
© 2023 Ball State University. All rights reserved.

Online at https://digitalresearch.bsu.edu/mathexchange

ISSN 1550-1736

Cover design by Patrick Foley.



A Word from the Editor

The editorial board of the Mathematics Exchange is delighted to present our latest
issue, comprising nine captivating articles that explore a diverse array of mathematical
topics tailored for a broad undergraduate audience. We extend our sincere appreciation
to the authors for their dedicated efforts in sharing their new discoveries, inspiring,
and motivating our readers to immerse themselves in the world of mathematics. We
trust that you will find this collection to be a rewarding culmination of their scholarly
endeavors.

The Law of Small Numbers states the convergence of the Binomial distribution to
the Poisson distribution. The inaugural article vividly illustrates this law. Specifically,
utilizing the programming language R, the authors delve into the total variation distance
between these two distributions.

While the classification of semi-simple Lie algebras was resolved over a century
ago, the challenge of categorizing solvable Lie algebras remains open, particularly in
higher dimensions. The second article contributes to this ongoing discourse by delving
into the classification of solvable Lie algebras in the dimension seven setting, building
upon the established classifications in dimensions six and lower.

The third article offers a novel and concise proof of the well-known fact that
the set of monomial matrices forms a subgroup of invertible matrices. The work not
only addresses a well-known fact but also fills a gap in the literature by providing a
readily available proof. In addition, the authors establish the simple yet profound result
that the inverse of a nonnegative matrix is nonnegative if and only if the matrix is
monomial.

Article four introduces an engaging exploration of the classic combinatorial game
Cram, featuring rectangular polyominoes rather than the conventional 1×2 dominoes.
This article exemplifies the discovery of innovative results by posing insightful ques-
tions, relying on elementary arguments and leveraging symmetry to articulate winning
strategies. The findings may inspire further exploration of the subject with different
polyominoes.

The fifth article investigates level sets of real-valued continuous functions on closed
intervals, inspired by the intermediate value theorem. This inquiry delves into the
behavior of functions whose endpoints converge to the same real number, providing
valuable insights into the structure of these sets.

Turning to the realm of signal processing, the sixth article focuses on Independent
Component Analysis (ICA) as a blind-source separation method. Specifically, it
explores how ICA handles over-complete data, demonstrating its ability to consistently



group sources with similar spatial maps in the presence of three sinusoidal sources and
two sensors.

The seventh article delves into the Riemann Zeta function, a captivating infinite
converging sum of powers of natural numbers. The authors present various irrationality
proofs, with a specific focus on demonstrating the irrationality of certain values of the
Zeta function.

In the eighth article, the authors generalize a result by Mortini and Rupp, offering
insights into the Cauchy transform of the complex power function. Employing limits
and a contour technique, they navigate around branch cuts, introducing a novel approach
utilizing hyperbolic geometric functions. This paper enriches our understanding of
integrating over curves with multi-functions and establishes connections to solutions of
differential equations, particularly those involving the hypergeometric function.

The final article introduces a matrix iteration framework to study the Mandelbrot
set and filled Julia sets. By employing a sequence of affine transformations, the authors
establish an alternate form of iteration by complex polynomials. This framework
enables the verification of membership in the Mandelbrot set and filled Julia sets,
demonstrating that boundedness in the operator norm corresponds to belonging to these
sets.

We trust that you will find this issue of the Mathematics Exchange to be a source of
intellectual enrichment and inspiration. As always, we eagerly welcome and encourage
your ideas on how we can continue to enhance our service to our valued readers.

Ya¹�ua®� ��iao

11.15.2023
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Call for Papers

We are always soliciting contributions for future issues of this journal. Contributions are accepted
from all undergraduate students who have worked on a project beyond the classroom in any
mathematical area (e.g., pure, applied, actuarial, and education). Appropriate papers from
other departments and other institutions are also welcome. Often the articles are written by
undergraduates individually, working in teams, or working with faculty. On occasion we also
include articles written solely by faculty or graduate students as long as they are accessible to
undergraduates.

To submit an article, please select ONE member from the editorial board, and forward your
material in PDF form, usually prepared by LaTeX (preferred) or Microsoft Word, to the editor
you selected. We use double anonymized peer review, the identities of both reviewers and
authors are concealed from each other throughout the review. To facilitate this, please remove
any identifying information, such as authors’ names or affiliations, from your manuscript before
submission. Please ensure that the title page (that include all authors’ names and affiliations, a
complete address of the corresponding author including an email address, acknowledgements,
and conflict of interest statement) is present in your submission as a separate file. If authors are
undergraduate students, please include your advisor’s name and contact information in the title
page. Review and selection of articles is handled by the editorial committee. Editorial changes
of accepted articles are communicated through students’ advisors, when appropriate.

More information, including links to all previous issues, are available online at
https://digitalresearch.bsu.edu/mathexchange.



Contents

A Word from the Editor

Editorial Committee and Call for Papers

Articles

An investigation into the law of small numbers using R
Yasir Zubayr Barlas, Dudley Stark . . . . . . . . . . . . . . . 2

Classification of seven-dimensional solvable Lie algebras with five-
dimensional abelian nilradicaly
Jacksyn Bakeberg, Kate Blaine, Firas Hindeleh . . . . . . . . 15

The group of monomial matrices
Martin F. Martinez, Pietro Paparella . . . . . . . . . . . . . . 34

Cram with Square Polyominoes
Michael Fraboni, Emma Miller . . . . . . . . . . . . . . . . . 39

Characterizing distances between points in the level sets of a class of
continuous functions on a closed interval
Henry Riely, Yuanming Luo . . . . . . . . . . . . . . . . . . 49

ICA can consistently bin similar sources together: The case with 3
sinusoidal sources separated into 2 components
Erin Munro Krull, Breanna Ollech, Kayley Grabowski . . . . 59

Irrationality of the Riemann-Zeta function at the positive integers
Yoochan Noh . . . . . . . . . . . . . . . . . . . . . . . . . . 76



On the Cauchy Transform of the Complex Power Function
Benjamin Faktor, Michael Kuhn, Gahl Shemy . . . . . . . . . 93

Matricial Frameworks for the Mandelbrot and Filled Julia Sets
Eric Babcock, Dawson Brindle, Mitch Hamidi, Lara Ismert . . 118



Ball State Undergraduate Mathematics Exchange
https://digitalresearch.bsu.edu/mathexchange
Vol. 17, No. 1 (Fall 2023)
Pages 2 – 14

An investigation into the law of small numbers
using R

Yasir Zubayr Barlas, Dudley Stark*

Yasir Zubayr Barlas pursued his undergraduate studies in the field
of mathematics at Queen Mary, University of London. His academic
interests encompass various areas of mathematics, with a specific
focus on probability and statistics. The research presented in this
paper was carried out during his undergraduate years.

