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Abstract
The integral

∫
|z|=1

zβ

z−α
dz for β = 1

2 has been comprehensively studied by Mortini and
Rupp for pedagogical purposes. We write for a similar purpose, elaborating on their
work with the more general consideration β ∈C. This culminates in an explicit solution
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in terms of the hypergeometric function for |α| ̸= 1 and any β ∈ C. For rational β ,
the integral is reduced to a finite sum. A differential equation in α is derived for this
integral, which we show has similar properties to the hypergeometric equation.

1 Introduction

The purpose of this paper is to investigate integrals of the form∫
|z|=1

zβ

z−α
dz. (1)

Our personal interest in this type of integral stems from a recent paper due to Mortini
and Rupp [1], in which the authors evaluate (1) for β = 1

2 using various methods.

Initially we note that the function zβ must be defined, for general β ∈ C, in terms
of some branch of the complex logarithm. In our notation, for 0 < θ < 2π , logθ (z)
will represent the branch of the complex logarithm with branch cut {reiθ : r ≥ 0}; it
is defined on the simply connected domain C\{reiθ : r ≥ 0}, and we fix logθ (1) = 0.
Under these conditions our branch is

logθ (z) = ln |z|+ iargθ (z)

where argθ is the argument function with values in (θ −2π,θ).
This branch can be related to the branch of the square root discussed in [1] by taking
t0 = θ −2π .
We denote by Arg(z) the argument of z falling in the range [0,2π), and by arg(z)
the equivalence class (modulo 2π) of all possible values for the argument of z. Any
condition with arg(z) is considered satisfied if one representative satisfies the condi-
tion.

The implications of using a branch of the complex logarithm to define the complex
power are that even when we choose |α| ̸= 1, the meromorphic function

mα,β ,θ (z) :=
zβ

z−α
=

eβ logθ (z)

z−α
(2)

will not be analytic, or even continuous, on the boundary of the unit disk. This is
due to the branch cut necessary for the logθ function used in (2). The discontinuity
at the branch cut, although merely a jump, prevents a simple evaluation with direct
application of Cauchy’s Residue Theorem. Rather, one must proceed using different
methods.

The main results of the paper are explicit expressions of (1) in the two cases of |α|> 1
and |α|< 1. Specifically, we prove:

Theorem 1. When |α|> 1,

∫
∂D

mα,β ,θ =


−2πiαβ β ∈ Z<0,

0 β = 0,
eiβθ

(
1− e−2πiβ

) 1
β

[
1− 2F1(1,β ;1+β ;α−1eiθ )

]
β ∈ C\Z≤0.
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When |α|< 1,∫
∂D

mα,β ,θ =

{
2πiαβ β ∈ Z≥0,

eiβθ
(
1− e−2πiβ

) 1
β 2F1(1,−β ;1−β ;αe−iθ ) β ∈ C\Z≥0.

In §2, the unit circle is approximated with a contour of integration which avoids the
branch cut in order to derive an equation involving (1). The connection between (1)
and the hypergeometric function, 2F1, is made in §3 through the identification of a
core integral in §3.1. In §4, series manipulation leads to the proof of Theorem 1. The
particular case when β ∈ Q \Z is further simplified in §5, and in §6 we include a
derivation of a differential equation for which (1) is a solution. Provided in §7, the
appendix, is a discussion of measure theory topics leading up to the statement of
Lebesgue’s Dominated Convergence Theorem; adequate references are cited there for
the curious reader.

2 Contour Method
We first extend §1 in [1], evaluating (1) via contour integration. For this section alone
(§2) it is additionally assumed that Arg(α) ̸= θ and α ̸= 0, so that α does not lie on the
branch cut. Furthermore, we assume that ℜ(β )> 0, as this condition will be necessary
for certain bounds. The purpose of this section is to prove the following lemma:

Lemma 1. If Arg(α) ̸= θ , and ℜ(β )> 0, then for 0 < |α|< 1,∫
∂D

mα,β ,θ = 2πiαβ + eiβθ (1− e−2πiβ )
∫ 1

0

eβ ln t

t −αe−iθ dt,

and for |α|> 1, ∫
∂D

mα,β ,θ = eiβθ (1− e−2πiβ )
∫ 1

0

eβ ln t

t −αe−iθ dt.

Proof. There are 3 main steps:

§2.1) constructing a proper contour;

§2.2) finding singularities and computing their residues;

§2.2) using limits to derive a useful equation.

The lemma follows from plugging (11), (35), (13), (38), and (22) all back into (9).

2.1 Constructing the Contour
Take a branch of the complex logarithm logθ in the definition of zβ , and let the contour
of integration Γε,θ ,ρ consist of:

a) the line segment Lε,θ ,ρ := {z ∈ C : ρ ≤ |z| ≤ 1,argz = θ + ε},

b) the arc Cε,θ := {z ∈ C : |z|= 1,θ + ε ≤ argz ≤ θ +2π − ε},

c) the line segment Mε,θ ,ρ := {z ∈ C : 1 > |z|> ρ,argz = θ +2π − ε},

d) the arc Dε,θ ,ρ := {z ∈ C : |z|= ρ,θ +2π − ε ≥ argz ≥ θ + ε},
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oriented as usual, with the bounded region enclosed on the left as we trace the contour.
For example, for the principal branch of log (logπ in our notation), the contour is as in
Figure 2.1. Under this definition, we have

Figure 2.1: Contour for θ = π .

∫
Γε,θ ,ρ

mα,β ,θ =
∫

Cε,θ

mα,β ,θ +
∫

Dε,θ ,ρ

mα,β ,θ +
∫

Lε,θ ,ρ

mα,β ,θ +
∫

Mε,θ ,ρ

mα,β ,θ . (3)

One can choose any parameterization of the four curves, noting that smooth equivalence
of parameterizations will guarantee generality. In particular, we choose

a) Lε,θ ,ρ : z(t) = tei(θ+ε) for ρ ≤ t ≤ 1,∫
Lε,θ ,ρ

mα,β ,θ (z) dz =
∫ 1

ρ

mα,β ,θ (te
i(θ+ε))ei(θ+ε) dt; (4)

b) Cε,θ : z(t) = eit for θ + ε ≤ t ≤ θ +2π − ε ,∫
Cε,θ

mα,β ,θ (z) dz =
∫

θ+2π−ε

θ+ε

mα,β ,θ (e
it) ieitdt; (5)

c) Mε,θ ,ρ : z(t) = tei(θ+2π−ε) for 1 ≥ t ≥ ρ ,∫
Mε,θ ,ρ

mα,β ,θ (z) dz =
∫

ρ

1
mα,β ,θ (te

i(θ+2π−ε))ei(θ+2π−ε) dt; (6)

d) Dε,θ ,ρ : z(t) = ρeit for θ +2π − ε ≥ t ≥ θ + ε ,∫
Dε,θ ,ρ

mα,β ,θ (z) dz =
∫

θ+ε

θ+2π−ε

mα,β ,θ (ρeit) iρeitdt. (7)
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2.2 Applying the Residue Theorem

Applying Cauchy’s Residue Theorem requires computing residues for singularities
contained within the contour. To compute the residues of the meromorphic function
mα,β ,θ (z) defined in (2), first note that eβ logθ (z) is analytic in C\{reiθ ∈C : r ≥ 0}, so
the only singularity of mα,β ,θ is at α , and this singularity only becomes relevant when
|α| ≤ 1. This singularity is a simple pole, since

lim
z→α

(z−α)mα,β ,θ (z) = lim
z→α

eβ logθ (z) = α
β ̸= 0 (8)

but

limz→α(z−α)2mα,β ,θ (z) = limz→α(z−α)eβ logθ (z) = 0.

