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Abstract

The Riemann Zeta function, usually denoted by the Greek letter ζ , was defined in 1737
by a Swiss mathematician Leonhard Euler. This function is an infinite converging sum
of powers of natural numbers, and it has explicit expressions in terms of π at positive
even integers. In this paper we will discuss various irrationality proofs, focusing on
irrationality of certain values of the Zeta function.

1 Introduction

We start with the definition of the Riemann-Zeta function (that we will just call Zeta
function from now on).
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Definition 1.1. On the complex half-plane {(z)> 1 | z ∈C} the Riemann-Zeta function
is defined by the following expression:

ζ (z) =
∞

∑
n=1

1
nz =

1
1z +

1
2z +

1
3z + ...+

1
nz + ...

It is easy to show that the sum converges in this region.

Definition 1.1 will suffice for our purposes, but ζ (s) can be extended to the whole
complex plane by [2]. Leonhard Euler did some basic computations with ζ (s). In
particular, he famously solved the Basel Problem which is the question of determining
the precise value of ζ (2). We cover his proof in the modern language in Section . Euler
also generalized the computation to all positive even integers. One of the main results
of this paper is a different proof of this formula that we give in Section 6.

The rest of the paper is organized as follows:

In Section 2 we discuss preliminaries needed to solve the Basel problem. In Section 3
we prove that certain radical expressions, and π , are irrational. In Section 4 we solve
the Basel problem and compute ζ (4). In Section 5 we define Bernoulli numbers, an
important preliminary for computing the Zeta function at the even integers. In Section
6 we discuss how the Zeta function at the even integers can be expressed in terms
of Bernoulli numbers. In Section 7 we introduce the notion of being transcendental
and explain that transcendentality of π [10] implies that ζ (2k), k ≥ 1 is irrational. In
Section 8 we prove that ζ (3) is irrational following [3, Theorem 2]. In Section 9 we
show some advanced results, generalizations, and conjectures of the irrationality of the
Zeta function.

2 Preliminaries

In order to prove irrationality of the Zeta function at certain values, it is necessary
to understand certain preliminaries such as the infinite product formula for the sine
function.

2.1 Logarithms of infinite products

Lemma 2.1. For an infinite convergent product

S =
∞

∏
n=1

an

it is always the case that

log(S) =
∞

∑
n=1

log(an)

Proof. If the infinite product converges to a positive number, continuity of the logarithm
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function permits the interchange of the limit and the logarithm. So,

log
∞

∏
n=1

an = log

(
lim
k→∞

k

∏
n=1

an

)

= lim
k→∞

log

(
k

∏
n=1

an

)

= lim
k→∞

k

∑
n=1

log(an)

=
∞

∑
n=1

log(an)

2.2 Derivatives of infinite sums
Lemma 2.2. Suppose we have a sequence of functions fn differentiable on [a,b]. If we
have the series ∑

∞
n=1 fn(x) converging to f (x) on [a,b]:

f (x) =
∞

∑
n=1

fn(x)

and the series of derivatives ∑
∞
n=1 f ′n(x) converges uniformly on [a,b], then we have

f ′(x) =
∞

∑
n=1

f ′n(x) (a ≤ x ≤ b)

Proof. This is a standard result, see e.g. [11, Theorem 7.17].

2.3 Infinite product of the sine function
Theorem 2.3. We have the equalities

sin(x) = x

(
∞

∏
k=1

(
1+

x
kπ

)(
1− x

kπ

))
= x

(
∞

∏
k=1

(
1− x2

k2π2

))
and

sin(x)
x

=
∞

∏
k=1

(
1− x2

k2π2

)
that may be understood as expressing sin(x) as an infinite product over its roots at nπ

for n ∈ Z.

We refer to [8] for the proof.

3 Irrationality of radicals, and of π

In this section we give some elementary irrationality proofs. In particular, we prove that
π is irrational using integral techniques. Somewhat similar, but much more advanced,
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methods will be used in Section 8 to prove that ζ (3) is irrational, a famous result due
to Apéry [1].

Proposition 3.1. For a prime number k, n
√

k is an irrational number, for any n ∈ Z≥2.