Dudley Stark received his Ph.D. from University of Southern Cali-
fornia in 1994 and is a Reader (Associate Professor) in Mathematics
and Probability at Queen Mary, University of London. His research
interests lie in the fields of probability and combinatorics. He enjoys
teaching a variety of modules in financial mathematics, statistics, and
pure mathematics.

Abstract
The Law of Small Numbers states that the Binomial distribution converges to the
Poisson distribution. Using the programming language R, we investigate the total
variation distance between Binomial(n, c/n) and Poisson(c) when we fix c and n
individually. We also look at the asymptotics for ndTV for a fixed c, where ndTV is the
total variation distance dTV multiplied by increasing values of n. Several properties of
dTV are looked at in this paper.

1 Introduction
‘The Law of Small Numbers’ is a book written by Ladislaus von Bortkiewicz [1]. Quine
and Seneta [2] state that there is much misconception about the book and its contents.
Assume we have a short series of N independent observations with a Poisson(λi) for
i ∈ {1, . . . ,N}. Bortkiewicz found that these observations act as if they are from a
sample of size N with a Poisson distribution, even with unequal λi’s. It is known that in
certain circumstances, the Binomial distribution converges to the Poisson distribution.

*Corresponding author: d.s.stark@qmul.ac.uk

mailto:d.s.stark@qmul.ac.uk
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In our study, we will be using Binomial(n, c/n) and Poisson(c) for our investigation
of the total variation distance between the two distributions.

Definition 1. Total variation distance measures the closeness between two distributions.
The distance is defined by

dTV (L (X),L (Y )) =
1
2

∞

∑
j=0

|P(X = j)−P(Y = j)|

where X and Y are discrete random variables and L (X) and L (Y ) denotes their
distributions. The state space of these discrete random variables is {0, 1, 2, . . . }. It
is an important statistical distance measure, which in layman’s terms measures the
difference between two probability distributions. It is part of a wider field that too
measures the difference between two probability distributions, called ‘f-divergence’ [3].

We wished to find higher order expansions of the total variation distance, but this
was not possible using the programming language R. Instead, we look at the first order
asymptotics for ndTV , where c is fixed and n is increasing. This paper reports on several
plots of the total variation distance for the law of small numbers.

For interested readers, we review a number of properties of the total variation dis-
tance which include calculating dTV as a finite sum and the metric axioms. We also
provide the R code of our plots, if a reader would like to use the code in their own
research.

In our research, we have looked at several scenarios for our calculation of the to-
tal variation distance. We manipulated n and c to observe dTV , and later ndTV . One
scenario involves finding a convergence towards a certain value of the total variation
distance multiplied by n. ndTV is this scenario, where c is fixed and n → ∞. The
convergence can be seen when n is small and in some cases when n is large, however
this depends on the value of c.
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2 Properties of the Total Variation Distance
The following properties seen in this section are important when it comes to calculating
the total variation distance. They support the validity of our results and are part of the
research project conducted.

2.1 dTV as a finite sum
The total variation distance can be found in a shorter way, by looking at only the
positive parts of the original formula. The new method of calculating the total variation
distance will only look at a finite number of terms, hence why it is shorter.

Definition 2. A real function f (x) can be split into two parts,

f+(x) =

{
f (x), if f (x)> 0
0, otherwise

(1)

f−(x) =

{
− f (x), if f (x)< 0
0, otherwise

(2)

where f (x) = f+(x)− f−(x).

Theorem 1. The total variation distance (dTV ) can be found by looking only at
the positive parts

dTV (L (X),L (Y )) =
n

∑
j=0

(P(X = j)−P(Y = j))+.

Proof: We can separate functions into two different parts, one being the positive part
and the other being the negative part. The positive part looks only at the positive values
of a function and vice versa for the negative part.

By Definition 2.,

dTV (L (X),L (Y )) =
1
2

∞

∑
j=0

|P(X = j)−P(Y = j)|

|P(X = j)−P(Y = j)|= ((P(X = j)−P(Y = j))++(P(X = j)−P(Y = j))− (3)

(P(X = j)−P(Y = j)) = ((P(X = j)−P(Y = j))+− (P(X = j)−P(Y = j))− (4)

The distributions are discrete and we assume that we have a fixed n number of trials.

Looking at (3),

dTV (L (X),L (Y ))=
1
2

n

∑
j=0

(P(X = j)−P(Y = j))++
1
2

n

∑
j=0

(P(X = j)−P(Y = j))−

2 ·dTV (L (X),L (Y )) =
n

∑
j=0

(P(X = j)−P(Y = j))++
n

∑
j=0

(P(X = j)−P(Y = j))−
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Now looking at (4),
n

∑
j=0

(P(X = j)−P(Y = j))=
n

∑
j=0

(P(X = j)−P(Y = j))+−
n

∑
j=0

(P(X = j)−P(Y = j))−

Left hand side,
n

∑
j=0

P(X = j)−
n

∑
j=0

P(Y = j) = 1−1 = 0.

Implying that,

dTV (L (X),L (Y )) =
n

∑
j=0

(P(X = j)−P(Y = j))+ =
n

∑
j=0

(P(X = j)−P(Y = j))−.

From this, we can now calculate the distance as follows

dTV (L (X),L (Y )) =
n

∑
j=0

(P(X = j)−P(Y = j))+.

2.2 Metric Axioms
Theorem 2. The total variation distance (dTV ) is a metric on the space of distributions.
Proof: We review the metric axioms in order to prove this theorem.

Definition 3. A metric satisfies three axioms,

(i) Non-negativity, where dTV (L (X),L (Y ))≥ 0

(ii) The identity of indiscernibles, where dTV (L (X),L (Y )) = 0
if and only if L (X) = L (Y )

(iii) Symmetry, where dTV (L (X),L (Y )) = dTV (L (Y ),L (X))

(iv) The triangle inequality, where
dTV (L (X),L (Z))≤ dTV (L (X),L (Y ))+dTV (L (Y ),L (Z))

Axiom 1: Straightforward from the definition of total variation distance, notice that the
absolute value ensures that we take the positive result.