Evaluating as in (8), the residue at α is found to be αβ . In order to derive an equation
involving (1), one might consider first taking the limit ε → 0+ and then ρ → 0+ in
(3):

lim
ρ→0+

lim
ε→0+

∫
Γε,θ ,ρ

mα,β ,θ = lim
ρ→0+

lim
ε→0+

[∫
Cε,θ

mα,β ,θ +
∫

Dε,θ ,ρ

mα,β ,θ +
∫

Lε,θ ,ρ

mα,β ,θ +
∫

Mε,θ ,ρ

mα,β ,θ

]
.

(9)
Since the contour Γε,θ ,ρ in (9) lies in the interior of the simply connected domain of
logθ whenever ε,ρ > 0, mα,β ,θ is analytic on the path of integration so long as α does
not lie on Γε,θ ,ρ . In this case, Cauchy’s Residue Theorem applies and so∫

Γε,θ ,ρ

mα,β ,θ = 2πi n(Γε,θ ,ρ ,α)Res(mα,β ,θ ,α) = 2πiαβ n(Γε,θ ,ρ ,α)

where n(Γε,θ ,ρ ,α) is the winding number of Γε,θ ,ρ around α . Note that by definition
of the contour, and because Arg(α) ̸= θ by assumption, we have

n(Γε,θ ,ρ ,α) =

{
1 if 0 < ε < minarg(α){|arg(α)−θ |} and 0 < ρ < |α|< 1,
0 otherwise,

(10)
where the notation minarg(α) in (10) denotes that the minimum is taken over all possible
representatives of arg(α). It follows that

lim
ε→0+

n(Γε,θ ,ρ ,α) =

{
1 if 0 < ρ < |α|< 1,
0 otherwise,

since ε can certainly be made smaller than |arg(α)−θ |> 0, and that

lim
ρ→0+

lim
ε→0+

n(Γε,θ ,ρ ,α) =

{
1 if 0 < |α|< 1,
0 otherwise

since ρ can certainly be made smaller than |α|> 0. Therefore

lim
ρ→0+

lim
ε→0+

∫
Γε,θ ,ρ

mα,β ,θ =

{
2πiαβ if 0 < |α|< 1,
0 otherwise.

(11)
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In evaluating limρ→0+ limε→0+
∫

Cε,θ
mα,β ,θ , we use (5) to express

lim
ρ→0+

lim
ε→0+

∫
Cε,θ

mα,β ,θ = lim
ρ→0+

lim
ε→0+

∫
θ+2π−ε

θ+ε

mα,β ,θ (e
it) ieitdt,

= lim
ε→0+

∫
θ+2π−ε

θ+ε

mα,β ,θ (e
it) ieitdt,

= PV
∫

θ+2π

θ

mα,β ,θ (e
it) ieitdt,

=
∫

θ+2π

θ

mα,β ,θ (e
it) ieitdt, (12)

=
∫
|z|=1

mα,β ,θ (z) dz. (13)

To see that the value of the improper integral in (12) is the same as its principal value,
note that whenever an improper integral converges, its principal value converges as
well (and to the same value). By convention, (12) is evaluated as∫

θ+2π

θ

mα,β ,θ (e
it) ieitdt = lim

ε→0

∫
θ+π

θ+ε

mα,β ,θ (e
it) ieitdt+ lim

ε ′→0

∫
θ+2π−ε ′

θ+π

mα,β ,θ (e
it) ieitdt.

(14)
It suffices to show that g(t) = mα,β ,θ (eit) ieit is bounded on [θ ,θ + 2π] in order for
the right hand side of (14) to converge, and thus for the desired improper integral to
converge. We first bound the real part of β logθ (z), noting that

β logθ (z) = [ℜ(β )+ iℑ(β )] [ln |z|+ iargθ (z)] ,

= [ℜ(β ) ln |z|−ℑ(β )argθ (z)]+ i[ℜ(β )argθ (z)+ℑ(β ) ln |z|], (15)
where argθ := ℑ(logθ ). Since we fix logθ (1) = 0 for every 0 < θ < 2π , the continuity
of logθ on its simply connected domain implies that

−2π < argθ (z)< 2π

for all z in the domain and for all θ . Further, continuity also implies that even as z
approaches the branch cut (in a limiting sense),

−2π ≤ argθ (z)≤ 2π. (16)
Equations (15) and (16) along with the assumption ℜ(β )> 0 give the bound

ℜ(β logθ (z)) = ℜ(β ) ln |z|−ℑ(β )argθ (z)≤ ℜ(β ) ln |z|+2π|ℑ(β )|. (17)
Since |ez|= eℜ(z), we can now bound

|mα,β ,θ (z)|=
|eβ logθ (z)|
|z−α|

,

=
eℜ(β logθ (z))

|z−α|
, (18)

≤ eℜ(β ) ln |z|+2π|ℑ(β )|

||z|− |α||
. (19)

For t ∈ [θ ,θ +2π], the bound (19) immediately gives

|mα,β ,θ (e
it) ieit | ≤ eℜ(β ) ln |eit |+2π|ℑ(β )|

||eit |− |α||
=

e2π|ℑ(β )|

|1−|α||
. (20)
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Thus both limits on the right hand side of (14) converge, and hence the equality in (12)
is justified.

Now we show that the portion of the integral over the contour Dε,θ ,ρ approaches 0 as
ε → 0+,ρ → 0+. Using (19) and applying an ML-bound to (7) yields∣∣∣∣∣

∫
Dε,θ ,ρ

mα,β ,θ (z) dz

∣∣∣∣∣=
∣∣∣∣∫ θ+ε

θ+2π−ε

mα,β ,θ (ρeit) iρeitdt
∣∣∣∣ ,

≤ ρ
eℜ(β ) ln |ρ|+2π|ℑ(β )|

|ρ −|α||
(2π −2ε),

≤ 2πe2π|ℑ(β )| ρℜ(β )

| |α|
ρ
−1|

. (21)

Since |α|> 0, (21) gives∣∣∣∣ lim
ρ→0+

lim
ε→0+

∫
Dε,θ

mα,β ,θ (z) dz
∣∣∣∣≤ lim

ρ→0+
lim

ε→0+

2πe2π|ℑ(β )| ρℜ(β )

| |α|
ρ
−1|

 ,
= lim

ρ→0+

2πe2π|ℑ(β )| ρℜ(β )

| |α|
ρ
−1|

 ,
= 0. (22)