Proof. We first observe that n
√

k is a root of the polynomial xn − k. According to the
rational root theorem, which uses ratios of the factors of the leading coefficient and the
constant of a polynomial to determine its integer roots, a rational root of a polynomial
with integer coefficients that is written in lowest terms p

q must have denominator q that
divides the leading coefficient, and numerator p that divides the constant coefficient.
Here, 1 ≡ 0 (mod q), so q has to be 1, while k ≡ 0 (mod p), so p is either k or 1.
Therefore, any rational root of xn − k must be an integer.

The only way for n
√

k to be an integer is if k is an n-th power of an integer, where n ≥ 2.
Since k is a prime number, it can only be expressed as p1 when factorized. However,
1 ̸≡ 0 (mod n), so n

√
k cannot be an integer, and hence not a rational number.

Corollary 3.2. For prime numbers k and l, n
√

k+ m
√

l is an irrational number for any
n,m ∈ Z>0

Proof. We can first assume that n
√

k+ m
√

l is rational, thereby stating that
n
√

k+ m√l =
p
q
, where p,q ∈ Z

This gives

k+ m√l =
pn

qn

m√l =
pn

qn − k

Since both pn

qn and k are rational, it can be concluded that m
√

l is also rational. However,

have already shown that m
√

l is irrational in Proposition 3.1, which contradicts the initial
hypothesis. Therefore, n

√
k+ m

√
l has to be irrational.

Theorem 3.3 (Irrationality of π). The number π is irrational.

Proof. For any integrable function f (x) by integration by parts we have:∫
f (x)sinxdx =− f (x)cosx+ f ′(x)sinx−

∫
f ′′(x)sinxdx

By using the values of sin(0) = 0, cos(0) = 1, sin(π) = 0, and cos(π) =−1,∫
π

0
f (x)sinxdx = f (π)+ f (0)−

∫
π

0
f ′′(x)sinxdx

If f (x) is a polynomial of degree 2n, n ∈ Z>0, then repeating the calculation n+ 1
times would give∫

π

0
f (x)sinxdx = F(π)+F(0)+

∫
π

0
f (2n+2)(x)sinxdx = F(π)+F(0) (1)
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where F(x) = f (x)− f ′′(x)+ f (4)(x)−·· ·+(−1)n f (2n)(x) and the last equality is from
f (2n+2)(x) = 0 (here f (k)(x) stands for the k-th derivative of f (x)).

Assume that π is rational, that is π = p
q with p,q ∈ Z and q ̸= 0. We will choose a

particular polynomial f (x) such that F(0)+F(π) is an integer. Then, we will also
show that

∫
π

0 f (x)sinxdx lies between 0 and 1, exclusively. Since no such integer can
exist, this will obtain contradiction and π has to be irrational.
For n ∈ Z>0, let

f (x) =
xn(p−qx)n

n!
. (2)

For F(π)+F(0) to be an integer, we need to show that both f (2n)(π) and f (2n)(0) are
integers.
For the chosen function f (x),

f (π−x)= f
(

p
q
− x
)
=

(
p
q − x

)n(
p−q

(
p
q − x

))n

n!
=

(
p
q − x

)n
(qx)n

n!
=

xn(p−qx)n

n!
= f (x)

Also, using the chain rule we see that for any k ∈ Z>0 we have
f (k)(x) = (−1)n f (k)(π − x)

and
f (2n)(0) = (−1)2n f (2n)(π) = f (2n)(π)

So, if we show that f (2n)(0) is an integer, f (2n)(π) would also be an integer. We can
express the function f (x) in 2 ways:

f (x) =
xn(p−qx)n

n!
=

2n

∑
j=0

c j

n!
x j

for some c j ∈ Z. Also (according to the Taylor series),

f (x) =
f (0)
0!

+
f ′(0)
1!

x+
f ′′(0)

2!
x2 + · · ·+ f (2n)(0)

(2n)!
x2n.

The coefficients at x j for both equations should be equal.

c2n

n!
=

f (2n)(0)
(2n)!

Thus,
(2n)!

n!
c2n = f (2n)(0)

Since (2n)!
n! c2n is an integer, then f (2n)(0) would also be an integer, which proves that∫

π

0 f (x)sinxdx is an integer.
The next step is to show that (1) equates to a value strictly between 0 and 1.

f (x) =
xn(p−qx)n

n!
=

xn

n!
(p−qx)n

For 0< x < π , xn

n! > 0, and (p−qx)n > 0, so f (x)> 0 for 0< x < π . Also, since sinx >
0 for 0 < x < π too, f (x)sinx > 0 for the same domain, and therefore

∫
π

0 f (x)sinxdx >
0. If the domain for x is 0 < x < π , it can also be written as 0 < π − x < π . By
multiplying the 2 together, we get 0 < x(π − x)< π2.
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Then,

0 < f (x) =
xn(p−qx)

n!
= qn xn(π − x)n

n!
< qn π2n

n!
Since we are free to choose the value of n, we just need to show that

lim
n→∞

qn π2n

n!
<

1
2

(3)

Indeed, then we have f (x)< 1
2 so∫

π

0
f (x)sinxdx <

1
2

∫
π

0
sinxdx = 1.