Axiom 2: For the identity of indiscernibles, it can be easy to see that dTV (L (X),L (Y ))=
0 if and only if L (X) = L (Y ). We know that |P(X = j)−P(Y = j)| ≥ 0 for all j. We
need the left hand side to be equal to zero, so we make P(X = j) = P(Y = j). The two
distributions are then identical, L (X) = L (Y ), so |P(X = j)−P(X = j)|= 0.

Axiom 3: For the axiom of symmetry, we see that |P(X = j)−P(Y = j)| ≥ 0. If
we were to swap P(X = j) and P(Y = j) around for |P(Y = j)−P(X = j)| ≥ 0, the
absolute value allows for the same result.

Axiom 4: For the triangle inequality, we need to show that dTV (L (X),L (Z)) ≤
dTV (L (X),L (Y ))+dTV (L (Y ),L (Z)). We can first display

dTV (L (X),L (Z)) =
1
2

∞

∑
j=0

|P(X = j)−P(Z = j)|.
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We can then see the following

dTV (L (X),L (Z))≤ 1
2

∞

∑
j=0

{
|P(X = j)−P(Y = j)|+ |P(Y = j)−P(Z = j)|

}
.

The right hand side can be separated into
1
2

∞

∑
j=0

|P(X = j)−P(Y = j)|+ 1
2

∞

∑
j=0

|P(Y = j)−P(Z = j)|.

So then
dTV (L (X),L (Z))≤ dTV (L (X),L (Y ))+dTV (L (Y ),L (Z)).

2.3 dTV as a finite sum
Theorem 3. The total variation distance (dTV ) has property 0 ≤ dTV ≤ 1.

Proof: We have already seen that dTV ≥ 0. By Definition 1. the total variation
distance (dTV ) is defined by

dTV (L (X),L (Y )) =
1
2

∞

∑
j=0

|P(X = j)−P(Y = j)|

The absolute value being taken ensures that there are no negative values, so we know
that dTV ≥ 0. To find out why dTV does not exceed 1, we have

1
2

∞

∑
j=0

|P(X = j)−P(Y = j)| ≤ 1
2

∞

∑
j=0

(P(X = j)+P(Y = j))

Looking at the right hand side,
1
2

∞

∑
j=0

P((X = j)+P(Y = j)) =
1
2

∞

∑
j=0

P(X = j)+
1
2

∞

∑
j=0

P(Y = j)

1
2

∞

∑
j=0

P(X = j)+
1
2

∞

∑
j=0

P(Y = j) =
1
2
+

1
2
= 1

It is seen that 0 ≤ dTV ≤ 1.

A value of 0 for the total variation distance tells us that both random variables are
identical. This is seen from our first metric axiom, where dTV (L (X),L (Y )) = 0 if
and only if L (X) = L (Y ).

A value of 1 can be seen as the opposite of having the total variation distance equal to
0. For a value of 1, both random variables have disjoint sample spaces.

3 Main Results
We use the programming language R [4] to produce our results. The function ‘Total-
VarDist’ from the package ‘distrEx’ [5] is used to calculate the total variation distance
without having to write longer pieces of code. Our random variables X and Y remain
the same throughout, with X ∼ Binomial(n, c/n) and Y ∼ Poisson(c).
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3.1 dTV for multiple values of n
We keep c as a fixed value here and we make n increase seemingly to infinity. Kennedy
and Quine [6] have found an exact expression for n ≥ 1 and 0 < np ≤ 2−

√
2. They

call this f1(p) in their paper, where p = c
n in our calculations

f1

( c
n

)
= c
(

1− c
n

)n−1
− ce−c.

(a) dTV (b) log(dTV )

Figure 1: Plot for c = 2−
√

2 for increasing values of n

R Code for Figure 1:

#dtv for multiple n
library(distrEx)
library(distr)
n = 1
results1 = list()
while (n <= 1000){

c = 2 - sqrt (2)
x = TotalVarDist(Binom(size = n, prob = c/n), Pois(c))
results1 = c(results1 , x)
#once n = 1000 in the program , produce a plot of the results
if (n == 1000){

plot(unlist(results1), type="l", xlab = "n", ylab = "dtv")}
n = n + 1}

We see here that as n increases, we move rapidly to a total variation distance of zero.
Changing the value of c (and n where required) has little effect to the form of the plot
shown in Figure 1. Additional plots are shown in Figure 2 for different c.
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(a) n = [100,1000], c = 100 (b) log(dTV ) of (a)

(c) n = [10000,20000], c = 10000 (d) log(dTV ) of (c)

Figure 2: Plots of different values of c

Comparing dTV to log(dTV ), we see a similar behaviour in the plots. This behaviour is
consistent at higher values of n and c, as seen by the plots. Therefore, as we increase
n for a fixed c, the total variation distance decreases in value close to zero for larger
values of n.

3.2 dTV for multiple values of c
We keep n as the fixed value here and we increase c to a certain value of n. We cannot
make c a greater value than n because that would make the probability c/n greater than
one. Figure 3 shows a plot for 0 ≤ c ≤ 100 and n = 100.

(a) dTV (b) log(dTV )

Figure 3: Plot for n = 100 for increasing values of c
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R Code for Figure 3:

[language=R]
#dtv for multiple c
library(distrEx)
library(distr)
c = 0
results2 = list()
while (c <= 100){

n = 100
x = TotalVarDist(Binom(size = n, prob = c/n), Pois(c))
results2 = c(results2, x)
#once c = 100 in the program , produce a plot of the results
if (c == 100){

plot(unlist(results2), type="l", xlab = "c", ylab = "dtv")}
c = c + 1}

The shape of this plot in Figure 3 will not be consistent for all values of n (and c
where required). When n is equal to the largest value of c, we see the behaviour of an
exponential function. As n increases with the same boundaries for c, the plot eventually
becomes linear. This is visualised in Figure 4. However, it remains that as c increases
for a fixed n that the total variation distance increases.

(a) n = 150,c = [0,100] (b) log(dTV ) of (a)

(c) n = 10000,c = [0,1000] (d) log(dTV ) of (c)

Figure 4: Plots of different values of n
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3.3 ndTV for multiple values of n
This builds up on Section 3.1, where c is fixed and n is increasing. ndTV has similar
behaviour to what we had done in Section 3.1, as n increases we have a smaller total
variation distance. Figure 5 shows a plot 7 ≤ n ≤ 1000 and c = 7.

