t) =−y(t)p−1, y′(t) = x(t)p−1, will show that h′(t) = 0.
This means h(t) is a constant function. Using the initial conditions, we can conclude
that h(t) = 1, i.e., xp + yp = 1, as desired.

Again, from the general theory of differential equations, the above CIVP has a unique
solution. We can define cosp t = x(t) and sinp t = y(t) as the unique solution to the
generalized CIVP. But these functions do not parametrize p-circles in general. For
instance, when p is an odd positive integer, these functions parametrize p-circles only in
the first quadrant where x and y are both positive. To circumvent this issue, we restrict
the domain of the solutions of the CIVP and then extend them to functions on the real
line using symmetry and periodicity. This is done in the next three subsections.

Once we have sinp t and cosp t in place, we may then define the other trigonometric
functions tanp t := sinp t

cosp t , cscp t := 1
sinp t , secp t := 1

cosp t , and cotp t := 1
tanp t such that the

familiar inverse relations are maintained.

2.2 Inverse p-trigonometric Functions
Starting with the equation x = sinp y, we use the CIVP to find sin−1

p x. Differentiating
both sides with respect to y and simplifying, we find:

dx
dy

= cosp−1
p y

= (cosp
p y)

p−1
p

= (1− sinp yp)
p−1

p

= (1− xp)
p−1

p .

This is a separable differential equation. To solve it, we separate and integrate both
sides. This gives:

dx
dy

= (1− xp)
p−1

p∫ dx

(1− xp)
p−1

p

=
∫

dy

∫ x

0

dt

(1− t p)
p−1

p

= y = sin−1
p x.
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We can do the same for x = cosp y to get

cos−1
p x =

∫ 1

x

dt

(1− t p)
p−1

p

.

2.3 Areal Parametrization of p-circles
The unit circle has a useful property that a sector with angle measure θ in radians has
an area of θ/2. We can use this property to find sine and cosine in terms of area where
x = cos(2a), y = sin(2a), and a is the area of the sector made by the points (1,0) and
(x,y). It is then natural to ask if this property extends to all p-circles.

Figure 2: Area of a p-sector

Proposition 1. Let (x,y) be a point in the first quadrant of the unit p-circle, and a be
the area of the sector made by the points (1,0) and (x,y). It holds that x = cosp(2a)
and y = sinp(2a).
Proof. This argument is in the spirit of Levin [3]. Working in the first quadrant, the
area of the sector in a p-circle can be given by the area of A1+A2 as denoted in Figure
2. This can be given by a = 1

2 x(1− xp)
1
p +

∫ 1
x (1− t p)

1
p dt. We can differentiate both

sides with respect to x and simplify to get the following:
da
dx

=
1
2

(
(1− xp)

1
p + x

1
p
(1− xp)

1
p−1(−pxp−1)

)
− (1− xp)

1
p

= (1− xp)
1
p

(
1
2
− xp

2
(1− xp)−1 −1

)
= (1− xp)

1
p

(
(1− xp)− xp −2(1− xp)

2(1− xp)

)
= − (1− xp)

1
p−1

2
.

Using the fundamental theorem of calculus, we can write this as a =
∫ 1

x
(1−t p)

1
p −1

2 dt+c.
When a = 0 and x = 1, we get c = 0. From here, we can conclude that a = 1

2 arccosp x.
Solving for x gives x = cosp (2a).

We can do the same thing in terms of y to get a =
∫ y

0
(1−t p)

1
p −1

2 dt+c. When a = 0 and
y = 0, we get c = 0. From here, this equation has been shown to be a = 1

2 arcsinp y
and thus y = sinp (2a). As such, this shows that this property does extend to all unit
p-circles.



Trigonometric Functions in the p-norm 7

2.4 Definition and Graphs of sinp x and cosp x

To generalize the formula π/2 = sin−1(1), we first set πp/2 := sin−1
p (1). Since we

have shown that the p-trigonometric functions can be parametrized by area, we can
now extend then to functions defined on the entire real line as follows. We first
restrict them to [0,sin−1

p (1)] = [0,πp/2] and then extend the domain to [0,2πp] using
symmetry:

sinp t :=

{
sinp(πp − t) πp/2 < t ≤ πp,

−sinp(2πp − t) πp < t < 2πp.

We then periodically extend that it (−∞,∞) by setting sinp(t + 2πpk) = sinp(t) for
any integer k. The definition of cosp(t) is similar. The resulting graphs are shown
below.

Figure 3: Graph of sinp x for p = 1,2, and 10

Figure 4: Graph of cosp x for p = 1,2, and 10

2.5 Trigonometric Identities
While we may have defined the generalized CIVP in a manner similar to the original,
there is no guarantee that sinp t, cosp t thus defined satisfy familiar trigonometric prop-
erties and identities. In this section, we explore a few identities of the p-trigonometric
functions.

Lemma 2 (p-Pythagorean Equation). [7, p. 268] The functions sinp t, cosp t satisfy
|sinp t|p + |cosp t|p = 1 for all real t.