To show (3), we just need to look at the Taylor series of the value of eqπ2

eqπ2
= 1+

qπ2

1!
+

q2π4

2!
+

q3π6

3!
+ . . .

So, this infinite series converges to eqπ2
, a real number. However, if a particular infinite

series ∑
∞
n=0 an converges and an > 0, then

lim
n→∞

an = 0 <
1
2

In our case,

lim
n→∞

qn π2n

n!
= 0 <

1
2

Therefore, using proof by contradiction, this shows that π is irrational.

4 Elementary computation of ζ (2) and ζ (4).
A famous question, known as the Basel problem, is computing ζ (2). This result
demonstrates that the infinite sum of the squares of the inverses of positive natural
numbers is equal to the square of the number π divided by 6. We can write this
as:

ζ (2) =
1
12 +

1
22 +

1
32 + ...+

1
n2 + ...=

π2

6
The proof that we give below goes back to Euler [12, Theorem 1]. We also generalize
the computation to calculate ζ (4).

4.1 Solving the Basel problem
Through the infinite product of the sine function formula seen in 2.3, we have concluded
that:

sinx
x

=
∞

∏
k=1

(
1− x2

k2π2

)
=

(
1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)(
1− x2

42π2

)
. . .

(4)
In addition to this, we can use the Taylor series to achieve the following equa-
tion:

sinx =
∞

∑
n=0

(−1)nx2n+1

(2n+1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ . . .
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sinx
x

=
∞

∑
n=0

(−1)nx2n

(2n+1)!
= 1− x2

3!
+

x4

5!
− x6

7!
+

x8

9!
− . . . (5)

Theorem 4.1 (Basel problem). We have

ζ (2) =
π2

6
(6)

Proof. The idea is to compare the coefficients at x2 obtained using formulas (5) and
(4). The coefficient at x2 using (5) is − 1

6 . Let us compute the coefficient using (4). We
have

sinx
x

= lim
n→∞

(
sinx

x

)
n

(7)

where (
sinx

x

)
n

:=
n

∏
k=1

(
1− x2

k2π2

)
(8)

We can investigate the finite order terms
( sinx

x

)
n starting with n = 3. Note that we have(

sinx
x

)
3
=

(
1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)
=

=

(
1− x2

π2 − x2

22π2 +T4 (2)x4
)(

1− x2

32π2

)
= 1− x2

π2 −
x2

22π2 −
x2

32π2 +T4 (3)x4+T6 (3)x6 =

= 1− x2

π2 − x2

22π2 − x2

32π2 +T (3)

where we denote by Tm (n) the coefficient at xm in the expansion of
( sinx

x

)
n and by

T (n) the sum ∑
2n
m=4 Tm (n)xm.

Similarly one can compute(
sinx

x

)
4
= 1− x2

π2 − x2

22π2 − x2

32π2 − x2

42π2 +T (4)(
sinx

x

)
5
= 1− x2

π2 − x2

22π2 − x2

32π2 − x2

42π2 − x2

52π2 +T (5)

Using the same pattern, for an arbitrary n ≥ 3 we get

(
sinx

x

)
n
= 1− x2

π2 − x2

22π2 − x2

32π2 −·· ·− x2

n2π2 +T (n) (9)

= T (n)+1−
(

1
π2 +

1
22π2 +

1
32π2 + · · ·+ 1

n2π2

)(
x2) . (10)

Now due to (7), by taking the limits of both sides, the coefficient at x2 in (4) is equal to

−
(

1
π2 +

1
22π2 +

1
32π2 + · · ·+ 1

n2π2 + · · ·
)

Therefore, we can equate the obtained coefficients to get
1

π2 +
1

22π2 +
1

32π2 + · · ·+ 1
n2π2 + · · ·= 1

3!
.
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Multiplying by π2 both sides of the equation, we get:
1
12 +

1
22 +

1
32 + · · ·+ 1

n2 + · · ·= π2

6
which proves the result.