Figure 5: Plot for ndTV for multiple values of n

R Code for Figure 5:

[language=R]
#ndtv for multiple values of n
library(distrEx)
library(distr)
n = 7
xaxis = seq(7,1000)
results3 = list()
while (n <= 1000){

c = 7
x = TotalVarDist(Binom(size = n, prob = c/n), Pois(c))
nx = n*x
results3 = c(results3, nx)
if (n == 1000){

plot(xaxis , unlist(results3), type="l", xlab = "n",
ylab = "ndtv")} n = n + 1}

On the plot, it seems that there is a convergence towards a certain value. A result from
a research paper by Prokhorov [7] tells us that

lim
n→∞

ndTV =
c√
2eπ

.

We investigated this and found that such a convergence exists for this particular plot
at approximately 1.703 to 3 decimal places. It appears that convergence is a common
feature in plots of this kind, with its visibility increasing at sufficiently large enough n.
Our plot agrees with Prokhorov’s result and shows that ndTV is quite rapid.
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3.4 ndTV for multiple values of c
This builds up on Section 3.2, where we have a fixed n and c is increasing. As with
Section 3.2, as we increase c we have a larger total variation distance. Figure 6 shows
a plot for 0 ≤ c ≤ 1000 and n = 1000.

Figure 6: Plot for ndTV for multiple values of c

R Code for Figure 6:

[language=R]
#ndtv for multiple values of c
library(distrEx)
library(distr)
c = 0
results4 = list()
while (c <= 1000){

n = 1000
x = TotalVarDist(Binom(size = n, prob = c/n), Pois(c))
nx = n*x
results4 = c(results4, nx)
if (c == 1000){

plot(unlist(results4), type="l", xlab = "c",
ylab = "ndtv")} c = c + 1}

If we were to keep n constant, there would be no clear convergence here. The final
value of ndTV is 987.382 at n = 1000 and c = 1000, having c > 1000 would cause the
probability c/n in the Binomial to be greater than one. We cannot continue calculating
the total variation distance here and so we conclude that there is no convergence for a
fixed n. For large enough n, we will find convergence.

3.5 The second term in the asymptotic expansion of dTV
Definition 4. We have functions f (i) and g(i). We introduce the “little-o" notation
for a function o(g(i)), where informally we can say “little o of g of i". f (i) = o(g(i))
means that

∀k > 0 ∃m > 0 ∀i ≥ m : 0 ≤ f (i)< kg(i). (5)
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The value of m does not depend on i, but it may depend on k [8].

f (i) = o(g(i)) also means that

lim
i→∞

f (i)
g(i)

= 0 [9]. (6)

We now define an asymptotic sequence using the “little-o" notation. A finite or infinite
sequence of functions φi(z), i = 1,2, . . . and z ∈ C is defined to be an asymptotic
sequence as z → z0 if,

φi+1(z) = o(φi(z)) (7)

and also that limz→z0
φi+1(z)

φi(z)
= 0.

From our definition of an asymptotic sequence, we say that ∑i=1 aiφi(z), where the
ai are constants, is an asymptotic expansion or an asymptotic approximation for a
function f (z) if for every N

f (z) =
N

∑
i=1

aiφi(z)+o(φN(z)) [10]. (8)

The following displays a recursive method for finding the first two terms of the asymp-
totic expansion for dTV :

φ1(n) =
1
n

φ2(n) =
1
n2

a1 = lim
n→∞

ndTV =
c√
2eπ

a2 = lim
n→∞

(
n2dTV −a1n

)
(9)

dTV ≈ a1

n
+

a2

n2

With c = 7, the convergence in (9) certainly occurs at n = 100000. The plot seen in
Section 3.3 clearly indicates a convergence towards a certain value and it was found
for 7 ≤ n ≤ 1000. Further calculations using R prove that the error of convergence is
very small, so we can use n = 100000. Therefore, we choose this as our n. We now
substitute our values into the equations above.
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φ1(100000) =
1

100000
= 0.00001

φ2(100000) =
1

(100000)2 = 0.0000000001

a1 =
7√
2eπ

= 1.6937950716

a2
.
= dTV (100000)2 −100000a1 = 945.68

Thus, our prediction is that a2 is about 946 for c = 7.

4 Conclusion
Our program allowed us to see how the total variation distance behaves for our param-
eters and distributions. We proved the property that the total variation distance can
be written as a finite sum. Two other properties were also looked at, being that the
distance is on the metric space and that 0 ≤ dTV ≤ 1. We have managed to find the
asymptotics for a scenario with ndTV .

In the future, we hope to address the following:

• The convergence is very fast for ndTV where c is fixed. A program with more
precision would be useful when finding say a2.

• We would like to extend the paper by Prokhorov [7] further by finding higher
order expansions.
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Abstract
This paper provides a classification of seven-dimensional indecomposable solvable Lie
algebras over R for which the nilradical is five-dimensional and abelian. We follow a
technique that was first introduced by Mubarakzyanov.

1 Introduction
For the elementary theory of Lie algebras refer to [4, 6, 7]. It has to be understood that
classifying solvable Lie algebras is a different exercise from studying the semisimple
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algebras. The problem of classifying all semisimple Lie algebras over the field of
complex numbers was solved by Cartan in 1894 [1], and over the field of real numbers
by Gantmacher in 1939 [2]. For solvable indecomposable Lie algebras the problem
is much more difficult. The classification of solvable Lie algebras only exists for
low dimensions and was performed by, amongst others, Mubarakzyanov for solvable
Lie algebras of dimension n ≤ 5 over the field of real and partially over the field of
complex numbers in [11] and [12]. Mubarakzyanov’s results are summarized in [17].
Mubarakzyanov also considered dimension six and classified solvable Lie algebras
with a co-dimension one nilradical [13]. Shabanskaya and Thompson refined his results
and found some missing cases in [19, 20]. Then Turkowski classified six-dimensional
solvable Lie algebras with a co-dimension two nilradical in [21]. Nilpotent Lie algebras
in dimension six were studied as far back as Umlauf [22], and later by Morozov
[9].

It is probably impossible to classify solvable Lie algebras in general in arbitrary
dimension. The first step in classifying solvable Lie algebras in a specific dimension is
to find the possible nilradicals. A general theorem asserts that if g is an n−dimensional
solvable Lie algebra, the dimension of its nilradical nil(g) is at least

n
2

[13]. So for
n = 7, the possible dimensions of the nilradical are seven, six, five, or four. The
seven-dimensional nilradicals, called the nilpotents, were studied by Seely over R [18]
and by Gong over C [3]. The four-dimensional nilradical case was studied by Hindeleh
and Thompson [5]. The six-dimensional nilradical case was studied by Parry [16]. The
five-dimensional nilradical case is still an open problem. A complete classification
consists of all possible five-dimensional nilpotent algebras, including the decomposable
ones. In this paper we study the case where the nilradical is the five-dimensional abelian
algebra R5.