Proof. This is clear from the definition of these functions using the CIVP and extension
using symmetry and periodicity.
It is clear from the p-Pythagorean Equation that the functions sinp t, cosp t are bounded
and |sinp t| ≤ 1, |cosp t| ≤ 1. Dividing all terms of the p-Pythagorean equation by
|sinp t|p and |cosp t|p gives the identities 1+ |cotp t|p = |cscp t|p and | tanp t|p +1 =
|secp t|p, respectively.
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Lemma 3. The functions sinp t and cosp t are odd and even, respectively.

Proof. The functions α(t) :=−sinp(−t) and β (t) = cosp(−t) satisfy α ′(t) =−(−
sin′p(−t))= cosp−1

p (−t)= β (t)p−1 and β ′(t)=−cos′p(−t)= sinp−1
p (−t)=−α(t)p−1.

Note that α(0) = −sinp(0) = 0 and β (0) = cosp(0) = 1; thus, the functions α,β
satisfy the generalized CIVP. Then, by the uniqueness of solutions, we must have
sinp t =−sinp(−t) and cosp t = cosp(−t).

However, not all standard 2-trigonometric identities are satisfied. For instance, we
show that for positive integer values of p, sinp(2t) = 2sinp t cosp t is satisfied if and
only if p = 2. A double angle formula for generalized trigonometric functions is still
sought after [1, 8].

Proposition 4. Let k ∈ Z+. Then sink(2t) = 2sink(t)cosk(t) if and only if k = 2.

Proof. The desired identity is well known for k = 2. We suppose the identity holds for
k ≥ 1 and show that k must be 2. We consider the cases k = 1 and k > 1 separately.
For k = 1, we note that the CIVP gives the unique solution sin1(t) = t and cos1(t) =
1− t. Then sin1(2t) = 2t ̸= 2t(1− t) = 2sin1 t cos1 t. If k > 1, then by Lemma 2,
the functions sink and cosk satisfy |sink t|k + |cosk t|k = 1. By the Intermediate Value
Theorem, there exists some t0 in [0,πp/2] such that sink(t0) = cosk(t0). As t0 ≥ 0, the
substitution sink(t0) = cosk(t0) into the p-Pythagorean identity gives 2sink

k(t0) = 1,
therefore sink

k(t0) =
1
2 . Then, by the assumption that sink(2t) = 2sink t cosk t is satisfied

for all t, we may raise all terms to the power k and evaluate at the point t0 to obtain
sink

k(2t0) = 2k( 1
2 )

1
2 = 2k−2. Since sink

k t is bounded above by 1, we obtain 2k−2 ≤ 1,
which implies that k ≤ 2. Together with the assumption that k > 1, we obtain k = 2.

It is known that the Lp norm is induced by an inner product if and only if p = 2 [9].
Then together with Proposition 4, we make the following remark.

Remark 5. The following are equivalent for k ∈ Z+:

• Lk is a norm induced by an inner product,

• sink(2t) = 2sink t cosk t, and

• k = 2.

3 Taylor Series
Now that we have defined p-trigonometric functions and their derivatives by the CIVP,
it is natural to study the higher derivatives of these functions. We begin by observing
that for any p > 1, all the successive derivatives of sinp x and cosp x are defined for all
values of x. In this section, we provide an algorithm for differentiating these functions,
demonstrate some patterns and connections present in their successive derivatives, and
formulate the Taylor series for sin−1

p x and sinp x. The Taylor series representations of
these functions provide a tool to express all of the derivatives of the p-trigonometric
functions in one formula.
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3.1 Higher Derivatives and the Bracket Notation

Because of the simplicity and utility of the closed formulas for differentiation of
sin2 x, cos2 x, it is natural to wonder about higher derivatives of sinp x, cosp x. We find
these higher derivatives by utilizing the definition given by the CIVP in Section 2.1.
However, these derivatives become complex rather quickly. To help address this, we
introduce a notation that will be used throughout this section in relation to higher
derivatives of these p-trigonometric functions: [m,n]p := cosm

p (x)sinn
p(x).

Lemma 6. The derivative of cosm
p (x)sinn

p(x) satisfies d
dx [m,n]p =−m[m−1,n+ p−

1]p +n[m+ p−1,n−1]p.

Proof. Applying the standard rules of differentiation, we get the following.
d
dx

[m,n]p =
d
dx

(cosm
p (x)sinn

p(x))

=−mcosm−1
p (x)sinp−1

p (x)sinn
p(x)+ cosm

p (x) ·nsinn−1
p (x)cosp−1

p (x)

=−mcosm−1
p (x)sinn+p−1

p (x)+ncosm+p−1
p (x)sinn−1

p (x).

=−m[m−1,n+ p−1]p +n[m+ p−1,n−1]p.

Although we do not have a closed formula for finding derivatives of these functions,
Lemma 6 serves as a recursive algorithm for computing successive derivatives, as
demonstrated in the following example.