4.2 Computing ζ (4)

It has previously been stated that:

ζ (2) =
∞

∑
i=1

1
i2

(11)

Also, by following on with the definition of the Riemann Zeta function:

ζ (4) =
∞

∑
i=1

1
i4

(12)

Theorem 4.2. We have

ζ (4) =
π2

90
(13)

Proof. Here, we are trying to modify equation (11) by squaring it, and also modify
equation (7) so that it can be compared with the original equation and find the coefficient
of x4. Both of the modified equations will then be used to find ζ (4) .

(ζ (2))2 =

(
∞

∑
i=1

1
i2

)(
∞

∑
j=1

1
j2

)

=
∞

∑
i=1

∞

∑
j=1

1
i2

1
j2 =

∞

∑
i=1

1
i4
+

∞

∑
i=1

∞

∑
j=i+1

1
i2

1
j2 +

∞

∑
j=1

∞

∑
i= j+1

1
i2

1
j2

= ζ (4)+2
∞

∑
i=1

∞

∑
j=i+1

1
i2

1
j2

Recall equation (8). From here, through the equation (and the proof of the Basel
theorem above), we can see that the number of terms in the sum determining the
coefficient at x2 is

(n
1

)
, and that the number of terms in the sum determining the

coefficient at x4 is
(n

2

)
For example,(

sinx
x

)
3
= 1− x2

π2

(
1
12 +

1
22 +

1
32

)
+

x4

π4

(
1
12

1
22 +

1
12

1
32 +

1
22

1
32

)
−·· ·

= 1− x2

π2

(
3

∑
i=1

1
i2

)
+

x4

π4

(
∑

1≤i< j≤3

1
i2

1
j2

)
−·· ·

So, in general:(
sinx

x

)
n
= 1− x2

π2

(
n

∑
i=1

1
i2

)
+

x4

π4

(
n−1

∑
i=1

n

∑
j=i+1

1
i2

1
j2

)
−·· ·
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In equation (7) we have established that:

lim
n→∞

(
sinx

x

)
n
=

sinx
x

= 1− x2

3!
+

x4

5!
− ...

Therefore,

lim
n→∞

1
π4

n−1

∑
i=1

n

∑
j=i+1

1
i2

1
j2 =

1
5!

and

lim
n→∞

n−1

∑
i=1

n

∑
j=i+1

1
i2

1
j2 =

π4

5!
. (14)

It was previously shown that:

(ζ (2))2 = ζ (4)+2
∞

∑
i=1

∞

∑
j=i+1

1
i2

1
j2

So, applying equation (14) we get

ζ (4) = (ζ (2))2 −2
π4

5!
But then

ζ (4) = (ζ (2))2 −2
π4

5!
=

(
π2

6

)2

− π4

60
=

π4

36
− π4

60
=

π4

90

5 Bernoulli numbers
Definition 5.1. Bernoulli numbers, often denoted Bn, are set of rational numbers that
are often used in analysis. They are defined via the equation:

t
et −1

=
∞

∑
k=0

Bk

k!
tk

One can modify the equation(
et −1

t

)(
∞

∑
k=0

Bk

k
tk

)
= 1

by using the Taylor series expansion for et−1
t :(

1
1!

+
t
2!

+
t2

3!
+ . . .

)(
B0

0!
+

B1

1!
t + . . .

)
= 1

Here, we can see that B0 = 1, and the coefficient of tk becomes:
Bk

k!
1
1!

+
Bk−1

(k−1)!
1
2!

+
Bk−2

(k−2)!
1
3!

+ · · ·+ B0

0!
1

(k+1)!
= 0

Or,

B0 = 1,
(

k+1
k

)
Bk +

(
k+1
k−1

)
Bk−1 + · · ·+

(
k+1

0

)
B0 = 0

This gives a recursive way to compute Bk.
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6 Computing ζ (2k) for k ≥ 1

According to equation (4), we have:
sinx

x
=

(
1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)(
1− x2

42π2

)
. . .

Or, we can rewrite this equation by putting the natural log on both sides:

log
(

sinx
x

)
= log

((
1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)(
1− x2

42π2

)
. . .