We now consider the limiting value of the integral along Lε,θ ,ρ . The core difficulty of
this part of the contour integral is in evaluating

lim
ε→0+

∫ 1

ρ

mα,β ,θ (te
i(θ+ε))ei(θ+ε) dt. (23)

The strategy is to use Lebesgue’s Dominated Convergence Theorem (see §7, specifically
Theorem 2). Take the family of functions defined on t ∈ [0,1]:

FL :=
{

fε(t) = mα,β ,θ (te
i(θ+ε))ei(θ+ε)

∣∣∣ 0 < ε < π

}
. (24)

The function tei(θ+ε) is continuous in the positive real variable t, and mα,β ,θ is continu-
ous on its simply connected domain except at the point α ; this singularity is undesirable.
To achieve continuity of the functions in question, we restrict our view to the following
collection instead:

Fix r with 0 < r < minarg(α) |arg(α)−θ |, and define

F ∗
L :=

{
fε(t) = mα,β ,θ (te

i(θ+ε))ei(θ+ε)
∣∣∣ 0 < ε < r

}
. (25)

The point α is outside the sector between θ −r and θ +r (see Figure 2.3 for illustration),
so now the functions are continuous. This allows us to conclude that F ∗

L is a set of
Lebesgue measurable functions.
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Moreover, in F ∗
L , we have

lim
ε→0+

fε(t) = lim
ε→0+

mα,β ,θ (te
i(θ+ε))ei(θ+ε),

= lim
ε→0+

eβ logθ (te
i(θ+ε))

tei(θ+ε)−α
ei(θ+ε),

= lim
ε→0+

eβ (ln t+i(θ−2π+ε))

tei(θ+ε)−α
ei(θ+ε),

=
eβ (ln t+i(θ−2π))

teiθ −α
eiθ =: gθ (t). (26)

Note that t ∈ [ρ,1]⊆ (0,∞) above, and since Arg(α) ̸= θ we have that teiθ −α ̸= 0
in the limit. The limit above is evaluated using this fact along with continuity of the
exponential.
Equivalently, this means that for any sequence εn → 0+, fεn converges pointwise to gθ

as n → ∞.

In fact, the conditions for Lebesgue’s Dominated Convergence Theorem above can be
shown for FL rather than F ∗

L using a slightly more advanced argument. For the last
condition however, which requires us to bound functions in the family by a Lebesgue
integrable function, it is much easier to consider only F ∗

L . For a given fε ∈ F ∗
L , let

δ := minarg(α){|arg(α)− (θ + ε)|}. That is, δ gives the minimum difference in angle
between θ + ε and the vector from the origin out to α .

If δ ≥ π

2 , simple geometry gives that α is at least a distance of |α| away from the
segment tei(θ+ε) for t ∈ [ρ,1]. To see this, consider Figure 2.2 and note that the side of

Figure 2.2: Illustration of the case δ ≥ π

2 .

the triangle opposite the angle of size δ is the longest side of the triangle (since δ is
either right or obtuse). Thus the shortest distance d from α to the line segment Lε,θ ,ρ

is bounded below:
d > |α|. (27)
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If instead δ < π

2 , then α is at least a distance of |α|sin(δ ) away from the segment
tei(θ+ε) for t ∈ [ρ,1]. To see this consider the similar picture in Figure 2.3 and note

Figure 2.3: Illustration of the case δ < π

2 .

that the altitude dropped from α to the line containing Lε,θ ,ρ is precisely of length
|α|sin(δ ) (although the distance will be greater if |α| is so small or so large that the
altitude dropped onto the line does not strike within the segment parameterized by
t ∈ [ρ,1]).
Now in our consideration of F ∗

L , we have ε < r < δ and so

|α|sin(δ )> |α|sin
(

min
arg(α)

{
|arg(α)− (θ ± r)|

})
> k > 0,

for a fixed constant k dependent on r, θ , and α . Thus in this case as well, the shortest
distance d from α to the line segment Lε,θ ,ρ is bounded below:

d > k. (28)

Consequently, for K := max{ 1
|α| ,

1
k}, we have that every function fε ∈ F ∗

L has for all
t ∈ [ρ,1] that

| fε(t)|= |mα,β ,θ (te
i(θ+ε))ei(θ+ε)|,

= |mα,β ,θ (te
i(θ+ε))|,

=
eℜ(β logθ (te

i(θ+ε)))

|tei(θ+ε)−α|
, (29)

≤ Keℜ(β ) ln |tei(θ+ε)|+2π|ℑ(β )|,

≤ Keℜ(β )|t|+2π|ℑ(β )| =: hr(t). (30)
(The third equality holds by (18); the first inequality holds by (17) and the reasoning
which led to (27) and (28); the final inequality holds since |t|> ln |t| for all t ∈ R and
the because exponential is strictly increasing on R.)
Clearly this hr is integrable on [ρ,1] for all ρ > 0, since it is simply a scaled exponential.
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Now, consider any arbitrary sequence (εn)→ 0+ with εn < r, and define a sequence of
functions ( fεn); note fεn ∈ F ∗

L for all n. From (26) we have ( fεn)→ gθ pointwise, and
| fεn(t)| ≤ hr(t) for all n and for all t ∈ [0,1], as shown in (30). Therefore Lebesgue’s
Dominated Convergence Theorem implies that

lim
n→∞

∫ 1

ρ

fεn(t) dt =
∫ 1

ρ

gθ (t) dt. (31)

for all ρ > 0.
Dispensing with the condition εn < r, it is still true for any arbitrary sequence (εn)→ 0+

that

lim
n→∞

∫ 1

ρ

fεn(t) dt =
∫ 1

ρ

gθ (t) dt (32)

since (εn)→ 0+ has a tail which is completely bounded above by r, and thus conver-
gence of the tail shown in (31) implies convergence of the whole sequence. Since (32)
holds for arbitrary (εn), this implies

lim
ε→0+

∫ 1

ρ

fε(t) dt =
∫ 1

ρ

gθ (t) dt. (33)

for fε ∈ FL.

Hence we evaluate (23) and find

lim
ε→0+

∫ 1

ρ

mα,β ,θ (te
i(θ+ε))ei(θ+ε) dt =

∫ 1

ρ

lim
ε→0+

mα,β ,θ (te
i(θ+ε))ei(θ+ε)dt,

=
∫ 1

ρ

eβ (ln t+i(θ−2π))

teiθ −α
eiθ dt,

= eiβ (θ−2π)
∫ 1

ρ

eβ ln t

t −αe−iθ dt. (34)

But gθ is continuous for t ∈ (0,1] and bounded as t → 0. Therefore, allowing im-
proper integrals, and drawing from equations (4) and (34) it is straightforward to
compute

lim
ρ→0+

lim
ε→0+

∫
Lε,θ ,ρ

mα,β ,θ (z) dz = lim
ρ→0+

lim
ε→0+

∫ 1

ρ

mα,β ,θ (te
i(θ+ε))ei(θ+ε) dt,

= lim
ρ→0+

[
eiβ (θ−2π)

∫ 1

ρ

eβ ln t

t −αe−iθ dt

]
,

= eiβ (θ−2π)
∫ 1

0

eβ ln t

t −αe−iθ dt. (35)