Example 7. Lemma 6 can be iteratively applied to sinp x to find the first few derivatives:

sinp x = [0,1]p
d
dx

sinp x = 0+1[p−1,0]p

d2

dx2 sinp x = 0+(−p+1)[p−2, p−1]p +0

d3

dx3 sinp x = 0+−(p−1)(−(p−2)[p−3,2p−2]p +(p−1)[2p−3, p−2]p)+0

= 0+(p2 −3p+2)[p−3,2p−2]p +(−p2 +2p−1)[2p−3, p−2]p +0.

There seems to be no clear pattern that arises from these derivatives like there is for
sinx. However, in the next subsection, we will see one pattern in the coefficients of the
first terms of these derivatives.

3.2 Connection to Stirling Numbers

For any variable x and a non-negative integer n, the falling factorial is defined as
follows.

(x)n :=

{
1 if n = 0,
x(x−1)(x−2) · · ·(x−n+1) if n ≥ 1.

For n ≥ 1, (x)n is a non-constant polynomial of degree n whose coefficients are the
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Stirling numbers of the first kind. More precisely, we set:

(x)n =
n

∑
k=1

s(n,k)xk.

We will now show a connection between the successive derivatives of sinp x and Stirling
numbers. Building a tower from the coefficients in Example 7, we get:

1
0 | 1

0 | −p+1 | 0
0 | p2 −3p+2 | −p2 +2p−1 | 0

We observed that the coefficients of the polynomials in the second column (underlined)
can be expressed using Stirling numbers of the first kind s(n,k). For instance, corre-
sponding to the polynomial p2 −3p+2 (corresponding to the 3rd derivative of sinp x),
we have s(3,3) = 1, s(3,2) =−3 and s(3,1) = 2. To prove this, we need the following
lemma.

Lemma 8. For any n ≥ 1, the first term of dn

dxn (sinp(x)) is given by

(−1)n−1(p−1)n−1[p−n,(n−1)(p−1)]p.

Proof. We prove this using mathematical induction. For n= 1, d
dx (sinp(x))= cosp−1

p (x)
= 1[p−1,0]p, which agrees with the answer obtained with n = 1 in the given expres-
sion. Having proved the base case, let us assume that the result is true for n = k.
Differentiating the first term of dk

dxk (sinp(x)) using the chain rule, and only picking the
first term of the resulting expression will give us

(−1)k−1(p−1)k−1 ((−1)(p− k)[p− (k+1),k(p−1)])

= (−1)k(p−1)k−1(p−1)[p− (k+1),k(p−1)].

The recursive nature of the falling factorial tells us that (p−1)k−1(p−1) = (p−1)k.
This shows that the first term of dk+1

dxk+1 (sinp(x)) is given by (−1)k(p− 1)k[p− (k +
1),k(p−1)]. By the principle of mathematical induction, the result is true for all n ≥ 1.

The connection to Stirling numbers and the successive derivatives of the sinp(x) is now
clear. Simplifying the coefficient of the first term of dn

dxn (sinp(x)) obtained from the
above lemma gives:

(−1)n−1(p−1)n−1 = (−1)n−1 (p)n

p
=

(−1)n−1

p

n

∑
k=1

s(n,k)pk.

3.3 Newton’s Binomial Series
Let p be any integer that is greater than 1. As the previous section demonstrates,
finding a formula for the successive derivatives of sinp x to compute its Taylor series
is complicated. Instead, we examine sin−1

p x, whose Taylor series at x = 0 is more
manageable, and use this to find the Taylor series of sinp x at x= 0 through the Lagrange
inversion theorem. To do this, we apply Newton’s binomial series to derive the Taylor
series of sin−1

p x. Newton’s binomial series tells us the following for any exponent a
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and |x|< 1:

(1− x)−a = 1+ax+
a(a+1)

2!
x2 +

a(a+1)(a+2)
3!

x3 + ...

=
∞

∑
k=0

a(k)xk

k!
,

where a(k) = a(a+ 1)(a+ 2) · · ·(a+ k− 1) is the rising factorial [12, p. 742]. Note
that, by convention, a(0) = 1.

Proposition 9. We can express sin−1
p x as the following Taylor series:

sin−1
p x =

∞

∑
k=0

(
p−1

p

)(k) xkp+1

k!(kp+1)
.

Proof. Beginning with the integral form of sin−1
p x derived in Section 2.2, we apply

Newton’s binomial series:

sin−1
p x =

∫ x

0
(1− t p)−( p−1

p )dt

=
∫ x

0

(
∞

∑
k=0

(
p−1

p

)(k) tkp

k!

)
dt.

Power series have the property that they can be integrated term by term within the
interval of convergence. Thus, when we integrate and apply the fundamental theorem
of calculus, the result follows.

Example 10. Applying Proposition 9 for p = 2 gives the following well-known result:

sin−1
2 x = x+

1
6

x3 +
3

40
x5 +

5
112

x7 + · · ·+
(

2n
n

)
x2n+1

22n(2n+1)
+ · · · .

Similarly, when p = 4, we get the first few terms as follows:

sin−1
4 x = x+

3
20

x5 +
7

96
x9 +

77
1664

x13 + · · · .