)
log(sinx)− logx =

∞

∑
k=1

log
(

1− x2

k2π2

)
So, if we take the derivative on both sides of the equation in terms of x, we get (as long
as |x|< π):

cotx− 1
x
=

∞

∑
k=1

(
− 2x

k2π2

)
1

1− x2

k2π2

Therefore

cotx =
1
x
+

∞

∑
k=1

(
− 2x

k2π2

)
1

1− x2

k2π2

=

=
1
x
−2

∞

∑
k=1

(
− x

k2π2

)(
1+

x2

k2π2 +
x4

k4π4 + . . .

)
=

=
1
x
−2
(

ζ (2)
π2 x+

ζ (4)
π4 x3 +

ζ (6)
π6 x5 + . . .

)
and so

cosx
sinx

=
1
x
−2

∞

∑
k=1

ζ (2k)
π2k x2k−1 (15)

According to Euler’s formula, we have the equation:
eix = isinx+ cosx

If we substitute −x instead of x into the equation, we get:
e−ix = isin(−x)+ cos(−x) =−isinx+ cosx

Therefore,
eix + e−ix

2
= cosx

And,
eix − e−ix

2i
= sinx

So, using these two equations we have

cosx
sinx

=
eix+e−ix

2
eix−e−ix

2i

= i
(

eix + e−ix

eix − e−ix

)
= i
(

e2ix +1
e2ix −1

)
= i
(

1+
2

e2ix −1

)
= i+

1
x

(
2ix

e2ix −1

)
Substituting into (15) gives
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i+
1
x

(
2ix

e2ix −1

)
− 1

x
=−2

∞

∑
k=1

ζ (2k)
π2k x2k−1

According to Definition 5.1

i+
1
x

∞

∑
k=0

Bk

k!
(2ix)k − 1

x
=−2

∞

∑
k=1

ζ (2k)
π2k x2k−1

This equation implies that
∞

∑
k=2

Bk

k!
(2ix)k =−2

∞

∑
k=1

ζ (2k)
π2k x2k

since the other coefficients in the sum on the left hand side cancel out. If we compare
the coefficients of x2k on both sides, we get

B2k

(2k)!
(2i)2k =−2

ζ (2k)
π2k

ζ (2k) =
B2k

(2k)!
(2i)2k −π2k

2
This simplifies to a general expression

ζ (2k) =
(−1)k+122k−1π2kB2k

(2k)!
(16)

generalizing (6) and (13).

7 Transcendentality of π and irrationality of ζ (2k), k ≥
1

We now explain that (16) implies that the numbers ζ (2k), k ≥ 1 are irrational. Indeed,
it is well-known that π is not just irrational but transcendental (refer to [10]).

Definition 7.1. A number α ∈ R is transcendental if it is not a root of any polynomial

anxn +an−1xn−1 + · · ·+a1x+a0

with integer coefficients ai ∈ Z.

Proposition 7.2. If α ∈ R is transcendental, it is also irrational.

Proof. Suppose that α is rational that is we have α = p
q for p,q ∈ Z with q ̸= 0. Then

α is a root of qx− p = 0 contradicting Definition 7.1.

According to (16), the numbers ζ (2k), k ≥ 1 are of the form aπ2k for a∈Q (since B2k ∈
Q for any k ≥ 1). Therefore, irrationality of ζ (2k), k ≥ 1 follows from transcendentality
of π and the following fact that generalizes Proposition 7.2.

Proposition 7.3. If α ∈ R is transcendental then αk is irrational for any k ≥ 1.

Proof. The proof is similar to the proof of Proposition 7.2. Fix a k ≥ 1 and suppose
that αk is rational that is we have αk = p

q for p,q ∈ Z with q ̸= 0. Then α is a root of
qxk − p contradicting Definition 7.1.
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8 Irrationality of ζ (3)

In this section, we are going to integrate certain expressions involving logarithms and
polynomials to show that ζ (3) is irrational. This is a famous result of Apéry [1]. We
are going to follow the more elementary exposition of Beukers [3] while trying to give
more details and some motivation.

First of all, we choose a certain polynomial and prove that it has integer coefficients.
The choice of this polynomial is akin to the particular choice of the function f (x) of
(2) in the proof of Theorem 3.3 that π is irrational. We use the notation f (n)(x) for the
n-th derivative of f (x).

Lemma 8.1. The polynomial Pn(x) = 1
n! (x

n(1− x)n)(n) has integer coefficients.

Proof.

Pn(x) =
1
n!