We note that Ndogmo and Winternitz outlined methods for classifying solvable Lie
algebras with abelian nilradical for a general dimension in [14, 15]. Also, while
this work was being finalized, Le, Vu A, et al. [8] posted in arXiv methods for the
classification of seven-dimensional Lie algebras with five-dimensional nilradical. They
conclude with the number of possible algebras without explicitly finding them. This
paper provides a complete list of the seven-dimensional solvable Lie algebras with a
five-dimensional abelian nilradical.

In section , we recall basic definitions and properties related to the classification of
solvable Lie algebras. Then in section , we use Turkowski’s method [21] for classifying
solvable Lie algebras with abelian nilradical, that is also outlined by Ndogmo and
Winternitz [14, 15]. Finally, we list the adjoint matrices corresponding to our algebras
with trivial and one-dimensional centers in sections 3.1 and 3.2, respectively. The
complete list of algebras can be found in tables 1, and 2.

2 A Method to Obtain the Solvable Algebras

2.1 General Concepts
A Lie algebra g is solvable if its derived series DS terminates, i.e.

DS = {g0 = g,g1 = [g,g], . . . ,gk = [gk−1,gk−1] = 0}
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for some k ≥ 1.

A Lie algebra g is nilpotent if its central series CS terminates, i.e.
CS = {g(0) = g,g(1) = [g,g], . . . ,g(k) = [g,g(k−1)] = 0}

for some k ≥ 1.

A solvable algebra g has a decomposition of the form
g= nil(g)⊕X ,

satisfying
[nil(g),nil(g)] ⊂ nil(g),

[nil(g),X ] ⊆ nil(g), (1)
[X ,X ] ⊂ nil(g),

where nil(g) denotes the nilradical of g, the vector space X is spanned by the remaining
generators, and ⊕ denotes the direct sum of vector spaces.

An element n of g is nilpotent if it satisfies
[. . . [[x,n],n] . . .n] = 0

for all x ∈ g when the commutator is taken sufficiently many times.

A set of elements {x1, . . . ,xk} of g is called nilindependent if no non-trivial linear
combination of them is nilpotent.

For x ∈ g, the adjoint transformation of x is a linear transformation adx : g→ g defined
by

adx(y) = [x,y],

for all y ∈ g. In this paper, the restriction of adx to the nilradical of g denoted adx|nil(g)
is realized by matrices A ∈ gl(5,R). Notice that if n is a nilpotent element of g, then
adn|nil(g) is a nilpotent matrix.

A set of matrices in gl(n,R) will be called linearly nilindependent if no non-trivial
linear combination of them is nilpotent.

2.2 Basic Structural Theorems

We shall choose a basis for g = ⟨e1,e2, . . . ,e5,x1,x2⟩ where ei ∈ nil(g),xα ∈ X , for
i = 1, . . . ,5, and α = 1,2.

To classify the seven-dimensional solvable Lie algebras with five-dimensional nilradical,
one must start with a five-dimensional nilpotent algebra that will form nil(g), and add
X = ⟨x1,x2⟩ satisfying the properties in (5). The following are all the nilpotent Lie
algebras up to isomorphism in dimension five: R5, A3,1 ⊕R2, A4,1 ⊕R, and A5,1 −A5,6,
where Rn denotes the n−dimensional abelian algebra, and An,k denotes the kth algebra
of dimension n from Patera’s list [17]. The focus of this article is on the first case,
namely nil(g) = R5.

Since the nilradical is abelian and basis elements must satisfy the relations in (5), we
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have
[ei,e j] = 0 (2a) [xα ,e1]

...
[xα ,e5]

 =
(

e1 . . . e5
)

Aα (2b)

[x1,x2] = Riei (2c)
where Aα = adxα

|nil(g), α = 1,2 and i, j = 1, . . . ,5 and we use the Einstein summation
notation. The classification of our Lie algebras thus amounts to classification of the
matrices Aα and the constants Ri.

By the Jacobi identity involving x1, x2, and an ei,
[[x1,x2],ei]+ [[x2,ei],x1]+ [[ei,x1],x2] = 0.

Thus
ad[x1,x2](ei) = [x1, [x2,ei]]− [x2, [x1,ei]]

= adx1([x2,ei])−adx2([x1,e1])

= adx1(adx2(ei))−adx2(adx1(ei))

= [adx1 ,adx2 ](ei).

Hence [adx1 ,adx2 ] is an inner derivation of the nilradical. Since the nilradical is abelian,
we have

[A1,A2] = 0. (3)
Also, since xα ̸∈ nil(g), then Aα cannot be nilpotent. In fact A1 and A2 are linearly
nilindependent and commute pairwise.

We perform a combination of changes of basis until we reach our desired form. For
i = 1, . . . ,5, and α = 1,2, the following changes of basis preserve the nilradical:

(i) Absorbtion-type change of basis
x̄α = xα + ri

α ei ri
α ∈ R.

(ii) A change of basis in X

x̄α = Gβ

α xβ G ∈ GL(2,R).

(iii) A change of basis in nil(g)

ēi = S j
i e j S ∈ GL(5,R),

where S = (S j
i ) is the automorphism that will change every Aα to a similar matrix

SAα S−1.

Thus our classification problem reduces to finding the derivations of the nilradical that
are not nilpotent and that satisfy equation (3).
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3 Classes of Solvable Algebras

We will determine all real solvable algebras N = R5 ⊕X such that the dimX = 2. The
dimension of the center of g is

dimZ(g)≤ 2dimnil(g)−dimg= 3
(see Ref. [10]). The algebras that possess a center of dimension at least two are
decomposable into a direct sum of lower-dimensional algebras [10]. Therefore, in the
following, the classification problem is solved for the cases dimZ(g) = 0,1.

The derivation matrices Aα form an abelian subalgebra of gl(5,R) and hence a subal-
gebra of some maximal abelian subalgebra. This maximal abelian subalgebra cannot
be a maximal abelian nilpotent subalgebra; as a matter of fact it contains no nilpotent
elements at all. In his Ph.D. dissertation, Ndogmo [14] (and later in [15]) outlines a
technique to find the equivalent classes of nilindependent derivations {A1,A2}. What
we mean by “equivalent classes” is

(i) The pair {y1
1A1 + y1

2A2,y2
1A1 + y2

2A2}, where y1
1y2

2 − y1
2y2

1 ̸= 0, is equivalent to
{A1,A2}.