It would be helpful to have a closed-form solution for these higher derivatives. In the
next section, we introduce some tools and discuss what this will look like.

3.4 sin−1
p x through the Gamma Function

We now introduce a special function to shed light on sin−1
p x. The gamma function,

Γ(z), is defined as Γ(z) =
∫

∞

0 e−ttz−1 dt, for z > 0. This converges for any real number
z > 0, and it is an extension of the factorial function: Γ(n) = (n−1)!. It is well-known
that Γ(1/2) =

√
π . Two important properties of the gamma function are

Γ(x+1) = xΓ(x) and Γ(x)Γ(1− x) =
π

sin(πx)
.

Using the gamma function, for any integer p > 1, we can further simplify the Taylor
series for sin−1

p (x) as follows. We begin by the formula from Proposition 9 which states
that

sin−1
p x =

∞

∑
k=0

(
p−1

p

)(k) xkp+1

k!(kp+1)
.
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Then we have the following:

sin−1
p x =

∞

∑
k=0

(
p−1

p

)(k) xkp+1

k!(kp+1)

=
∞

∑
k=0

(
1− 1

p

)(k) xkp+1

k!(kp+1)

=
∞

∑
k=0

(
1− 1

p

)(
2− 1

p

)(
3− 1

p

)
· · ·
(

k− 1
p

)
xkp+1

k!(kp+1)

=
∞

∑
k=0

Γ

(
1− 1

p

)(
1− 1

p

)(
2− 1

p

)(
3− 1

p

)
· · ·
(

k− 1
p

)
1

Γ(1− 1
p )

xkp+1

k!(kp+1)

=
∞

∑
k=0

Γ

(
2− 1

p

)(
2− 1

p

)(
3− 1

p

)
· · ·
(

k− 1
p

)
1

Γ(1− 1
p )

xkp+1

k!(kp+1)

...

=
∞

∑
k=0

Γ

(
k− 1

p

)
1

Γ(1− 1
p )

xkp+1

k!(kp+1)

=
∞

∑
k=0

Γ

(
k− 1

p

)
Γ

(
1− 1

p

) xkp+1

k!(kp+1)
.

Theorem 11. Let n > 1 be a positive integer. Then for any positive integer l, let k
and r be the integers given by the division algorithm: l = nk+ r where k ≥ 0 and
0 ≤ r ≤ n−1. Then we have(

dl

dxl sin−1
n (x)

)∣∣∣∣
x=0

=


Γ(k− 1

n )
Γ(1− 1

n )
(kn)!

k! , if r = 1,

0, if r ̸= 1.

Proof. The Taylor series for sin−1
n (x) at x = 0 has the form

sin−1
n (x) = h(x) =

∞

∑
m=0

h(m)(0)
m!

xm.

On the other hand, from the above calculation, we know that

sin−1
n (x) =

∞

∑
k=0

Γ
(
k− 1

n

)
Γ
(
1− 1

n

) xkn+1

k!(kn+1)
=

∞

∑
k=0

(
Γ
(
k− 1

n

)
Γ
(
1− 1

n

) (kn)!
k!

)
1

(kn+1)!
xkn+1.

Equating the coefficients of like-powers of x in both these series, we get the theorem.

Now that we have derived the Taylor series of sin−1
p x, we can apply the Lagrange

inversion theorem as outlined in the next section.

3.5 Lagrange Inversion
A function z = f (w) is said to be analytic at c if it is infinitely differentiable at c and if
the Taylor series for f (w) at w = c converges to f (w) for all w in a neighborhood of
c.
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For an equation z= f (w), where f is analytic at c and f ′(c) ̸= 0, the Lagrange inversion
theorem can be used to find the equation’s inverse, w = g(z), in a neighborhood of 0.
This inverse is given by the formula [5, Chapter 3]:

g(z) = c+
∞

∑
n=1

gn
(z− f (c))n

n!
, where

gn = lim
w→c

dn−1

dwn−1

[(
w− c

f (w)− f (c)

)n]
.

For power series, this theorem takes a slightly different form. Specifically, when f and
g are formal power series expressed as

f (w) =
∞

∑
k=0

fk
wk

k!
and g(z) =

∞

∑
k=0

gk
zk

k!
,

with f0 = 0 and f1 ̸= 0, applying the Lagrange inversion theorem gives us the following
[5]:

g(z) = c+
∞

∑
n=1

gn
(z− f (c))n

n!
, with

gn =
1
f n
1

n−1

∑
k=1

(−1)kn(k)Bn−1,k( f̂1, f̂2, ..., f̂n−k), n ≥ 2, where

f̂k =
fk+1

(k+1) f1
, g1 =

1
f1
, n(k) = n(n+1) · · ·(n+ k−1), and

Bn,k(x1,x2, ...,xn−k+1) = ∑
n!

j1! j2!... jn−k+1!

(x1

1!

) j1 (x2

2!

) j2
...

(
xn−k+1

(n− k+1)!

) jn−k+1

,

where this sum is taken over all sequences j1, j2, j3, ..., jn−k+1 of non-negative integers
that satisfy j1 + j2 + ...+ jn−k+1 = k and j1 +2 j2 +3 j3 + ...+(n− k+1) jn−k+1 = n.
These are the Bell polynomials.