(xn(1− x)n)(n) =
1
n!
((x− x2)n)(n)

According to the binomial theorem, this becomes

1
n!

((
n
0

)
xn(−x2)0 +

(
n
1

)
xn−1(−x2)1 +

(
n
2

)
xn−2(−x2)2 + · · ·+

(
n
n

)
x0(−x2)n

)(n)

Let ai := (−1)i
(n

i

)
, which is an integer. Then,

Pn(x) =
(a0

n!
xn +

a1

n!
xn+1 + · · ·+ an

n!
x2n
)(n)

=
n!a0

n!0!
+

(n+1)!a1

n!1!
x1 + · · ·+ (2n)!an

n!n!
xn

=

(
n
0

)
a0 +

(
n+1

1

)
a1x1 + · · ·+

(
2n
n

)
anxn

Since
(p

q

)
∈ Z , Pn(x) is an polynomial with integer coefficients.

Now, we prove that a certain double integral is a rational expression in terms of 1 and
ζ (3), and provide a bound on the denominator of this expression. A more complicated
integral of a similar form (with xr and ys replaced by Pn(x) and Pn(y)) will be used later
in the proof. This later integral may be regarded as the analog of

∫
π

0 f (x)sinxdx in the
proof of Theorem 3.3 that π is irrational and the lemma below is analagous to proving
that

∫
π

0 f (x)sinxdx is an integer.

Lemma 8.2. Fix an n ∈ Z>0. Then for any 0 ≤ s ≤ r ≤ n, we have∫ 1

0

∫ 1

0
− log(xy)

1− xy
xrys dxdy =

A+B ·ζ (3)
(1, . . . ,n)3

for some A,B ∈ Z

Proof. Consider the integral: ∫ 1

0

∫ 1

0
− logxy

1− xy
xrys dxdy
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Note that the integral is proper since the integrand is bounded near xy = 1 and conver-
gent near xy = 0 (even if r = s = 0). Since for |xy|< 1 we have

1
1− xy

= 1+ xy+ x2y2 + x3y3 + . . . (17)

the integral is equal to

−
∫ 1

0

∫ 1

0
log(xy)xrys(1+ xy+ x2y2 + . . .)dxdy =

=−
∫ 1

0

∫ 1

0

∞

∑
k=0

log(xy)xrysxkyk dxdy

=−
∫ 1

0

∞

∑
k=0

∫ 1

0
log(xy)xr+kys+k dxdy

(the interchange of the sum and the integral is justified since for any fixed y ∈ (0,1) the
convergence in (17) is uniform in x ∈ [0,1]). Integrating with respect to x and using
integration by parts, it is easy to deduce:

−
∫ 1

0

∞

∑
k=0

∫ 1

0
log(xy)xr+kys+k dxdy =−

∞

∑
k=0

(∫ 1

0

ys+k log(y)
r+ k+1

−
∫ 1

0

ys+k

(r+ k+1)2 dy
)

By integrating with respect to y in a similar way, we get:

−
∞

∑
k=0

(∫ 1

0

ys+k log(y)
r+ k+1

−
∫ 1

0

ys+k

(r+ k+1)2 dy
)
=

∞

∑
k=0

(
1

(r+ k+1)(s+ k+1)2 +
1

(r+ k+1)2(s+ k+1)

)

=
∞

∑
k=0

(
r+ s+2k+2

(r+ k+1)2(s+ k+1)2

)
Since

1
(s+ k+1)2 − 1

(r+ k+1)2 =
(r− s)(r+ s+2k+2)
(r+ k+1)2(s+ k+1)2

and
∞

∑
k=0

(
1

(s+ k+1)2 − 1
(r+ k+1)2

)
=

1
(s+1)2 − 1

(r+1)2 +
1

(s+2)2 − 1
(r+2)2 + . . .