Finally we take limits in the last integral on the right hand side of (9) along Mε,θ ,ρ .
Similarly the difficulty in this case is evaluating

lim
ε→0+

∫
ρ

1
mα,β ,θ (te

i(θ+2π−ε))ei(θ+2π−ε) dt (36)

using Lebesgue’s Dominated Convergence Theorem. Analogous steps as those used
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for Lε,θ ,ρ can be applied to the Mε,θ ,ρ case to show that

lim
ε→0+

∫
ρ

1
mα,β ,θ (te

i(θ+2π−ε))ei(θ+2π−ε) dt =−
∫ 1

ρ

lim
ε→0+

mα,β ,θ (te
i(θ+2π−ε))ei(θ+2π−ε) dt,

=−
∫ 1

ρ

eβ (ln(t)+iθ)

tei(θ+2π)−α
ei(θ+2π) dt,

=−eiβθ

∫ 1

ρ

eβ ln t

t −αe−iθ dt. (37)

Just as before the integrand is bounded on [0,1]. Using (37) there is no issue writ-
ing

lim
ρ→0+

lim
ε→0+

∫
Mε,θ ,ρ

mα,β ,θ (z) dz = lim
ρ→0+

lim
ε→0+

∫
ρ

1
mα,β ,θ (te

i(θ+2π−ε))ei(θ+2π−ε) dt,

= lim
ρ→0+

[
−eiβθ

∫ 1

ρ

eβ ln t

t −αe−iθ dt

]
,

=−eiβθ

∫ 1

0

eβ ln t

t −αe−iθ dt. (38)

3 The Hypergeometric Function Connection

3.1 A Core Integral

In order to fully evaluate (1) using the contour method outlined in §2, the following
integral from Lemma 1 must be evaluated:∫ 1

0

eβ ln t

t −αe−iθ dt, (39)

which exists for ℜ(β )>−1. The integral in (39) is in fact an improper integral and
can be written

lim
ρ→0

∫ 1

ρ

eβ ln t

t −αe−iθ dt.

Algebraic manipulations give

eβ ln t

t −αe−iθ =
eln t

t −αe−iθ e(β−1) ln t ,

=
t −αe−iθ +αe−iθ

t −αe−iθ e(β−1) ln t ,

=

(
1+

αe−iθ

t −αe−iθ

)
e(β−1) ln t . (40)

Integrating first over the interval [ρ,1] and using (40) yields∫ 1

ρ

eβ ln t

t −αe−iθ dt =
∫ 1

ρ

e(β−1) ln t dt +αe−iθ
∫ 1

ρ

e(β−1) ln t

t −αe−iθ dt. (41)
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Notice that the function e(β−1) log(t) is the derivative of 1
β

eβ log(t), which is analytic on
[ρ,1]. Thus ∫ 1

ρ

e(β−1) ln t dt =
1
β

eβ ln(1)− 1
β

eβ ln(ρ) =
1
β
− 1

β
eβ ln(ρ). (42)

Substituting (42) into (41) and taking limits gives

lim
ρ→0

∫ 1

ρ

eβ ln t

t −αe−iθ dt = lim
ρ→0

[
1
β
− 1

β
eβ ln(ρ)

]
+αe−iθ lim

ρ→0

∫ 1

ρ

e(β−1) ln t

t −αe−iθ dt,

∫ 1

0

eβ ln t

t −αe−iθ dt =
1
β
+αe−iθ

∫ 1

0

e(β−1) ln t

t −αe−iθ dt; (43)

the integral on the right hand side of (43) exists for ℜ(β )> 0. Again the convergence
of improper integrals follows from the boundedness of the integrands. Moving the
constant inside the integral in (43) gives∫ 1

0

eβ ln t

t −αe−iθ dt =
1
β
−
∫ 1

0

e(β−1) ln t

1−
( 1

α
eiθ
)

t
dt. (44)

Therefore finding a solution to (1) using the contour integration method necessitates
working with the following “core integral” for z = 1

α
eiθ :∫ 1

0
tβ−1(1− zt)−1 dt. (45)

The choice to write tβ−1 rather than e(β−1) ln t in (45) is intentional, since generality
is not lost when any branch logθ for θ ̸≡ 0 is used to define this complex power of
t ∈ [0,1].

3.2 Definition & Relevant Identities

We investigate the integral in (45) by making use of the well-studied hypergeometric
function 2F1(a,b,c;z). For |z|< 1, this function is defined as the infinite series

2F1(a,b,c;z) =
∞

∑
n=0

(a)n(b)n

(c)nn!
zn, c ∈ C\Z≤0 (46)

where (x)n =
Γ(x+n)

Γ(x) is the rising Pochhammer symbol.

The hypergeometric series generalizes the geometric series, and is prominent in the
study of linear differential equations with three regular singular points. The hyperge-
ometric function is notably a solution to the hypergeometric equation, discussed in
§6.

A comprehensive collection of identities involving 2F1 can be found in [2]. The most
notable for our purposes is the following:

For |z|< 1 and ℜ(c)> ℜ(b)> 0,

2F1(a,b,c;z) =
Γ(c)

Γ(b)Γ(c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−a dt. (47)
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Letting a = 1, b = β , and c = 1+β under the conditions for (47) gives

2F1(1,β ,1+β ;z) =
Γ(1+β )

Γ(β )Γ(1)

∫ 1

0
tβ−1(1− t)0(1− tz)−1 dt,

= β

∫ 1

0
tβ−1(1− zt)−1 dt, (48)

such that the integral above is exactly the integral in (45), only scaled.

3.3 Final Steps of the Contour Method

We conclude the contour method for |α| > 1 by proving the following statement,
making use of the hypergeometric identity (48).

Proposition 1. When |α|> 1, Arg(α) ̸= θ , θ ̸= 0 (mod 2π), and ℜ(β )> 0,

∫
∂D

mα,β ,θ = eiβθ (1− e−2πiβ )
1
β

[
1− 2F1(1,β ;1+β ;α

−1eiθ )
]
. (49)

Proof. Since |α|> 1, the last argument in the hypergeometric function satisfies∣∣∣∣ 1
α

eiθ
∣∣∣∣= 1

|α|
< 1.

Under the assumption ℜ(β )> 0, one can apply the identity (48) and find∫ 1

0

tβ−1

1− (α−1eiθ ) t
dt =

1
β

2F1(1,β ;1+β ;α
−1eiθ ). (50)

With this expression for the core integral, an application of Lemma 1 and (44) completes
the proof.

The case 0 < |α|< 1 cannot be approached in the same manner. While the initial steps
in the contour method still hold, the integral identity from (48) does not apply since the
last argument in the hypergeometric function now satisfies∣∣∣∣ 1

α
eiθ
∣∣∣∣= 1

|α|
> 1;

which is outside the domain of (47).