The Taylor series expansion of sinp x is obtained when the above theorem is applied
to

sin−1
p x =

∞

∑
k=0

(
p−1

p

)(k) xkp+1

k!(kp+1)
,

which was derived in the previous section. We are able to apply this theorem to sin−1
p x,

as it meets the initial conditions given above: f0 = 0 and f1 ̸= 0.

Example 12. When p = 2, we can apply Lagrange Inversion Theorem with c = 0,
as f (c) = 0 and f ′(c) = 1. To do so, we must calculate fk for the first few terms.
Expanding sin−1

2 x, we find

f0 = 0, f1 = 1, f2 = 0, f3 = 1, f4 = 0, f5 = 9, f6 = 0.
Using these values, we can find f̂k:

f̂1 = 0, f̂2 =
1
3
, f̂3 = 0, f̂4 =

9
5
, f̂5 = 0.

We may now use these values to find the first few gn using the formulas given above.
To this end, we record a couple of special Bell polynomials that will be used below:
Bn,n(x1) = (x1)

n and Bn,n−1(x1,x2) =
(n

2

)
(x1)

n−2x2. These are obtained by simplifying
the general Bell polynomial given above.
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When n = 1, g1 = 1
f1
= 1

1 = 1. When n = 2, we have g2 = (−1)1 · 2(1)B1,1(0) = 0.
Similarly, when n = 3, we have

g3 =
1
f 3
1

(
(−1)13(1)B2,1( f̂1, f̂2)+(−1)23(2)B2,2( f̂1)

)
=

1
13 (−3B2,1(0,1/3)+12B2,2(0))

= −3
(

2
2

)
1
3
+12(02) =−1.

In the same manner, applying this formula to the next few values of n, we find that
g4 = 0 and g5 = 1.

Substituting these values into the formula for g(z) given by Lagrange Inversion Theorem
above, we have:

g(z) = 0+
∞

∑
n=1

gn
(z−0)n

n!
.

sin2(z) = z− z3

3!
+

z5

5!
+ · · · .

When p = 4, these computations get more tedious. Using SageMath, we find that

sin4 x = x− 18
5!

x5 +
14364

9!
x9 −·· · .

The above ideas prove the following theorem.

Theorem 13. For any integer p > 1, the functions sin−1
p x and sinp x are analytic at

x = 0.

It is well-known that sinx/x → 1 as x → 0. We now generalize this result.

Corollary 14. Let p > 1 be an integer. Then we have

lim
x→0

sinp x
x

= 1.

Proof. By Theorem 13, we know that sinp x is analytic at x = 0, and moreover, from
the CIVP, sinp 0 = 0. Therefore, we can express sinp x as a power series whose constant
term is 0:

sinp x = a1x+a2x2 +a3x3 + · · ·+anxn + · · · .

Differentiating both sides and invoking the CIVP gives:
(cosp x)p−1 = a1 +2a2x+3a3x2 + · · ·+nxn−1 + · · · .

Since cosp(0) = 1, setting x = 0 in the above equation tells us that a1 = 1. Finally, we
have

lim
x→0

sinp x
x

= lim
x→0

x+a2x2 +a3x3 + · · ·
x

= lim
x→0

1+a2x+a3x2 + · · ·= 1.

Note that from this result it also follows that tanp x/x → 1 as x → 0. One can also
prove these limits using l’Hôpital’s rule. In the same vein, one can also show the
following.
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Corollary 15.

lim
x→0

sin4 x− x
x5 =−18

5!
.

3.6 Rigidity

Note that the missing terms of the Taylor series for sin4(x) are exactly the ones that
were also missing in sin−1

4 (x); see Example 10. In fact, for both functions, the non-zero
terms in the Taylor series correspond to powers of x that form an arithmetic progression
of the form 4m+1. We proved this fact in Theorem 11 for sin−1

n (x). We now conjecture
that this is also true for sinn(x).

Conjecture 16. Let n be a positive integer. Then(
dl

dxl sinn(x)
)∣∣∣∣

x=0
̸= 0 ⇐⇒ l ≡ 1 mod n.

This led to the following, more general question in analysis.

Question: Suppose f (x) is a real-valued function that is infinitely differentiable at
x = a such that f ′(a) ̸= 0. Let f (a) = b and let g(x) be the local inverse of f (x) (this
exists by the inverse function theorem) at x = a. Is it true that for every positive integer
n, the nth derivative of f (x) at x = a is non-zero if and only if the nth derivative of g(x)
at x = b is non-zero?

It turns out that, in general, the above answer is no. Take for example f (x) = x2. We
have f (1) = 1 and f ′(1) = 2 ̸= 0. At x = 1, the local inverse of f (x) is g(x) =

√
x.

Note that for all k ≥ 3, f (k)(1) = 0 but g(k)(1) ̸= 0. On the other hand, for the function
f (x) = sin(x), the above question has an affirmative answer because the Taylor series
for sinx and sin−1 x, have only odd terms. This leads naturally to the following
definition.

