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Abstract
The Law of Small Numbers states that the Binomial distribution converges to the
Poisson distribution. Using the programming language R, we investigate the total
variation distance between Binomial(n, c/n) and Poisson(c) when we fix c and n
individually. We also look at the asymptotics for ndTV for a fixed c, where ndTV is the
total variation distance dTV multiplied by increasing values of n. Several properties of
dTV are looked at in this paper.

1 Introduction
‘The Law of Small Numbers’ is a book written by Ladislaus von Bortkiewicz [1]. Quine
and Seneta [2] state that there is much misconception about the book and its contents.
Assume we have a short series of N independent observations with a Poisson(λi) for
i ∈ {1, . . . ,N}. Bortkiewicz found that these observations act as if they are from a
sample of size N with a Poisson distribution, even with unequal λi’s. It is known that in
certain circumstances, the Binomial distribution converges to the Poisson distribution.
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In our study, we will be using Binomial(n, c/n) and Poisson(c) for our investigation
of the total variation distance between the two distributions.

Definition 1. Total variation distance measures the closeness between two distributions.
The distance is defined by

dTV (L (X),L (Y )) =
1
2

∞

∑
j=0

|P(X = j)−P(Y = j)|

where X and Y are discrete random variables and L (X) and L (Y ) denotes their
distributions. The state space of these discrete random variables is {0, 1, 2, . . . }. It
is an important statistical distance measure, which in layman’s terms measures the
difference between two probability distributions. It is part of a wider field that too
measures the difference between two probability distributions, called ‘f-divergence’ [3].

We wished to find higher order expansions of the total variation distance, but this
was not possible using the programming language R. Instead, we look at the first order
asymptotics for ndTV , where c is fixed and n is increasing. This paper reports on several
plots of the total variation distance for the law of small numbers.

For interested readers, we review a number of properties of the total variation dis-
tance which include calculating dTV as a finite sum and the metric axioms. We also
provide the R code of our plots, if a reader would like to use the code in their own
research.

In our research, we have looked at several scenarios for our calculation of the to-
tal variation distance. We manipulated n and c to observe dTV , and later ndTV . One
scenario involves finding a convergence towards a certain value of the total variation
distance multiplied by n. ndTV is this scenario, where c is fixed and n → ∞. The
convergence can be seen when n is small and in some cases when n is large, however
this depends on the value of c.
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2 Properties of the Total Variation Distance
The following properties seen in this section are important when it comes to calculating
the total variation distance. They support the validity of our results and are part of the
research project conducted.

2.1 dTV as a finite sum
The total variation distance can be found in a shorter way, by looking at only the
positive parts of the original formula. The new method of calculating the total variation
distance will only look at a finite number of terms, hence why it is shorter.

Definition 2. A real function f (x) can be split into two parts,

f+(x) =

{
f (x), if f (x)> 0
0, otherwise

(1)

f−(x) =

{
− f (x), if f (x)< 0
0, otherwise

(2)

where f (x) = f+(x)− f−(x).

Theorem 1. The total variation distance (dTV ) can be found by looking only at
the positive parts

dTV (L (X),L (Y )) =
n

∑
j=0

(P(X = j)−P(Y = j))+.

Proof: We can separate functions into two different parts, one being the positive part
and the other being the negative part. The positive part looks only at the positive values
of a function and vice versa for the negative part.

By Definition 2.,

dTV (L (X),L (Y )) =
1
2

∞

∑
j=0

|P(X = j)−P(Y = j)|

|P(X = j)−P(Y = j)|= ((P(X = j)−P(Y = j))++(P(X = j)−P(Y = j))− (3)

(P(X = j)−P(Y = j)) = ((P(X = j)−P(Y = j))+− (P(X = j)−P(Y = j))− (4)

The distributions are discrete and we assume that we have a fixed n number of trials.

Looking at (3),

dTV (L (X),L (Y ))=
1
2

n

∑
j=0

(P(X = j)−P(Y = j))++
1
2

n

∑
j=0

(P(X = j)−P(Y = j))−

2 ·dTV (L (X),L (Y )) =
n

∑
j=0

(P(X = j)−P(Y = j))++
n

∑
j=0

(P(X = j)−P(Y = j))−
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Now looking at (4),
n

∑
j=0

(P(X = j)−P(Y = j))=
n

∑
j=0

(P(X = j)−P(Y = j))+−
n

∑
j=0

(P(X = j)−P(Y = j))−

Left hand side,
n

∑
j=0

P(X = j)−
n

∑
j=0

P(Y = j) = 1−1 = 0.