(ii) The pair {SA1S−1,SA2S−1}, where S is the automorphism of the nilradical, is
equivalent to {A1,A2}.

Using Ndogmo and Winternitz’s notation, we list our A1,A2 in block-diagonal form by
the dimension of each block. Namely, the

(u1u2 · · ·ui,v1v2 · · ·v j,w1)

partition consists if i real lower triangular blocks of dimension ui ×ui , j real blocks
of complex conjugate type of dimension v j × v j (v j is even), and w1 stands for the
dimension of a one-dimensional zero block. Note that for our cases w1 = 0 for the
trivial center cases, and w1 = 1 for the one-dimensional center case. In our case
∑ui +∑v j +w1 = 5.

3.1 Algebras with trivial center

For all of the block partitions in this section, we were able to find a change of basis
that produces [x1,x2] = 0.

The Jacobi identity can give a nonlinear homogeneous system of equations on the free
parameters. Each solution to that system will give a subcase for that partition. We
list the matrices Aα = adxα

|nil(g) for each case or subcase and give the conditions on
those free parameters. We summarize our list of algebras in Table 1, suppressing the
conditions.

(i) The (11111,0,0) partition
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For this case our adjoint matrices are given by

1 0 0 0 0

0 0 0 0 0

0 0 a3 0 0

0 0 0 a4 0

0 0 0 0 a5


,



0 0 0 0 0

0 1 0 0 0

0 0 b3 0 0

0 0 0 b4 0

0 0 0 0 b5


.

To ensure a trivial center and an indecomposable algebra, we need a2
i +b2

i ̸= 0
for i = 3,4,5. We denote this algebra by N7,1.

(ii) The (1112,0,0) partition

For this case our adjoint matrices are given by

1 0 0 0 0

0 0 0 0 0

0 0 a3 0 0

0 0 0 a4 0

0 0 0 p1 a4


,



0 0 0 0 0

0 1 0 0 0

0 0 b3 0 0

0 0 0 b4 0

0 0 0 p2 b4


.

To ensure a trivial center and an indecomposable algebra, we need a2
i +b2

i ̸= 0
for i = 3,4. We denote this algebra N7,2.

(iii) The (111,2,0) partition

For this case our adjoint matrices are given by

1 0 0 0 0

0 0 0 0 0

0 0 a3 0 0

0 0 0 b1 c1

0 0 0 −c1 b1


,



0 0 0 0 0

0 1 0 0 0

0 0 b3 0 0

0 0 0 b2 c2

0 0 0 −c2 b2


.

To ensure a trivial center and an indecomposable algebra as well as a complex
block, we need a2

3 +b2
3 ̸= 0 and c2

1 + c2
2 ̸= 0. We denote this algebra N7,3.

(iv) The (122, 0, 0) partition

For this case our adjoint matrices are given by

1 0 0 0 0

0 0 0 0 0

0 p1 0 0 0

0 0 0 a3 0

0 0 0 p2 a3


,



0 0 0 0 0

0 1 0 0 0

0 q1 1 0 0

0 0 0 b3 0

0 0 0 q2 b3


.

To ensure a trivial center and an indecomposable algebra, we need a2
3 +b2

3 ̸= 0.
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We denote this algebra N7,4.

(v) The (12, 2, 0) partition

For this case our adjoint matrices are given by

1 0 0 0 0

0 0 0 0 0

0 p1 0 0 0

0 0 0 0 1

0 0 0 −1 0


,



0 0 0 0 0

0 1 0 0 0

0 q1 1 0 0

0 0 0 1 0

0 0 0 0 1


.

We denote this algebra N7,5.

(vi) The (1, 22, 0) partition

For this case our adjoint matrices are given by

1 0 0 0 0

0 0 1 0 0

0 −1 0 0 0

0 0 0 b1 0

0 0 0 0 b1


,



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 −1 0


.

We denote this algebra N7,6.

(vii) The (113,0,0) partition

For this partition, the homogeneous nonlinear system imposed by the Jacobi
identity has three independent solutions. Each solution will give us a subcase
below. For all the subcases, we need a2

3 +b2
3 ̸= 0 to ensure a trivial center and an

indecomposable algebra.

(a) The first solution requires p1 = q1 = 0. For this case our adjoint matrices
are given by

1 0 0 0 0

0 0 0 0 0

0 0 a3 0 0

0 0 0 a3 0

0 0 p2 p3 a3


,



0 0 0 0 0

0 1 0 0 0

0 0 b3 0 0

0 0 0 b3 0

0 0 q2 q3 b3


.

We denote this algebra by N7,7.

(b) The second solution requires p1 = p3 = 0. For this case our adjoint matrices



22 BSU Undergraduate Mathematics Exchange Vol. 17, No. 1 (Fall 2023)

are given by

1 0 0 0 0

0 0 0 0 0

0 0 a3 0 0

0 0 0 a3 0

0 0 p2 0 a3


,



0 0 0 0 0

0 1 0 0 0

0 0 b3 0 0

0 0 q1 b3 0

0 0 q2 q3 b3


.

We denote this algebra by N7,8.

(c) The third solution requires q3 = p3q1 and p1 = 1. For this case our adjoint
matrices are given by

1 0 0 0 0

0 0 0 0 0

0 0 a3 0 0

0 0 1 a3 0

0 0 p2 p3 a3


,



0 0 0 0 0

0 1 0 0 0

0 0 b3 0 0

0 0 q1 b3 0

0 0 q2 q3 b3


.

We denote this algebra by N7,9.

(viii) The (14,0,0) partition

For this partition, the homogeneous nonlinear system imposed by the Jacobi
identity has nine independent solutions. Each solution will give us a case below.

(a) The first solution requires q4q6 ̸= 0, p1 =
q1 p4

q4
, p2 =− p4 q1 q5−p4 q2 q6−p5 q1 q4

q4 q6
,

and p6 =
p4 q6

q4
. For this case our adjoint matrices are given by



1 0 0 0 0

0 0 0 0 0

0 p1 0 0 0

0 p2 p4 0 0

0 p3 p5 p6 0


,



0 0 0 0 0

0 1 0 0 0

0 q1 1 0 0

0 q2 q4 1 0

0 q3 q5 q6 1


.

We denote this algebra by N7,10.