Definition 17. Let y = f (x) be a function that is infinitely differentiable at x = a such
that f ′(a) ̸= 0. We say that f (x) is rigid at x= a if for any positive integer k, f (k)(a) ̸= 0
if and only if g(k)(b) ̸= 0, where g(x) is the local inverse of f (x) at x = a and b = f (a).

In this terminology, f (x) = x2 is not rigid at x = 1 but f (x) = sinx is rigid at x = 0.
Conjecture 16 can now be restated as follows. For any positive integer k, sink x is rigid
at x = 0.

Question: What are necessary and sufficient conditions for a function y = f (x) that is
infinitely differentiable at x = a to be rigid at a?

4 Generalized π values
4.1 Organic Definition

As we generalize trigonometric functions in the p-norm, we must also take into con-
sideration generalizing the value of π . Recall that π = 2sin−1(1). Using this as our
inspiration, we can organically define πp as πp := 2sin−1

p (1). Using our sin−1
p x formula
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we derived in Section 2.2 and letting x = 1, we get

πp = 2
∫ 1

0

1

(1− t p)
p−1

p

dt. (1)

Note that, unless otherwise indicated, when we refer to π , we are referring to π2.

When p = 2, we find that the area of the unit circle is equal to π . It is then natural to
wonder if πp has any relation to the area of a unit p-circle.

Proposition 18. The area of a unit p-circle is πp, when p ≥ 1.

Proof. In Proposition 1, we found that the area of the sector of the p-circle that connects
the points (x,y) and (1,0) is given as a function of y by a(y) = 1

2
∫ y

0 (1− t p)
1
p−1 dt. If

we let (x,y) be the point (0,1), we get the area of the unit p-circle in the first quadrant,

given by a(1) = 1
2
∫ 1

0 (1− t p)
1
p−1 dt. Since the unit p-circle has 4-fold symmetry, we

can multiply both sides of the equation by four to find the area of the entire p-circle:

4a(1) = 2
∫ 1

0
(1− t p)

1
p−1 dt.

From Section 2.2, we know that 2
∫ x

0 (1− t p)
1
p−1 dt = 2sin−1

p x. Therefore, we know
that the right hand side of the equation is 2sin−1

p (1), which is equal to πp as shown in
Equation (1). We have also already established that a(1) is the area of the quarter unit
p-circle, so 4 ·a(1) gives us the area of the entire unit p-circle. Therefore, we find that
the area of the unit p-circle is πp.

Corollary 19. For any p ≥ 1, we have 2 ≤ πp < 4.

Proof. As shown above, πp is the area of a unit p-circle. When p = 1, we get the region
bounded by the square |x|+ |y| = 1, which has area 2. Similarly, since the p-circle
is inscribed in a square of side length two, we know that the area of the p-circle is
bounded by the square’s area, which is 4. This shows that for any p ≥ 1, we have
2 ≤ πp < 4.

4.2 A Formula for πp

We now show how we can compute πp in terms of the gamma function. To this end, we
need another special function called the beta function, β (x,y), which is closely related
to the gamma function and can be defined as β (x,y) =

∫ 1
0 tx−1(1− t)y−1 dt, for any two

real numbers x,y such that x > 0 and y > 0. We can put the beta function in terms of
gamma using the property

β (x,y) =
Γ(x)Γ(y)
Γ(x+ y)

. (2)

Proposition 20. For any p ≥ 1, we have

πp =
2Γ2( 1

p )

pΓ( 2
p )

.

In particular, πp is a differentiable function of p.
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Proof. Referring back to our definition for πp, if we let u = t p, we can express πp in
terms of the beta function as follows:

πp = 2
∫ 1

0

1

(1− t p)
p−1

p

dt =
2
p

∫ 1

0
(1−u)

1
p−1 ·u

1
p−1 du = 2β (1/p,1/p).

We can then use Equation (2) to put πp in terms of the gamma function, and that
gives the formula stated in the proposition. Since Γ(x) is a differentiable function
and compositions and quotients of differentiable functions are again differentiable, it
follows that πp is differentiable.

Example 21. Using the above equation, we can numerically approximate πp for any
p. For p = 2,3 and 4, we get:

π2 =
2Γ2( 1

2 )

2Γ(1)
≈ 3.1415, π3 =

2Γ2( 1
3 )

3Γ( 2
3 )

≈ 3.533 and π4 =
2Γ2( 1

4 )

4Γ( 2
4 )

≈ 3.708.

4.3 Properties of πp

We have already seen that πp is a differentiable function of p for all p > 0. Is it a
monotonic function? Example 21 suggests that πp increases with p. We now prove
that fact.

Proposition 22. πp is an increasing function on (0,∞).