Implying that,

dTV (L (X),L (Y )) =
n

∑
j=0

(P(X = j)−P(Y = j))+ =
n

∑
j=0

(P(X = j)−P(Y = j))−.

From this, we can now calculate the distance as follows

dTV (L (X),L (Y )) =
n

∑
j=0

(P(X = j)−P(Y = j))+.

2.2 Metric Axioms
Theorem 2. The total variation distance (dTV ) is a metric on the space of distributions.
Proof: We review the metric axioms in order to prove this theorem.

Definition 3. A metric satisfies three axioms,

(i) Non-negativity, where dTV (L (X),L (Y ))≥ 0

(ii) The identity of indiscernibles, where dTV (L (X),L (Y )) = 0
if and only if L (X) = L (Y )

(iii) Symmetry, where dTV (L (X),L (Y )) = dTV (L (Y ),L (X))

(iv) The triangle inequality, where
dTV (L (X),L (Z))≤ dTV (L (X),L (Y ))+dTV (L (Y ),L (Z))

Axiom 1: Straightforward from the definition of total variation distance, notice that the
absolute value ensures that we take the positive result.

Axiom 2: For the identity of indiscernibles, it can be easy to see that dTV (L (X),L (Y ))=
0 if and only if L (X) = L (Y ). We know that |P(X = j)−P(Y = j)| ≥ 0 for all j. We
need the left hand side to be equal to zero, so we make P(X = j) = P(Y = j). The two
distributions are then identical, L (X) = L (Y ), so |P(X = j)−P(X = j)|= 0.

Axiom 3: For the axiom of symmetry, we see that |P(X = j)−P(Y = j)| ≥ 0. If
we were to swap P(X = j) and P(Y = j) around for |P(Y = j)−P(X = j)| ≥ 0, the
absolute value allows for the same result.

Axiom 4: For the triangle inequality, we need to show that dTV (L (X),L (Z)) ≤
dTV (L (X),L (Y ))+dTV (L (Y ),L (Z)). We can first display

dTV (L (X),L (Z)) =
1
2

∞

∑
j=0

|P(X = j)−P(Z = j)|.
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We can then see the following

dTV (L (X),L (Z))≤ 1
2

∞

∑
j=0

{
|P(X = j)−P(Y = j)|+ |P(Y = j)−P(Z = j)|

}
.

The right hand side can be separated into
1
2

∞

∑
j=0

|P(X = j)−P(Y = j)|+ 1
2

∞

∑
j=0

|P(Y = j)−P(Z = j)|.

So then
dTV (L (X),L (Z))≤ dTV (L (X),L (Y ))+dTV (L (Y ),L (Z)).

2.3 dTV as a finite sum
Theorem 3. The total variation distance (dTV ) has property 0 ≤ dTV ≤ 1.

Proof: We have already seen that dTV ≥ 0. By Definition 1. the total variation
distance (dTV ) is defined by

dTV (L (X),L (Y )) =
1
2

∞

∑
j=0

|P(X = j)−P(Y = j)|

The absolute value being taken ensures that there are no negative values, so we know
that dTV ≥ 0. To find out why dTV does not exceed 1, we have

1
2

∞

∑
j=0

|P(X = j)−P(Y = j)| ≤ 1
2

∞

∑
j=0

(P(X = j)+P(Y = j))

Looking at the right hand side,
1
2

∞

∑
j=0

P((X = j)+P(Y = j)) =
1
2

∞

∑
j=0

P(X = j)+
1
2

∞

∑
j=0

P(Y = j)

1
2

∞

∑
j=0

P(X = j)+
1
2

∞

∑
j=0

P(Y = j) =
1
2
+

1
2
= 1

It is seen that 0 ≤ dTV ≤ 1.

A value of 0 for the total variation distance tells us that both random variables are
identical. This is seen from our first metric axiom, where dTV (L (X),L (Y )) = 0 if
and only if L (X) = L (Y ).