(b) The second solution requires p1 = p6 = q1 = q6 = 0. For this case our
adjoint matrices are given by



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 p2 p4 0 0

0 p3 p5 0 0


,



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 q2 q4 1 0

0 q3 q5 0 1


.
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We denote this algebra by N7,11.

(c) The third solution requires q1q4 ̸= 0, p6 = q6 = 0, p1 =
q1 p4

q4
, and p5 =

p4 q5
q4

.
For this case our adjoint matrices are given by



1 0 0 0 0

0 0 0 0 0

0 p1 0 0 0

0 p2 p4 0 0

0 p3 p5 0 0


,



0 0 0 0 0

0 1 0 0 0

0 q1 1 0 0

0 q2 q4 1 0

0 q3 q5 0 1


.

We denote this algebra by N7,12.

(d) The fourth solution requires q1q5 ̸= 0, p4 = q4 = 0, and p1 =− p2 q6−p5 q1−p6 q2
q5

.
For this case our adjoint matrices are given by



1 0 0 0 0

0 0 0 0 0

0 p1 0 0 0

0 p2 0 0 0

0 p3 p5 p6 0


,



0 0 0 0 0

0 1 0 0 0

0 q1 1 0 0

0 q2 0 1 0

0 q3 q5 q6 1


.

We denote this algebra by N7,13.

(e) The fifth solution requires q6 ̸= 0, p4 = q4 = q5 = 0, and p2 =
p5 q1+p6 q2

q6
.

For this case our adjoint matrices are given by



1 0 0 0 0

0 0 0 0 0

0 p1 0 0 0

0 p2 0 0 0

0 p3 p5 p6 0


,



0 0 0 0 0

0 1 0 0 0

0 q1 1 0 0

0 q2 0 1 0

0 q3 0 q6 1


.

We denote this algebra by N7,14.

(f) The sixth solution requires q1 ̸= 0, p4 = q4 = q5 = q6 = 0, and p5 =− q2 p6
q1

.
For this case our adjoint matrices are given by
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1 0 0 0 0

0 0 0 0 0

0 p1 0 0 0

0 p2 0 0 0

0 p3 p5 p6 0


,



0 0 0 0 0

0 1 0 0 0

0 q1 1 0 0

0 q2 0 1 0

0 q3 0 0 1


.

We denote this algebra by N7,15.

(g) The seventh solution requires p6q5 ̸= 0, q1 = q4 = q6 = 0, and p1 =
q2 p6

q5
.

For this case our adjoint matrices are given by



1 0 0 0 0

0 0 0 0 0

0 p1 0 0 0

0 p2 p4 0 0

0 p3 p5 p6 0


,



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 q2 0 1 0

0 q3 q5 0 1


.

We denote this algebra by N7,16.

(h) The eighth solution requires p6 ̸= 0 and q1 = q2 = q4 = q5 = q6 = 0. For
this case our adjoint matrices are given by



1 0 0 0 0

0 0 0 0 0

0 p1 0 0 0

0 p2 p4 0 0

0 p3 p5 p6 0


,



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 q3 0 0 1


.

We denote this algebra by N7,17.

(i) The ninth solution requires p1 ̸= 0 and p6 = q1 = q4 = q5 = q6 = 0. For
this case our adjoint matrices are given by



1 0 0 0 0

0 0 0 0 0

0 p1 0 0 0

0 p2 p4 0 0

0 p3 p5 0 0


,



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 q2 0 1 0

0 q3 0 0 1


.

We denote this algebra by N7,18.
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(ix) The (23, 0, 0) partition

For this partition, the homogeneous nonlinear system imposed by the Jacobi
identity has three independent solutions. Each solution will give us a case below.

(a) The first solution requires p2 = q2 = 0. For this case our adjoint matrices
are given by



1 0 0 0 0

p1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 p3 p4 0


,



0 0 0 0 0

q1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 q3 q4 1


.

We denote this algebra by N7,19.

(b) The second solution requires p2 = p4 = 0. For this case our adjoint matrices
are given by



1 0 0 0 0

p1 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 p3 0 0


,



0 0 0 0 0

q1 0 0 0 0

0 0 1 0 0

0 0 q2 1 0

0 0 q3 q4 1


.

We denote this algebra by N7,20.

(c) The third solution requires q4 = q2 p4 and p2 = 1. For this case our adjoint
matrices are given by



1 0 0 0 0

p1 1 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 p3 p4 0


,



0 0 0 0 0

q1 0 0 0 0

0 0 1 0 0

0 0 q2 1 0

0 0 q3 q4 1


.

We denote this algebra by N7,21.

(x) The (3, 2, 0) partition

For this partition, the homogeneous nonlinear system imposed by the Jacobi
identity has three independent solutions. Each solution will give us a case below.

(a) The first solution requires p1 = q1 = 0. For this case our adjoint matrices
are given by
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1 0 0 0 0

0 1 0 0 0

p2 p3 1 0 0

0 0 0 0 1

0 0 0 −1 0


,



0 0 0 0 0

0 0 0 0 0

q2 q3 0 0 0

0 0 0 1 0

0 0 0 0 1


.

We denote this algebra by N7,22.

(b) The second solution requires p1 = p3 = 0. For this case our adjoint matrices
are given by



1 0 0 0 0

0 1 0 0 0

p2 0 1 0 0

0 0 0 0 1

0 0 0 −1 0


,



0 0 0 0 0

q1 0 0 0 0

q2 q3 0 0 0

0 0 0 1 0

0 0 0 0 1


.

We denote this algebra by N7,23.

(c) The third solution requires q3 = p3q1 and p1 = 1. For this case our adjoint
matrices are given by



1 0 0 0 0

1 1 0 0 0

p2 p3 1 0 0

0 0 0 0 1

0 0 0 −1 0


,



0 0 0 0 0

q1 0 0 0 0

q2 q3 0 0 0

0 0 0 1 0

0 0 0 0 1


.

We denote this algebra by N7,24.

3.2 Algebras with one-dimensional center
In this section, the center of the Lie algebra Z(g) = ⟨e5⟩. For all of the block partitions
in this section, we were able to find a change of basis that produces [x1,x2] = e5.

Similarly, the Jacobi identity can give a nonlinear homogeneous system of equations on
the free parameters. Each solution to that system will give a subcase for that partition.
We list the matrices Aα = adxα

|nil(g) for each case or subcase and give the conditions
on those free parameters. We summarize our list of algebras in Table 2, suppressing
the conditions.