We can conclude that for r > s:
∞

∑
k=0

(
r+ s+2k+2

(r+ k+1)2(s+ k+1)2

)
=

1
r− s

(
∞

∑
k=0

1
(s+ k+1)2 −

∞

∑
k=0

1
(r+ k+1)2

)
=

1
r− s

r−s

∑
k=1

· 1
(s+ k)2

where the last equality follows by cancelling out the terms of the two series. Also,
since r− s < n, (s+ k)2(r− s) would be a divisor of (1, . . . ,n)3 since r < n. Therefore,∫ 1

0

∫ 1

0
− logxy

1− xy
xrys dxdy

is a rational number with denominator dividing (1, . . . ,n)3 for r > s.
On the other hand, for r = s, the equation becomes:

∞

∑
k=0

(
1

(r+ k+1)(s+ k+1)2 +
1

(r+ k+1)2(s+ k+1)

)
= 2

∞

∑
k=0

1
(r+ k+1)3
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Since ζ (3) is equal to ∑
∞
k=1

1
k3 ,

2
∞

∑
k=0

1
(r+ k+1)3 = 2

(
ζ (3)−

r

∑
k=1

1
k3

)
(18)

This implies the result since every k3 in the expression ∑
r
k=1

1
k3 divides (1, . . . ,n)3.

To continue the analogy with the proof of Theorem 3.3 that π is irrational, we also need
to be able to bound above the integral that we use for the irrationality proof. Recall that
in that proof, we just wanted to show that

∫
π

0 f (x)sinxdx lies between 0 and 1; here
the argument will be more complicated.

Lemma 8.3. Fix an n ∈ Z>0. Let Pn(x) be as in Lemma 8.1. Then we have∫ 1

0

∫ 1

0
− log(xy)

1− xy
Pn(x)Pn(y)dxdy ≤ 2

(
1

27

)n

ζ (3)

Proof. Consider the integral:∫ 1

0

∫ 1

0
− log(xy)

1− xy
Pn(x)Pn(y)dxdy

Since

− log(xy)
1− xy

=
∫ 1

0

1
1− (1− xy)z

dz (19)

we can rewrite the integral as a triple integral:∫ 1

0

∫ 1

0

∫ 1

0

1
1− (1− xy)z

dzPn(x)Pn(y)dxdy

We have∫ 1

0

∫ 1

0

∫ 1

0

1
1− (1− xy)z

Pn(x)Pn(y)dzdxdy=
1
n!

∫ 1

0

∫ 1

0

∫ 1

0

1
1− (1− xy)z

Pn(y)d
(
(xn(1− x)n)(n−1)

)
dydz

Swapping the order of integration and integrating by parts with respect to x, we get

1
n!

∫ 1

0

∫ 1

0

∫ 1

0
yz ·
(

1
1− (1− xy)z

)2

(xn(1− x)n)(n−1)Pn(y)dxdydz

using the fact that (xn(1− x)n)(n−1) is 0 at x = 0 and x = 1. Integrating with respect to
x by parts n−1 more times in a similar fashion, we get
1
n!

∫ 1

0

∫ 1

0

∫ 1

0
n!

xnynzn(1− x)nPn(y)
(1− (1− xy)z)n+1 dxdydz=

∫ 1

0

∫ 1

0

∫ 1

0

xnynzn(1− x)nPn(y)
(1− (1− xy)z)n+1 dxdydz

We now make a change of variables x = u, y = v, z = 1−w
1−(1−uv)w . One can check that

this defines a differentiable bijective map [0,1]3 → [0,1]3 with Jacobian

(u,v,w) =
−uv

(1− (1−uv)w)2

Let

f (x,y,z) =
xnynzn(1− x)nPn(y)
(1− (1− xy)z)n+1

By changing the variables in the integral (see [11]) we have (this requires a bit of



90 BSU Undergraduate Mathematics Exchange Vol. 17, No. 1 (Fall 2023)

computation)∫ 1

0

∫ 1

0

∫ 1

0
f (x,y,z)dxdydz=

∫ 1

0

∫ 1

0

∫ 1

0
f (x(u,v,w),y(u,v,w),z(u,v,w))|(u,v,w)|dudvdw=

=
∫ 1

0

∫ 1

0

∫ 1

0
(1−w)n(1−u)n Pn(v)

1− (1−uv)w
dudvdw

Integrating with respect to v by parts n times (and switching the order of integration)
similarly to before, this integral is equal to∫ 1

0

∫ 1

0

∫ 1

0

un(1−u)nvn(1− v)nwn(1−w)n

(1− (1−uv)w)n+1 dudvdw

The integrand expression is easy to estimate. Indeed, we have
1− (1−uv)w = (1−w)+uvw ≥ 2

√
1−w

√
uvw

on [0,1]3 by arithmetic-geometric mean inequality. Therefore, we have
u(1−u)v(1− v)w(1−w)