A value of 1 can be seen as the opposite of having the total variation distance equal to
0. For a value of 1, both random variables have disjoint sample spaces.

3 Main Results
We use the programming language R [4] to produce our results. The function ‘Total-
VarDist’ from the package ‘distrEx’ [5] is used to calculate the total variation distance
without having to write longer pieces of code. Our random variables X and Y remain
the same throughout, with X ∼ Binomial(n, c/n) and Y ∼ Poisson(c).
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3.1 dTV for multiple values of n
We keep c as a fixed value here and we make n increase seemingly to infinity. Kennedy
and Quine [6] have found an exact expression for n ≥ 1 and 0 < np ≤ 2−

√
2. They

call this f1(p) in their paper, where p = c
n in our calculations

f1

( c
n

)
= c
(

1− c
n

)n−1
− ce−c.

(a) dTV (b) log(dTV )

Figure 1: Plot for c = 2−
√

2 for increasing values of n

R Code for Figure 1:

#dtv for multiple n
library(distrEx)
library(distr)
n = 1
results1 = list()
while (n <= 1000){

c = 2 - sqrt (2)
x = TotalVarDist(Binom(size = n, prob = c/n), Pois(c))
results1 = c(results1 , x)
#once n = 1000 in the program , produce a plot of the results
if (n == 1000){

plot(unlist(results1), type="l", xlab = "n", ylab = "dtv")}
n = n + 1}

We see here that as n increases, we move rapidly to a total variation distance of zero.
Changing the value of c (and n where required) has little effect to the form of the plot
shown in Figure 1. Additional plots are shown in Figure 2 for different c.
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(a) n = [100,1000], c = 100 (b) log(dTV ) of (a)

(c) n = [10000,20000], c = 10000 (d) log(dTV ) of (c)

Figure 2: Plots of different values of c

Comparing dTV to log(dTV ), we see a similar behaviour in the plots. This behaviour is
consistent at higher values of n and c, as seen by the plots. Therefore, as we increase
n for a fixed c, the total variation distance decreases in value close to zero for larger
values of n.

3.2 dTV for multiple values of c
We keep n as the fixed value here and we increase c to a certain value of n. We cannot
make c a greater value than n because that would make the probability c/n greater than
one. Figure 3 shows a plot for 0 ≤ c ≤ 100 and n = 100.

(a) dTV (b) log(dTV )

Figure 3: Plot for n = 100 for increasing values of c
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R Code for Figure 3:

[language=R]
#dtv for multiple c
library(distrEx)
library(distr)
c = 0
results2 = list()
while (c <= 100){

n = 100
x = TotalVarDist(Binom(size = n, prob = c/n), Pois(c))
results2 = c(results2, x)
#once c = 100 in the program , produce a plot of the results
if (c == 100){

plot(unlist(results2), type="l", xlab = "c", ylab = "dtv")}
c = c + 1}

The shape of this plot in Figure 3 will not be consistent for all values of n (and c
where required). When n is equal to the largest value of c, we see the behaviour of an
exponential function. As n increases with the same boundaries for c, the plot eventually
becomes linear. This is visualised in Figure 4. However, it remains that as c increases
for a fixed n that the total variation distance increases.

(a) n = 150,c = [0,100] (b) log(dTV ) of (a)

(c) n = 10000,c = [0,1000] (d) log(dTV ) of (c)

Figure 4: Plots of different values of n
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3.3 ndTV for multiple values of n
This builds up on Section 3.1, where c is fixed and n is increasing. ndTV has similar
behaviour to what we had done in Section 3.1, as n increases we have a smaller total
variation distance. Figure 5 shows a plot 7 ≤ n ≤ 1000 and c = 7.

Figure 5: Plot for ndTV for multiple values of n

R Code for Figure 5:

[language=R]
#ndtv for multiple values of n
library(distrEx)
library(distr)
n = 7
xaxis = seq(7,1000)
results3 = list()
while (n <= 1000){

c = 7
x = TotalVarDist(Binom(size = n, prob = c/n), Pois(c))
nx = n*x
results3 = c(results3, nx)
if (n == 1000){

plot(xaxis , unlist(results3), type="l", xlab = "n",
ylab = "ndtv")} n = n + 1}

On the plot, it seems that there is a convergence towards a certain value. A result from
a research paper by Prokhorov [7] tells us that

lim
n→∞

ndTV =
c√
2eπ

.