4 Series Method

Fortunately there exist methods outside of contour integration which allow us to
express (1) in terms of the hypergeometric function in all cases. Rather than dealing
with integral identities of the hypergeometric function, one can work with series to
produce a term of the form (46).
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4.1 Proof of the main result

Consider first |α|> 1. Recall from (12) and (13) that∫
∂D

mα,β ,θ (z) dz =
∫
|z|=1

eβ logθ (z)

z−α
dz,

= lim
ε→0+

∫
θ−ε

θ−2π+ε

mα,β ,θ (e
it)ieit dt. (51)

For θ −2π < t < θ , logθ (e
it) = it, so one can then rewrite the integrand as

mα,β ,θ (e
it)ieit =

eβ (logθ (e
it ))

eit −α
ielogθ (e

it ),

= i
e(β+1)(logθ (e

it ))

eit −α
,

= i
ei(β+1)t

eit −α
,

=− iei(β+1)t

α
· 1

1− 1
α

eit
,

=− iei(β+1)t

α

∞

∑
k=0

α
−keikt ; (52)

where (52) follows by rewriting in terms of a convergent geometric series. Pulling the
factor of eit inside the series yields

mα,β ,θ (e
it)ieit =−ieiβ t

∞

∑
k=0

α
−(k+1)ei(k+1)t ,

=−ieiβ t
∞

∑
k=1

α
−keikt ,

=−i
∞

∑
k=1

α
−kei(β+k)t . (53)

For a fixed |α|> 1 we have that |α|−1 < 1, so∣∣∣∣∣ ∞

∑
k=1

α
−keikt

∣∣∣∣∣≤ ∞

∑
k=1

|α−keikt |=
∞

∑
k=1

|α|−k =: Kα < ∞.

We define a sequence of functions ( fn), where fn : [θ −2π,θ ]→C are given by

fn(t) :=
n

∑
k=1

α
−kei(β+k)t = eiβ t

n

∑
k=1

α
−keikt .

Each function in the sequence is bounded via

| fn(t)|=

∣∣∣∣∣eiβ t
n

∑
k=1

α
−keikt

∣∣∣∣∣ ,
≤ Kα |eiβ t |,

= Kα e−ℑ(β )t =: gα(t).

Note that gα is integrable on [θ −2π + ε,θ − ε] since it is simply a scaled exponential.
It is clear that each fn is continuous as a finite sum of analytic functions, so again
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this continuity means the functions are measurable. Since their pointwise limit is the
expression in (53), Lebesgue’s Dominated Convergence Theorem (see §7, Theorem 2
specifically) implies∫

θ−ε

θ−2π+ε

∞

∑
k=1

α
−kei(β+k)t dt = lim

n→∞

∫
θ−ε

θ−2π+ε

n

∑
k=1

α
−kei(β+k)t dt,

= lim
n→∞

n

∑
k=1

∫
θ−ε

θ−2π+ε

α
−kei(β+k)t dt,

=
∞

∑
k=1

∫
θ−ε

θ−2π+ε

α
−kei(β+k)t dt, (54)

where the second equality holds since it is merely the interchange of an integral and
finite sum.

Using (54) along with (53) yields∫
θ−ε

θ−2π+ε

mα,β ,θ (e
it)ieit dt =−i

∫
θ−ε

θ−2π+ε

∞

∑
k=1

α
−kei(β+k)t dt,

=−i
∞

∑
k=1

∫
θ−ε

θ−2π+ε

α
−kei(β+k)t dt,

=−i
∞

∑
k=1

α
−k
∫

θ−ε

θ−2π+ε

ei(β+k)t dt. (55)

An individual summand of (55) consists of an α−k term multiplied by an integral. The
integrand, ei(β+k)t , is an entire function of t and thus is bounded on the compact set
t ∈ [θ −2π,θ ] by some M. Note that this bound M can be chosen independent of k by
letting

M > e−ℑ(β )t = |ei(β+k)t | ∀t ∈ [θ −2π,θ ].

The length of the curve being integrated over is at most
(θ − ε)− (θ −2π + ε) = 2π −2ε < 2π =: L,

where L does not depend on ε . Because the integrand is entire it must be continuous on
the path of integration, and so the ML-bound gives that∣∣∣∣∫ θ−ε

θ−2π+ε

ei(β+k)t dt
∣∣∣∣≤ ML,

where M and L are given above and independent of ε and k. Thus each term of the
series in (55) is bounded in modulus by ML|α|−k, so that∣∣∣∣∣ ∞

∑
k=1

α
−k
∫

θ−ε

θ−2π+ε

ei(β+k)t dt

∣∣∣∣∣≤ ∞

∑
k=1

ML|α|−k. (56)

Since |α|> 1, the right hand side of (56) converges, and the Weierstrass M-test implies
that the series in (55) is uniformly convergent. Substituting the expression from (55)
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back into (51) allows the exchange of limit and infinite sum in (57) to find that∫
∂D

mα,β ,θ (z) dz = lim
ε→0+

[
−i

∞

∑
k=1

α
−k
∫

θ−ε

θ−2π+ε

ei(β+k)t dt

]
,

=−i
∞

∑
k=1

α
−k lim

ε→0+

∫
θ−ε

θ−2π+ε

ei(β+k)t dt, (57)

=−i
∞

∑
k=1

α
−k
∫

θ

θ−2π

ei(β+k)t dt. (58)

The integrand in (58) is entire, and it has an antiderivative ei(β+k)t

i(β+k) when β + k ̸= 0; this
antiderivative is also entire. This fact not only ensures the equality between (57) and
(58), but it also allows the use of the Complex Fundamental Theorem of Calculus to
conclude that for β /∈ Z<0,∫

θ

θ−2π

ei(β+k)t dt =

[
ei(β+k)t

i(β + k)

]θ

θ−2π

=
ei(β+k)θ

i(β + k)

(
1− e−2πiβ

)
. (59)

Using definition (46) as well as our intermediates (58) and (59) we find∫
∂D

mα,β ,θ (z) dz =−i
∞

∑
k=1

α
−k ei(β+k)θ

i(β + k)

(
1− e−2πiβ

)
,

=−eiβθ

(
1− e−2πiβ

) ∞

∑
k=1

α
−k eikθ

β + k
,

=−eiβθ

(
1− e−2πiβ

) 1
β

[(
∞

∑
k=0

β

β + k
(α−1eiθ )k

)
−1

]
,

=−eiβθ

(
1− e−2πiβ

) 1
β

[(
∞

∑
k=0

(1)k(β )k

(1+β )kk!
(α−1eiθ )k

)
−1

]
,

=−eiβθ

(
1− e−2πiβ

) 1
β

[
2F1(1,β ;1+β ;α

−1eiθ )−1
]
,

= eiβθ

(
1− e−2πiβ

) 1
β

[
1− 2F1(1,β ;1+β ;α

−1eiθ )
]
, (60)

so long as β ̸= 0. This completes the proof of Theorem 1 in the case where β ∈C\Z≤0.
To handle the cases when β ∈ Z≤0, note that∫

θ

θ−2π

ei(β+k)t dt =

{
2π β + k = 0,
0 β + k ∈ Z\{0},

(61)

since the bounds of integration align with the period of the exponential unless the
exponent is 0. Thus when β ∈ Z≤0,∫

∂D
mα,β ,θ (z) dz =−i

∞

∑
k=1

α
−k2πδβ ,−k (62)

where δβ ,−k is the classical Kronecker delta function. This completes the proof of
Theorem 1 in the case where β ∈ Z≤0, the first part of the main result.

