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Abstract
A recent result is used to give a brief proof of the well-known fact that the set of
monomial matrices forms a subgroup of the set of invertible matrices. In addition,
another proof is given of the result that the inverse of an invertible nonnegative matrix
is nonnegative if and only if the matrix is monomial.

1 Introduction
In this note, we utilize a recent result [3, Lemma 3.3] to give a brief proof that the set
of monomial matrices forms a subgroup of the set of invertible matrices. The result is
well-known, but, to the best of our knowledge, a proof is not readily available in the
literature and deserves wider circulation. In addition, we give an elementary proof that
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the inverse of an invertible nonnegative matrix is nonnegative if and only if the matrix
is monomial.

2 Notation & Background
In this work, ‘F’ stands for C or R. The algebra of n-by-n matrices with entries over F
is denoted by Mn =Mn(F) and the subset of invertible n-by-n matrices with entries
from F is denoted by GLn = GLn(F). The set of all n-by-1 column vectors is identified
with the set of all ordered n-tuples with entries in F and thus denoted by Fn. If x ∈ Fn,
then Dx denotes the diagonal matrix such that dii = xi.

For n∈N, denote by Sn the symmetric group of degree n. Given σ ∈ Sn, the permutation
matrix with respect to σ , denoted by P = Pσ ∈ Mn, is the n-by-n matrix such that
pi j = δσ(i), j, where δ denotes the Kronecker delta function. The following facts
concerning permutation matrices are well-known:

Proposition 1. If σ , γ ∈ Sn, then:

(i) Pσ Pγ = Pγ◦σ ;

(ii) (Pσ )
−1 = Pσ−1 = (Pσ )

⊤; and

(iii) P is a permutation matrix if and only if P is a matrix with entries from {0,1} and every
row and every column of P contains exactly one nonzero entry.

3 Monomial matrices
Definition 1. If A ∈Mn, then A is called monomial, a monomial matrix, or a general-
ized permutation matrix if there is an invertible diagonal matrix D and a permutation
matrix P such that A = DP. The set of all n-by-n monomial matrices is denoted by
GPn = GPn(F)

Remark 2. If A is monomial with A = DP, then ai j = diiδσ(i), j. Following part (iii) of
Proposition 1, A is monomial if and only if every row and every column of A contains
exactly one nonzero entry.

If S ∈ GLn, then the relative gain array (RGA) of S, denoted by Φ(S), is defined by
Φ(S) = S ◦S−⊤, where ‘◦’ denotes the Hadamard or entrywise product and S−⊤ :=
(S−1)⊤ = (S⊤)−1. Johnson and Shapiro [4] showed that if A = SDxS−1, then

Φ(S)x =
[
a11 · · · ann

]⊤
. (1)

The following result, stated in slightly different terms, was established by Johnson and
Paparella [3, Lemma 3.3] via the RGA.

Lemma 1. If P is a permutation matrix and x ∈ Fn, then P⊤DxP = Dy, where y := P⊤x.

Proof. Because a permutation similarity effects a simultaneous permutation of the
rows and columns of a matrix, it follows that P⊤DxP is a diagonal matrix—say Dy.

Following (1) and part (ii) of Proposition 1,
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y = Φ(P⊤)x = [P⊤ ◦ (P⊤)−⊤]x =
[
P⊤ ◦P⊤]x = P⊤x.

The following characterization is immediate from Lemma 1.

Corollary 1. If A ∈ Mn, then A is monomial if and only if A = PD, where D is an
invertible diagonal matrix and P is a permutation matrix. Furthermore, if A = DxP,
where x ∈ Fn, then A = PDy, where y := P⊤x.

Recall that if A ∈Mn(R), then A is called (entrywise) nonnegative (respectively, pos-
itive), denoted by A ≥ 0 (respectively, A > 0), if ai j ≥ 0,1 ≤ i, j ≤ n (respectively,
ai j > 0,1 ≤ i, j ≤ n).

Lemma 2. If A is monomial, then A is invertible and A−1 is monomial. Furthermore,
if A ≥ 0, then A−1 ≥ 0.

Proof. If A is monomial, then there is a vector x ∈ Fn with no zero entries and a
permutation matrix P such that A = DxP. By Corollary 1, A = PDy, where y = P⊤x.
The matrix A is invertible as it is the product of invertible matrices and

A−1 = (PDy)
−1 = (Dy)

−1P−1 = Dy−1P⊤,

where y−1 :=
[
x1

−1 · · · xn
−1
]⊤. By Definition 1, A−1 is a monomial matrix.