We investigated this and found that such a convergence exists for this particular plot
at approximately 1.703 to 3 decimal places. It appears that convergence is a common
feature in plots of this kind, with its visibility increasing at sufficiently large enough n.
Our plot agrees with Prokhorov’s result and shows that ndTV is quite rapid.



An investigation into the law of small numbers using R 11

3.4 ndTV for multiple values of c
This builds up on Section 3.2, where we have a fixed n and c is increasing. As with
Section 3.2, as we increase c we have a larger total variation distance. Figure 6 shows
a plot for 0 ≤ c ≤ 1000 and n = 1000.

Figure 6: Plot for ndTV for multiple values of c

R Code for Figure 6:

[language=R]
#ndtv for multiple values of c
library(distrEx)
library(distr)
c = 0
results4 = list()
while (c <= 1000){

n = 1000
x = TotalVarDist(Binom(size = n, prob = c/n), Pois(c))
nx = n*x
results4 = c(results4, nx)
if (c == 1000){

plot(unlist(results4), type="l", xlab = "c",
ylab = "ndtv")} c = c + 1}

If we were to keep n constant, there would be no clear convergence here. The final
value of ndTV is 987.382 at n = 1000 and c = 1000, having c > 1000 would cause the
probability c/n in the Binomial to be greater than one. We cannot continue calculating
the total variation distance here and so we conclude that there is no convergence for a
fixed n. For large enough n, we will find convergence.

3.5 The second term in the asymptotic expansion of dTV
Definition 4. We have functions f (i) and g(i). We introduce the “little-o" notation
for a function o(g(i)), where informally we can say “little o of g of i". f (i) = o(g(i))
means that

∀k > 0 ∃m > 0 ∀i ≥ m : 0 ≤ f (i)< kg(i). (5)
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The value of m does not depend on i, but it may depend on k [8].

f (i) = o(g(i)) also means that

lim
i→∞

f (i)
g(i)

= 0 [9]. (6)

We now define an asymptotic sequence using the “little-o" notation. A finite or infinite
sequence of functions φi(z), i = 1,2, . . . and z ∈ C is defined to be an asymptotic
sequence as z → z0 if,

φi+1(z) = o(φi(z)) (7)

and also that limz→z0
φi+1(z)

φi(z)
= 0.

From our definition of an asymptotic sequence, we say that ∑i=1 aiφi(z), where the
ai are constants, is an asymptotic expansion or an asymptotic approximation for a
function f (z) if for every N

f (z) =
N

∑
i=1

aiφi(z)+o(φN(z)) [10]. (8)

The following displays a recursive method for finding the first two terms of the asymp-
totic expansion for dTV :

φ1(n) =
1
n

φ2(n) =
1
n2

a1 = lim
n→∞

ndTV =
c√
2eπ

a2 = lim
n→∞

(
n2dTV −a1n

)
(9)

dTV ≈ a1

n
+

a2

n2

With c = 7, the convergence in (9) certainly occurs at n = 100000. The plot seen in
Section 3.3 clearly indicates a convergence towards a certain value and it was found
for 7 ≤ n ≤ 1000. Further calculations using R prove that the error of convergence is
very small, so we can use n = 100000. Therefore, we choose this as our n. We now
substitute our values into the equations above.
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φ1(100000) =
1

100000
= 0.00001

φ2(100000) =
1

(100000)2 = 0.0000000001

a1 =
7√
2eπ

= 1.6937950716

a2
.
= dTV (100000)2 −100000a1 = 945.68

Thus, our prediction is that a2 is about 946 for c = 7.

4 Conclusion
Our program allowed us to see how the total variation distance behaves for our param-
eters and distributions. We proved the property that the total variation distance can
be written as a finite sum. Two other properties were also looked at, being that the
distance is on the metric space and that 0 ≤ dTV ≤ 1. We have managed to find the
asymptotics for a scenario with ndTV .

In the future, we hope to address the following:

• The convergence is very fast for ndTV where c is fixed. A program with more
precision would be useful when finding say a2.

• We would like to extend the paper by Prokhorov [7] further by finding higher
order expansions.
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