1− (1−uv)w
≤ 1

2
√

u(1−u)
√

v(1− v)
√

w(1−w)

on [0,1]3. The maximum of g(t) =
√

t(1− t) for t ∈ [0,1] occurs at t = 1
3 and the

maximum of h(t) = t(1− t) for t ∈ [0,1] occurs at t = 1
2 . This implies that

u(1−u)v(1− v)w(1−w)
1− (1−uv)w

≤ 1
27

Therefore, we have∫ 1

0

∫ 1

0

∫ 1

0

un(1−u)nvn(1− v)nwn(1−w)n

(1− (1−uv)w)n+1 dudvdw =∫ 1

0

∫ 1

0

∫ 1

0

(
u(1−u)v(1− v)w(1−w)

1− (1−uv)w

)n 1
1− (1−uv)w

dudvdw ≤(
1
27

)n ∫ 1

0

∫ 1

0

∫ 1

0

1
1− (1−uv)w

dudvdw ≤(
1

27

)n ∫ 1

0

∫ 1

0
− log(uv)
(1−uv)

dudv = 2
(

1
27

)n

ζ (3)

where the penultimate inequality is by (19) and the last equality follows from (18) in
the proof of Lemma 8.2.

Finally, we are ready to show that ζ (3) is irrational.

Theorem 8.4. ζ (3) is irrational.

Proof. Consider the integral

In :=
∫ 1

0

∫ 1

0
− log(xy)

1− xy
Pn(x)Pn(y)dxdy

from Lemma 8.3. Then there exist some A′,B′ ∈ Z such that

In =
A′+B′ ·ζ (3)
(1, . . . ,n)3
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Indeed, if Pn(x) = ∑
n
i=0 bixi, then bi ∈ Z by Lemma 8.1. But then we have

In =
n

∑
r=0

n

∑
s=0

brbs

∫ 1

0

∫ 1

0
− log(xy)

1− xy
xrys dxdy

by linearity and the claim follows from Lemma 8.2.

Suppose that ζ (3) is rational. Then we have ζ (3) = p
q for some p,q ∈ Z with q > 0.

Consider |A′+B′ζ (3)|. Note that all the terms in the integrand expression of In are
positive on (0,1) (one can check that Pn(x) is a polynomial in x(1− x) with positive
coefficients) so In ̸= 0. On one hand, we have

|A′+B′
ζ (3)|= |A′+B′ p

q
|= |A′q+B′p|

q
≥ 1

q
(20)

On the other hand,

|A′+B′
ζ (3)|= In(1, . . . ,n)3 ≤ 2

(
1

27

)n

ζ (3)(1, . . . ,n)3 (21)

It is enough to show that limn→∞ 2
( 1

27

)n
ζ (3)(1, . . . ,n)3 = 0. Indeed, then we have

2
(

1
27

)n

ζ (3)(1, . . . ,n)3 <
1
q

for n large enough which is a contradiction with (20) and (21). However, it is well-
known that the Prime Number Theorem [5] implies that limn→∞

n
√
(1, . . . ,n) = e. But

then

lim
n→∞

2
(

1
27

)n

ζ (3)(1, . . . ,n)3 = lim
n→∞

2
(

1
27

)n

ζ (3)e3n = 2
(

e3

27

)n

ζ (3) = 0

where the last equality is since e3

27 < 1.

9 Advanced results
In this paper we have shown that the the Riemann-Zeta function is irrational at the even
positive integers and gave an exposition of Beukers’ proof [3] that ζ (3) is irrational.
Not much is known about irrationality of the Riemann-Zeta function at odd integers
ζ (2k+1), for k > 1. We finish this paper by listing some known results:

(i) Infinitely many of ζ (2k+1), for k ≥ 1 are irrational, see [7].

(ii) It was shown in [13] that one of ζ (5),ζ (7), . . . ,ζ (17),ζ (19) is irrational. The
same author also proved a stronger result that one of ζ (5),ζ (7),ζ (9),ζ (11) is
irrational.

These partial result motivate the following conjecture, widely believed to be true but
inaccessible with the current tools.

Conjecture 9.1. All the ζ (2k+1),k ≥ 1 are irrational. Moreover, they are transcen-
dental and algebraically independent from powers of π .

Here being algebraically independent from powers of π means that no ζ (2k+1),k ≥ 1
is a root of any polynomial with coefficients of the form

a0 +a1π +a2π
2 + · · ·+anπ

n
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for some n ∈ N and ai ∈ Z, 1 ≤ i ≤ n.
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