Proof. Recall that πp is the area of a unit p-circle. Since p-circles have a 4-fold

symmetry, we get πp = 4
∫ 1

0 (1− xp)
1
p dt. We will be done if we can show that, for any

fixed value of x in (0,1), (1− xp)
1
p is an increasing function in p. This is because if

(1− xp1)
1

p1 < (1− xp2)
1

p2 for all x in (0,1) and p1 < p2, then

4
∫ 1

0
(1− xp1)

1
p1 dx < 4

∫ 1

0
(1− xp2)

1
p2 dx,

showing that πp1 < πp2 whenever 0 < p1 < p2.

To this end, let ψ(p) := (1− xp)
1
p , where x is a fixed number in (0,1). Taking the

natural logarithm and differentiating with respect to p on both sides, we get

ln(ψ(p)) =
ln(1− xp)

p
,

ψ ′(p)
ψ(p)

=
− ln(1− xp)

p2 +
− ln(x)xp

p(1− xp)
,

ψ
′(p) = (1− xp)

1
p

(
− ln(1− xp)

p2 +
− ln(x)xp

p(1− xp)

)
.

For 0 < x < 1 and p > 0, note that 0 < 1− xp < 1. Therefore, ln(x) and ln(1− xp)
are both negative. This shows that all parts of the derivative are positive. Therefore,
ψ ′(p)> 0, which means ψ(p) is an increasing function.

Having shown above that πp is an increasing function and that it has an upper bound of
4 in Corollary 19, we know that a limit exists. It is then only natural to wonder what
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the limit of πp is.

Proposition 23. limp→∞ πp = 4.

Proof. Using πp =
2Γ2( 1

p )

pΓ( 2
p )

, we can take the limit of πp as p approaches infinity. Note

that we have not yet stated Legendre’s duplication formula, Γ(2z) = Γ(z)Γ(z+ 1
2 )

21−2z√π
.

πp =
2
p
·

Γ2( 1
p )

Γ( 2
p )

=
2
p
·

Γ2( 1
p ) ·2

1− 2
p
√

π

Γ( 1
p )Γ

(
1
p +

1
2

)
=

2
p
·

Γ( 1
p ) ·2

1− 2
p
√

π

Γ

(
1
p +

1
2

) =
2 ·Γ( 1

p +1) ·21− 2
p
√

π

Γ

(
1
p +

1
2

) .

lim
p→∞

πp =
2 ·Γ(1) ·2

√
π

Γ( 1
2 )

=
1 ·4

√
π√

π
= 4.

Figure 5: Graph of πp

Recall that it is well-known that π2 = π is an irrational number (a number that is not the
ratio of two integers). On the other hand, π1 = 2, a rational number. (π1 = 2 because it
is the area enclosed by the square |x|+ |y|= 1 of side length

√
2.) It is natural to ask

for what values of p, is πp irrational? This is a hard question. Since πp is a continuous
function, it takes rational and irrational values infinitely often; see Figure 5.

4.4 πp with the Monte Carlo Method
Since we have shown that πp can be described as the area of a p-circle, we can use a
rather fun technique to approximate the value of πp. Given a p-circle shaped dartboard
inscribed inside a square, what is the probability that a uniformly random throw will
land on the dartboard (assuming that the dart must land inside the square)? The
probability is the ratio of the area of the board to the area of the box. Therefore, if
we have n throws where t of them land on the dartboard, the probability would be
t
n =

πp
4 . We can solve for πp to get πp = 4t

n . Because of the law of large numbers,
when n → ∞, the ratio goes to the true ratio, and we find the true value of πp. Writing
a simple program to do this for us, at n = 1,000,000,000, we get π3 ≈ 3.53324 and
π4 ≈ 3.7081.
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5 Optimal Unit p-circles

One question that naturally arises when examining p-circles is, “At what value of p is
the corresponding squircle halfway between a unit circle (p= 2) and a square (p→∞)?"
This question was examined from three lenses: area, perimeter, and curvature.

5.1 Area

We sought to find the value of p for which the area enclosed by the p-circle |x|p+ |y|p =
1 is π+4

2 , which is the average of the areas of the unit circle and the square that the
unit circle is inscribed in. Because the p-circle is symmetric, we can examine the first
quadrant only, resulting in the following equation:∫ 1

0

p
√

1− xp dx =
π +4

8
.

Using SageMath, the root of this equation can be found, giving the approximation
p ≈ 3.162038. As such, we can conclude that the value of p for which the area of the
p-circle is exactly halfway between the areas of the unit circle (p = 2) and the square
in which it is inscribed is p ≈ 3.162038.

5.2 Perimeter

Next, we want to find the value of p for which the perimeter of a unit p-circle is halfway
between those of a unit circle and the square that the unit circle is inscribed in. The
circumference of a unit circle is 2π , and the perimeter of a square that contains the unit
circle is 8. Therefore, we have to find the value of p for which the perimeter of a unit
p-circle is π +4. To find the perimeter of the unit p-cirle, we apply the Euclidean arc
length formula to the defining equation of a p-circle. We equate the resulting integral
to π +4 to obtain the equation:

π +4 = 4
∫ 1

0

√
1+(1− xp)2(1−p)/px2(p−1) dx.

We solved this equation numerically using SageMath to find that p ≈ 4.667489.