Next consider |α|< 1. We proceed in a manner analogous to that of the |α|> 1 case,
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omitting details for the sake of brevity. It holds that∫
∂D

mα,β ,θ =

{
eiβθ

(
1− e−2πiβ

)
∑

∞
k=0

αk

β−k e−ikθ β /∈ Z≥0,

2πiαβ β ∈ Z≥0.
(63)

An application of (46) shows that for β ̸= 0,
∞

∑
k=0

αk

β − k
e−ikθ =

1
β

∞

∑
k=0

−β

−β + k

(
αe−iθ

)k
,

=
1
β

∞

∑
k=0

(1)k(−β )k

(1−β )kk!

(
αe−iθ

)k
,

=
1
β

2F1(1,−β ;1−β ;αe−iθ ). (64)

Combining (63) and (64) completes the proof of Theorem 1.

4.2 Reconciling Methods
Note that the steps of the contour method described in §2 and the simplifications in
§3.1 still hold so long as Arg(α) ̸= θ , ℜ(β ) > 0, θ ̸= 0 (mod 2π), and |α| ≠ 0,1.
The nontrivial equations of the series method hold so long as |α| ≠ 1 and β /∈ Z≥0.
Thus under all these conditions one can write an identity for (45) in the case where
0 < |α|< 1:

eiβθ

(
1− e−2πiβ

) 1
β

2F1(1,−β ;1−β ;αe−iθ ) = 2πiαβ + eiβθ

(
1− e−2πiβ

)∫ 1

0

eβ ln t

t −αe−iθ dt,

(65)

1
β

2F1(1,−β ;1−β ;αe−iθ ) =
2πiαβ

eiβθ
(
1− e−2πiβ

) +∫ 1

0

eβ ln t

t −αe−iθ dt,

1
β

2F1(1,−β ;1−β ;αe−iθ ) =
2πiαβ

eiβθ
(
1− e−2πiβ

) + 1
β
−
∫ 1

0

e(β−1) ln t

1−
( 1

α
eiθ
)

t
dt,

(66)∫ 1

0

e(β−1) ln t

1−
( 1

α
eiθ
)

t
dt =

2πiαβ

eiβθ
(
1− e−2πiβ

) + 1
β

[
1− 2F1(1,−β ;1−β ;αe−iθ )

]
(67)

where the equality in (65) follows from Lemma 1 and (64), and the equality in (66)
follows from (44).

5 Computing the Example β = m
n

Since the hypergeometric function gives the value of (1) as an infinite series which
is still difficult to explicitly evaluate, it is desirable to compute examples for which
the hypergeometric function can be simplified more. We show this is the case when
β = m

n ∈Q\Z, with m ∈ Z, n ∈ N. We ignore the cases β ∈ Z since these are easily
evaluated without need of the hypergeometric function.
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Corollary 1. Let β = m
n ∈Q\Z. When |α|< 1,∫

∂D
mα,β ,θ = α

−m
n (1− e−2πi m

n )
n−1

∑
j=0

e
2πi jm

n log
(

1− e
2πi j

n
n
√

αe−iθ
)

and when |α|> 1∫
∂D

mα,β ,θ = (1− e−2πi m
n )

(
n
m

ei m
n θ +α

m
n

n−1

∑
j=0

e−
2πi jm

n log
(

1− e
2πi j

n
n
√

α−1eiθ
))

.

Proof. From Theorem 1, one has for β /∈ Z that∫
∂D

mα,m
n ,θ

=

ei m
n θ

(
1− e−2πi m

n

)
n
m 2F1(1,−m

n ;1− m
n ;αe−iθ ) |α|< 1,

ei m
n θ

(
1− e−2πi m

n

)
n
m

[
1− 2F1(1,+m

n ;1+ m
n ;α−1eiθ )

]
|α|> 1.

(68)
Therefore the main difficulty in evaluating (68) lies in computing

2F1

(
1,

m
n

;1+
m
n

;z
)

(69)

for non-integral m
n and for 0 < |z|< 1.

Since m
n /∈ Z, it is never the case that the parameter c = 1+ m

n in (69) is 0 or a negative
integer. The hypergeometric series is therefore well defined, and using the definition
(46) yields

2F1

(
1,

m
n

;1+
m
n

;z
)

: =
∞

∑
k=0

(1)k(
m
n )k

k!(1+ m
n )k

zk.

=
∞

∑
k=0

m
n

k+ m
n

zk

= m
∞

∑
k=0

1
m+nk

zk

=
m
z

m
n

∞

∑
k=0

1
m+nk

z
m
n +k =: G(z). (70)

Note also that since 0 < |z|, division by a fractional power of z causes no issue. The
particular choice of branch for defining the nth root does not matter so long as the
choice is consistent across the fractional powers (see remarks 1 and 2).

Notice that the expression for G(z) produces an even simpler expression for G(zn),
given by

G(zn) =
m
zm

∞

∑
k=0

1
m+nk

zm+nk (71)

On the other hand, for any branch of the logarithm with log(1) = 0 analytic in a ball of
radius 1 at z = 1, we have

log(1− z) =
∞

∑
k=1

−1
k

zk

whenever |z|< 1. The difference between the above expression and that in (71) is that
only terms of the form zm+nk for k ∈ N∪{0} appear in (71), whereas a zk term appears
in the series for log(1− z) for every k ∈ N. To rectify this we express G(zn) as some
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series ∑
∞
s=1

δs
s zs, possibly with leading factors, where δs takes on the value 1 whenever

n divides s−m (so that s is of the form m+nk for some k ∈ N) and is 0 otherwise.

To find a suitable function δs, recall that the sum of all of the nth roots of unity is 0 for
n > 1. It is natural then that

δs =
1
n

n−1

∑
j=0

e
2πi j(s−m)

n =

{
1 if n | (s−m)

0 otherwise
(72)

is the desired function. To see the validity of this claim, we first consider when
n | (s−m). In this case, we have s−m

n ∈ Z, and so

1
n

n−1

∑
j=0

e
2πi j(s−m)

n =
1
n

n−1

∑
j=0

1 = 1 (73)

since j(s−m)
n ∈Z. On the other hand, when n ∤ (s−m), let d := gcd(n,s−m) and define

η := n
d . Note that d < n else we have n | (s−m), and thus η > 1. Now

e
2πi(s−m)

n = ζ
s−m

d
η (74)

where ζη is the first primitive η th root of unity. Note also that because d is the greatest

common divisor of s−m and n, then s−m
d is coprime to η . This implies that ζ

s−m
d

η is
another primitive η th root of unity. Now

δs =
1
n

n−1

∑
j=0

e
2πi j(s−m)

n ,

=
1

dη

dη−1

∑
j=0

ζ
s−m

d j
η ,

=
1

dη

(
η−1

∑
j=0

ζ
s−m

d j
η +

2η−1

∑
j=η

ζ
s−m

d j
η + · · ·+

dη−1

∑
j=(d−1)η

ζ
s−m

d j
η

)
, (75)

=
1
η

η−1

∑
j=0

ζ
s−m

d j
η , (76)

= 0. (77)

The equality between (75) and (76) holds since ζ
s−m

d j
η = ζ

s−m
d j′

η when j ≡ j′ (mod η).
The final equality, (77), holds since the sum over every η th root of 1 is 0.