Notice that A ≥ 0 if and only if y > 0. Thus, if A ≥ 0, then y−1 > 0 and A−1 ≥ 0 as it
is the product of nonnegative matrices.

Theorem 3. GPn is a subgroup of GLn.

Proof. The identity matrix is clearly monomial, so GPn is nonempty. In view of
Lemma 2, it suffices to demonstrate closure. To this end, if A,B ∈ GPn(F), then there
are permutation matrices P and Q such that A = DxP and B = DyQ. Thus,

AB = (DxP)(DyQ)

= Dx((PDy)Q) (associativity)
= Dx((DzP)Q) (Lemma 1 with z := Py)
= (DxDz)(PQ) (associativity)
= Dx◦z(PQ),

where ‘◦’ denotes the Hadamard product.

4 Nonnegative subgroups of Invertible Matrices
In 2013, Ding and Rhee [1] proved that an invertible matrix and its inverse are stochastic
(i.e., entrywise nonnegative with rows summing to unity) if and only if the invertible
matrix is a permutation matrix. In a subsequent work [2], they gave another proof
of this result and used the result to show that an invertible matrix and its inverse are
entrywise nonnegative if and only if the invertible matrix is monomial.

The import of the second result above can be gleaned from the following context.
Recall that the set of invertible nonnegative matrices with matrix multiplication forms a
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monoid, i.e., it satisfies the closure, associativity, and identity group-axioms. However,
as can be readily seen with two-by-two matrices, the inverse of an invertible nonnegative
matrix need not be nonnegative.

The set of permutation matrices forms a nonnegative multiplicative subgroup of the set
of invertible matrices, and it is natural to ask whether there are other nontrivial subsets
of invertible nonnegative matrices that form a subgroup.

Theorem 3 above and Theorem 4 below provide the answer.

Theorem 4. If A is nonnegative and invertible, then A−1 ≥ 0 if and only if A is
monomial.

Proof. The sufficiency of this condition was shown in Lemma 2.

To demonstrate necessity, we modify the elementary argument given by Ding and Rhee
[1] for stochastic matrices.

To this end, suppose that A is a nonnegative invertible matrix and that A−1 ≥ 0. For
convenience, write B = A−1. Since AB = I, it follows that

n

∑
k=1

aikbk j = δi j.

In particular, if i ̸= j, then
n

∑
k=1

aikbk j = 0. (2)

Fix i ∈ {1, . . . ,n}. Because A is invertible, the ith row of A must possess at least one
positive entry—say air. The nonnegativity of both matrices ensures that each summand
on the left-hand side of (2) equals zero, i.e., aikbk j = 0, ∀k ∈ {1, . . . ,n}. Since air > 0,
it follows that br j = 0 whenever j ̸= i. Since the rth row of B cannot be zero, it must
be the case that bri > 0.

Next, we show that air is the only nonzero entry in the ith row of A. To the contrary,
if ais > 0, with r ̸= s, then the argument above implies that bs j = 0 whenever j ̸= i
and bsi > 0. Thus, the rth and sth rows of B are (positive) multiples of each other,
contradicting the invertibility of B.

Since A⊤B⊤ = I, another application of the argument above with respect to the rth row
of A⊤ demonstrates that air is the only nonzero entry in the rth column of A. As i was
arbitrary, the result applies to every row of A and because A is invertible, it must be the
case that every row and every column of A contains exactly one nonzero entry, i.e., A is
monomial.

Corollary 2. Any subgroup of invertible matrices in which every matrix is nonnegative
must be a subgroup of the set of nonnegative momonial matrices.

Bibliography
[1] J. Ding and N. H. Rhee. Teaching tip: when a matrix and its inverse are stochastic.

College Math. J., 44(2):108–109, 2013.



38 BSU Undergraduate Mathematics Exchange Vol. 17, No. 1 (Fall 2023)

[2] J. Ding and N. H. Rhee. When a matrix and its inverse are nonnegative. Missouri J.
Math. Sci., 26(1):98–103, 2014.

[3] C. R. Johnson and P. Paparella. Perron spectratopes and the real nonnegative inverse
eigenvalue problem. Linear Algebra Appl., 493:281–300, 2016.

[4] C. R. Johnson and H. M. Shapiro. Mathematical aspects of the relative gain array
(A◦A−T ). SIAM J. Algebraic Discrete Methods, 7(4):627–644, 1986.