5.3 Curvature

Finally, we wish to find p such that the curvature of the unit p-circle is halfway between
that of a square (here said to have curvature 0) and the 2-unit circle (which has curvature
1). For a given smooth curve C in R2, the curvature is a measure of how different our
curve is from a circle at a given point. While there are many equivalent formulations of
the curvature of a given curve, the following gives the curvature for a curve defined
implicitly by F(x,y) = 0:

κ =
|F2

y Fxx −2FxFyFxy +F2
x Fyy|

(F2
x +F2

y )
3
2

.

Using the relation F(x,y) = xp + yp −1 = 0 for the unit p-circle, we obtain

κ = (p−1)
xpy2p + x2pyp

(x2py2 + y2px2)
3
2
(xy).
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If we investigate the curvature of the unit p-circle at the point x = y, we find that

κ = (p−1)x2 2x3p

(2x2p+2)
3
2
=

p−1√
2x

.

When x = y, we can write the relation for the unit circle as 2xp = 1, which gives
x = 2−

1
p . Substituting for x gives

κ =
p−1

√
2 ·2−

1
p
=

p−1

2
1
2−

1
p
= (p−1)2

1
p−

1
2 .

Therefore, if we solve for p such that the unit p-circle has curvature 1/2, we find that
p ≈ 1.43643264.

5.4 Resulting Graphs

Graphing these 3 p-circles gives Figure 6 where the unit circle and square are dashed,
and the p-circle is solid. For the optimal curvature, we also have p = 1 since both
p = 1 and p → ∞ have the same curvature.

Figure 6: All 3 optimal p-circles

6 Rational Points on p-circles

6.1 2-circles and Pythagorean Triples

Right triangles (and as a result, Pythagorean triples) have long been objects of mathe-
matical interest, studied intensely by the Babylonians even more than a thousand years
before Pythagoras [6]. Given any Pythagorean triple (x,y,z) satisfying x2 + y2 = z2,
we may divide all parts by z2 to obtain x2

z2 +
y2

z2 = 1. Then the point ( x
z ,

y
z ) is a rational

point which lies on the 2-unit circle defined by x2 + y2 = 1. On the other hand, given
any rational number v

u , we obtain the Pythagorean triple (u2 − v2,2uv,u2 + v2) [11]. In
this manner, we may translate contexts between rational points on the unit circle and
right triangles with integer side lengths.
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6.2 p-circles and Fermat’s Last Theorem

We can generalize the known results for rational points on 2-circles and ask the
same question for p-circles where p is an integer greater than 2. There are cer-
tainly 4 trivial rational points along the axes of the graph, which are the points
(0,1),(1,0),(0,−1),(−1,0). To find the others, we may look at the rational solu-
tions in the first quadrant and use symmetry to extend our answers to the entire unit
p-circle.

Let p be an integer greater than 2 and let P = ( p1
q1
, p2

q2
) ∈ Q2 be a rational point on

the unit p-circle lying in the first quadrant. As P lies on the unit p-circle and P is
in the first quadrant, we must have ( p1

q1
)p +( p2

q2
)p = 1 and p1

q1
> 0, p2

q2
> 0. We then

find (p1q2)
p +(p2q1)

p = (q1q2)
p. However, by Fermat’s Last Theorem, there are no

positive integers p1, p2,q1,q2 that satisfy this relation. Thus, there exist no rational
solutions in the first quadrant. Then, by symmetry, we see that the only rational points
on the circle are exactly those along the axes.

7 Future Research

The results in this paper seem to indicate that p-trigonometric functions have interesting
but complex behavior. For instance, even basic formulas such as the double-angle
formulas for sin(2x) and cos(2x) seem to have no straightforward generalization. Sim-
ilarly, understanding higher derivatives of sinp(x) at x = 0 looks very difficult; see
Conjecture 16 and the questions following it. There are several other open questions.
We list a few that we think merit further study.

1. We know the derivatives of sinp x and cosp x. What about
∫

sinp xdx and
∫

cosp xdx?
Using the Taylor series for sinp x and cosp x, one can evaluate these integrals as series.
But are there closed-form answers for these integrals?
2. The parametrization of p-circles we considered in this paper are with respect to area.
We can also parametrize these curves with respect to arc length. These give yet another
generalization of the p-trigonometric functions. What properties do these functions
have?
3. Can we extend this work for (p,q)-trigonometric functions that come from looking at
the curves |x|p + |y|q = 1? Parametrizing these curves will give us sinp,q x and cosp,q x.
What can be said about these functions?
4. So far, we have been working in R2. Can we extend this work to R3? To this end, we
should look at the unit p-sphere |x|p + |y|p + |z|p = 1. For p = 2, this is the standard
unit sphere, and as p goes to infinity, we get a cube that encloses the unit sphere. These
surfaces can be called sphubes (p-spheres), analogous to our squircles (p-circles). It
opens gates to a whole new area of research. What are the parametric equations of these
surfaces? Can we do sphubical trigonometry that is similar to spherical trigonometry?
What are the volume and surface areas of the regions enclosed by these surfaces? What
is the Gaussian curvature function of these surfaces?
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