One can therefore express

G(zn) =
m
zm

∞

∑
s=1

δs

s
zs (78)

since this series gives the same terms as the series in (71). To evaluate this series, note

that for each j in {0, . . . ,n−1}, the series ∑
∞
s=1

∣∣∣∣ e
2πi j(s−m)

n
s

∣∣∣∣zs is a power series which

converges absolutely for |z|< 1. Letting the value of this series be denoted b j, we also
note that ∑

n−1
j=0 b j converges since it is a finite sum. We may therefore exchange the
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order of summation to get
n−1

∑
j=0

∞

∑
s=1

e
2πi j(s−m)

n

s
zs =

∞

∑
s=1

n−1

∑
j=0

e
2πi j(s−m)

n

s
zs = G(zn) (79)

which allows evaluation of G(zn) by simplifying the left hand side of (79):

G(zn) =
m
zm

n−1

∑
j=0

∞

∑
s=1

e
2πi j(s−m)

n

s
zs =

m
zm

n−1

∑
j=0

e−
2πi jm

n

∞

∑
s=1

e
2πi js

n

s
zs,

=
m
zm

n−1

∑
j=0

−e−
2πi jm

n

∞

∑
s=1

−1
s
(e

2πi j
n z)s,

=
m
zm

n−1

∑
j=0

−e−
2πi jm

n log(1− e
2πi j

n z). (80)

Remark 1. Notice that the only requirement of the branch of log we choose is that it is
analytic in the ball of radius 1 at z = 1, and that log(1) = 0.

Finally, to come up with an expression for G(z) as opposed to G(zn), simply substitute
z

1
n in the expression above, yielding

G(z) =−m
n

z−
m
n

n−1

∑
j=0

e−
2πi jm

n log(1− e
2πi j

n n
√

z) (81)

whenever |z|< 1.

Remark 2. The choice of branch for n
√
· does not matter, so long as the choice is

consistent across the expression for G(z). To see this more clearly, rewrite

G(z) =−m
n

n−1

∑
j=0

(
e−

2πi j
n

1
n
√

z

)m

log
(

1− e
2πi j

n n
√

z
)
. (82)

This sum is symmetric over the nth roots of z. Any branch of n
√
· must map an input z to

one of the n possible roots ω of ωn = z. The symmetry in (82) implies that, no matter
the branch chosen, this sum will always have the same terms.

From (70) we know that G(z) = 2F1
(
1, m

n ;1+ m
n ;z
)
, and hence (81) allows us to

conclude that for β = m
n ∈Q\Z with m ∈ Z, n ∈ N,

2F1

(
1,

m
n

;1+
m
n

;z
)
=−m

n
z−

m
n

n−1

∑
j=0

e−
2πi jm

n log(1− e
2πi j

n n
√

z) (83)

for all |z|< 1. Finally, when |α|< 1 we have |αe−iθ |< 1, so substituting z = αe−iθ

into (83) proves the first conclusion of Corollary 1. Similarly, when |α| > 1, we
have that | 1

α
eiθ | < 1, and hence substituting z = α−1eiθ into (83) proves the second

conclusion.
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6 Differential Equation

A key feature of the hypergeometric equation

z(1− z)
d2F
dz2 +(c− (a+b+1)z)

dF
dz

−abF = 0 (84)

is its regular singular points, and it is well-known that they are 0,1,∞. Hence, one
might wish to derive a second-order ordinary differential equation in the variable α for
which I(α) =

∫
∂D mα,β ,θ is a solution, and determine its regular singular points.

6.1 The case |α|> 1

For |α|> 1, β /∈Z≤0, the desired equation follows by relating (1) to the hypergeometric
function F(z) = 2F1(a,b,c;z), which is famously a solution of (84).
Let f (z) = 2F1(1,β ,1+β ;z). Then f solves the equation

z(z−1)
d2 f
dz2 +((1+β )− (2+β )z)

d f
dz

−β f = 0. (85)

Consider the change in variables α = 1
z eiθ (equiv. z = 1

α
eiθ ), and make the following

necessary calculations:
d f
dz

=
dα

dz
d f
dα

=− 1
z2 eiθ d f

dα
=−α

2e−iθ d f
dα

,

d2 f
dz2 =

dα

dz
· d

dα

d f
dz

=−α
2e−iθ

(
−α

2e−iθ d2 f
dα2 −2αe−iθ d f

dα

)
= α

4e−2iθ d2 f
dα2 +2α

3e−2iθ d f
dα

.

By substituting into (85), notice that f∗(α) := f
( 1

α
eiθ
)

solves

α
−1eiθ

(
α
−1eiθ −1

)(
α

4e−2iθ d2 f∗
dα2 +2α

3e−2iθ d f∗
dα

)
+
(
(1+β )− (2+β )(α−1eiθ )

)(
−α

2e−iθ d f∗
dα

)
−β f∗= 0,

which after some simplification becomes

p2(α)
d2 f∗
dα2 + p1(α)

d f∗
dα

−β f∗ = 0, (86)

where p2(α) = α2 −α3e−iθ , p1(α) = α(β +4)−α2(β +3)e−iθ .
From Theorem 1, f∗(α) = 1− kI(α), with the abbreviation k = β

eiβθ (1−e−2πiβ )
, and we

calculate the derivatives to be
d f∗
dα

=
d f∗
dI

dI
dα

=−k
dI
dα

,

d2 f∗
dα2 =−k

d2I
dα2 .

Substitution into (86) yields that I(α) solves the equation

p2(α)

(
−k

d2I
dα2

)
+ p1(α)

(
−k

dI
dα

)
−β (1− kI) = 0,
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or rather,

p2(α)
d2I
dα2 + p1(α)

dI
dα

−β I = eiβθ (e−2πiβ −1). (87)

From (87) it is clear that the normalized coefficients p1(α)
p2(α)α and −β

p2(α)α2 are analytic

in a neighborhood of 0. Similarly, p1(α)
p2(α) (α − eiθ ) and −β

p2(α) (α − eiθ )2 are analytic in a

neighborhood of eiθ . These coefficients have poles at 0 and eiθ , so these are regular
singular points. To classify the point at infinity, let x = 1/α and rewrite (87) in x. Akin
to a previous change of variables, one has

dI
dα

=−x2 dI
dx

,

d2I
dα2 = x4 d2I

dx2 +2x3 dI
dx

,

so that (87) becomes

p2

(
1
x

)(
x4 d2I

dx2 +2x3 dI
dx

)
+ p1

(
1
x

)(
−x2 dI

dx

)
−β I = eiβθ (e−2πiβ −1),

or equivalently,

q2(x)
d2I
dx2 +q1(x)

dI
dx

−β I = eiβθ (e−2πiβ −1), (88)

where q2(x) = x2 − xe−iθ , q1(x) = −x(β + 2) + (β + 1)e−iθ . By a similar line of
reasoning, the regular singular points of (88) are x = 0 and x = e−iθ , so α = ∞ and
α = eiθ are both regular singular points of (87).
Thus equation (87), for which (1) is a solution, has precisely three regular singular
points at 0,eiθ ,∞, reminiscent of (84). Any function satisfying a differential equation
with three regular singular points may be expressed using the hypergeometric function,
so this result supports the validity of the relationship derived.

6.2 The case |α|< 1

When |α|< 1, β /∈ Z≥0, one can proceed exactly as §6.1 and make use of Theorem 1.
Let g(z) = 2F1(1,−β ,1−β ,z). Then g solves the equation

z(z−1)
d2g
dz2 +((1−β )− (2−β )z)

dg
dz

+βg = 0.

The change of variables α = zeiθ gives that g∗(α) := g(αe−iθ ) solves

r2(α)
d2g∗
dα2 + r1(α)

dg∗
dα

+βg∗ = 0, (89)

where r2(α) = α2 −αeiθ , r1(α) = (1−β )eiθ − (2−β )α . Theorem 1 gives g∗(α) =

kI(α), where again k = β

eiβθ (1−e−2πiβ )
. This scaling does not change the equation, so

I(α) is also a solution of (89), with g∗ replaced with I. Just as before, one reasons
that α = 0,eiθ are regular singular points of this equation. In the variable x = 1

α
, the

equation (89) written for I is

s2(x)
d2I
dx2 + s1(x)

dI
dx

+β I = 0,
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where s2(x) = x2 − x3eiθ ,s1(x) = βx− (1+ β )eiθ x2, of which the regular singular
points are x = 0,e−iθ . Finally, one concludes that the regular singular points of the
hypergeometric-like differential equation that I(α) solves are 0,eiθ ,∞.

7 Appendix
In order to use Lebesgue’s Dominated Convergence Theorem, which is essential to the
proofs in the paper, a short introduction to basic measure theory is needed. Careful
treatment of the necessary measure theory topics is handled in Chapter 11 of Rudin’s
Principles of Mathematical Analysis (pgs. 300-315 of [3]). For more resources on the
topic see the reviews in [4]. If the reader chooses to forego the short introduction to
measure theory, it will at least help to understand the advantages of Lebesgue integra-
tion over the standard Riemann integration taught in introductory calculus.

For one, the Lebesgue integral extends to a much wider class of functions than the
Riemann integral. A classic example is that of the Dirichlet function δ which takes
value 1 on rationals and 0 on irrationals. This function is not Riemann integrable on
the interval [0,1], since no matter what partition P we pick for the interval, at least
one irrational and one rational must lie in each interval of the partition. Thus for every
partition P, U(P,δ ) = 1 and L(P,δ ) = 0, where U and L are the upper and lower sums
of δ with partition P, respectively. This shows that δ is not Riemann integrable.

The Dirichlet function is Lebesgue integrable however, and its Lebesgue integral over
the interval [0,1] is simple to compute. Let λ be the Lebesgue measure on R. By
definition of the Lebesgue integral, we have∫

[0,1]
δ dλ = 1 ·λ ([0,1]∩Q)+0 ·λ ([0,1]\Q) = 0

since the rationals form a Lebesgue measure 0 subset of the reals. This example shows
in particular that a "large" number of discontinuities (think uncountably many, as in
the Dirichlet function) does not necessarily prevent a function from being Lebesgue
integrable, while it does prevent it from being Riemann integrable.

Another limitation of Riemann integration is the difficulty in passing a limit under the
integral sign. Given a sequence of Riemann-integrable functions { fn} which converge
to some function f , it would be convenient if

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
lim
n→∞

fn(x)dx.

Indeed, there are cases where this holds – for instance, if { fn} converges to a function f
uniformly (rather than just pointwise) on the finite interval [a,b]. This fact can be seen
as a consequence of Lebesgue’s Dominated Convergence Theorem, again demonstrat-
ing its utility (see the comment under Exercise 11.6 in [3]). It is mainly for this reason
we use the integral of Lebesgue rather than that of Riemann, since in the Lebesgue
context it is much easier to justify switching the limit and integral.

The reader should also notice that we discuss measurability and integrability of func-
tions with codomain C rather than R (see pg. 325 of [3]). Recall that f : R→ C may
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be written in terms of two component functions u,v : R→ R
f (t) = u(t)+ iv(t),

and the integral of f over A ⊆ R is aptly defined∫
A

f (t) dλ :=
∫

A
u(t) dλ + i

∫
A

v(t) dλ .

It is natural then that the function f : R→C be integrable over A so long as u and v are.
This also corroborates the definition that f : R→C is measurable if u and v are.

The need to discuss complex valued functions stems from our use of line integrals (pgs.
101-102 in [5]). Let Ω ⊆ C, and recall that the integral of the function f : Ω → C over
a piecewise differentiable arc γ parameterized by z : [a,b]→ C is defined as∫

γ

f (z) dz :=
∫ b

a
f (z(t))z′(t) dt.

Defining uγ ,vγ : [a,b]→ R such that
[( f ◦ z)z′](t) = uγ(t)+ ivγ(t),

the integral of f over γ can be written terms of two real integrals:∫
γ

f (z) dz =
∫ b

a
uγ(t) dt + i

∫ b

a
vγ(t) dt.

If f is continuous on the piecewise-continuously differentiable curve γ , then certainly
( f ◦ z)z′ : [a,b]→ C is piecewise continuous and bounded. From here one concludes
that uγ ,vγ are also piecewise continuous, bounded functions; the component functions
are in fact Riemann integrable. It is known that if a function g : R→ R is Riemann
integrable on [a,b], then g is also Lebesgue integrable on [a,b] and the two separate
notions of integration yield the exact same result (Theorem 11.33 [3]). In this paper,
every claim of integrability is justified through this sense.

Now we state Lebesgue’s Dominated Convergence Theorem (Theorem 11.32 in
[3]).

Theorem 2. Suppose A is a measurable set with respect to some measure µ , and let
{ fn} be a sequence of measurable functions (with respect to the same measure) such
that

fn(x)→ f (x) as n → ∞ ∀x ∈ A.

If there exists a µ-integrable function g on A such that

| fn(x)| ≤ g(x) ∀n ∈ N,∀x ∈ A,

then

lim
n→∞

∫
A

fn dµ =
∫

A
f dµ.

Remark 3. In our case, the sets we integrate over are always intervals. Since we choose
µ = λ when applying Theorem 2, and since intervals are Lebesgue measurable, the
first condition of Theorem 2 holds easily.
In the mainline discussion, we sweep under the rug the application of Theorem 2 to
separate real and imaginary components. However it should be clear that the arguments
laid out there justify the separate applications — the following points support this:
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(a) a sequence of functions fn :R→C are measurable in our sense, then by definition
one had to have shown the component sequences un,vn are measurable.

(b) fn → f pointwise, then also the components converge un → u and vn → v point-
wise.

(c) | fn| ≤ g, then |un|, |vn| ≤ | fn| ≤ g.
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