(i) The (1111, 0, 1) partition

For this case our adjoint matrices are given by
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1 0 0 0 0

0 0 0 0 0

0 0 a3 0 0

0 0 0 a4 0

0 0 0 0 0


,



0 0 0 0 0

0 1 0 0 0

0 0 b3 0 0

0 0 0 b4 0

0 0 0 0 0


.

To ensure a one-dimensional center and an indecomposable algebra, we need
a2

i +b2
i ̸= 0 for i = 3,4. We denote this algebra by N7,25.

(ii) The (2, 2, 1) partition

For this case our adjoint matrices are given by



1 0 0 0 0

p1 1 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 0


,



0 0 0 0 0

q1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0


.

We denote this algebra by N7,26.

(iii) The (13, 0, 1) partition

For this partition, the homogeneous nonlinear system imposed by the Jacobi
identity has three independent solutions. Each solution will give us a case below.

(a) The first solution requires p1 = q1 = 0. For this case our adjoint matrices
are given by



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 p2 p3 0 0

0 0 0 0 0


,



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 q2 q3 1 0

0 0 0 0 0


.

We denote this algebra by N7,27.

(b) The second solution requires p1 = p3 = 0. For this case our adjoint matrices
are given by
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1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 p2 0 0 0

0 0 0 0 0


,



0 0 0 0 0

0 1 0 0 0

0 q1 1 0 0

0 q2 q3 1 0

0 0 0 0 0


.

We denote this algebra by N7,28.

(c) The third solution requires q3 = p3q1 and p1 = 1. For this case our adjoint
matrices are given by



1 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 p2 p3 0 0

0 0 0 0 0


,



0 0 0 0 0

0 1 0 0 0

0 q1 1 0 0

0 q2 q3 1 0

0 0 0 0 0


.

We denote this algebra by N7,29.

(iv) The (22,0,1) partition

For this case our adjoint matrices are given by



1 0 0 0 0

p1 1 0 0 0

0 0 0 0 0

0 0 p2 0 0

0 0 0 0 0


,



0 0 0 0 0

q1 0 0 0 0

0 0 1 0 0

0 0 q2 1 0

0 0 0 0 0


.

We denote this algebra by N7,30.

(v) The (112,0,1) partition

For this case our adjoint matrices are given by



1 0 0 0 0

0 0 0 0 0

0 0 a3 0 0

0 0 p1 a3 0

0 0 0 0 0


,



0 0 0 0 0

0 1 0 0 0

0 0 b3 0 0

0 0 q1 b3 0

0 0 0 0 0


.

To ensure a one-dimensional center and an indecomposable algebra, we need
a2

3 +b2
3 ̸= 0. We denote this algebra by N7,31.
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(vi) The (11,2,1) partition

For this case our adjoint matrices are given by



1 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 0


,



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0


.

We denote this algebra by N7,32.

(vii) The (0, 4, 1) partition

For this case our adjoint matrices are given by



0 1 0 0 0

−1 0 0 0 0

p1 p3 0 1 0

p2 p4 −1 0 0

0 0 0 0 0


,



1 0 0 0 0

0 1 0 0 0

q1 −q2 1 0 0

q2 q1 0 1 0

0 0 0 0 0


.

We denote this algebra by N7,33.

(viii) The (0,22,1) partition

For this case our adjoint matrices are given by



0 1 0 0 0

−1 0 0 0 0

0 0 b2 0 0

0 0 0 b2 0

0 0 0 0 0


,



0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 −1 0 0

0 0 0 0 0


.

We denote this algebra by N7,34.

4 Conclusion
This completes the classification for the seven-dimensional solvable Lie algebras
with five-dimensional abelian nilradical. Significant progress has been made on the
remaining five-dimensional nilradicals and will be submitted separately.
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1 Bracket relations for the real seven-dimensional solv-
able Lie algebras with five-dimensional Abelian nilradi-
cal and a trivial center

Table 1: Non-zero bracket relations for the real seven-dimensional solvable Lie
algebras with five-dimensional Abelian nilradical and a trivial center. The elements
{e1, . . . ,e5} form a basis for the nilradical and {x1,x2} are the remaining basis elements.

[xα ,e1] [xα ,e2] [xα ,e3] [xα ,e4] [xα ,e5]

2*N7,1 [x1,ei] e1 a3e3 a4e4 a5e5
2-7 [x2,ei] e2 b3e3 b4e4 b5e5

2*N7,2 [x1,ei] e1 a3e3 a4e4 + p1e5 a4e5
2-7 [x2,ei] e2 b3e3 b4e4 + p2e5 b4e5

2*N7,3 [x1,ei] e1 a3e3 b1e4 − c1e5 c1e4 +b1e5
2-7 [x2,ei] e2 b3e3 b2e4 − c2e5 c2e4 +b2e5

2*N7,4 [x1,ei] e1 p1e3 a3e4 + p2e5 a3e5
2-7 [x2,ei] e2 +q1e3 e3 b3e4 +q2e5 b3e5

2*N7,5 [x1,ei] e1 p1e3 −e5 e4
2-7 [x2,ei] e2 +q1e3 e3 e4 e5

2*N7,6 [x1,ei] e1 −e3 e2 b1e4 b1e5
2-7 [x2,ei] −e5 e4

2*N7,7 [x1,ei] e1 a3e3 + p2e5 a3e4 + p3e5 a3e5
2-7 [x2,ei] e2 b3e3 +q2e5 b3e4 +q3e5 b3e5

2*N7,8 [x1,ei] e1 a3e3 + p2e5 a3e4 a3e5
2-7 [x2,ei] e2 b3e3 +q1e4 +q2e5 b3e4 +q3e5 b3e5

2*N7,9 [x1,ei] e1 a3e3 + e4 + p2e5 a3e4 + p3e5 a3e5
2-7 [x2,ei] e2 b3e3 +q1e4 +q2e5 b3e4 +q3e5 b3e5

2*N7,10 [x1,ei] e1 p1e3 + p2e4 + p3e5 p4e4 + p5e5 p6e5
2-7 [x2,ei] e2 +q1e3 +q2e4 +q3e5 e3 +q4e4 +q5e5 e4 +q6e5 e5

2*N7,11 [x1,ei] e1 p2e4 + p3e5 p4e4 + p5e5
2-7 [x2,ei] e2 +q2e4 +q3e5 e3 +q4e4 +q5e5 e4 e5

2*N7,12 [x1,ei] e1 p1e3 + p2e4 + p3e5 p4e4 + p5e5
2-7 [x2,ei] e2 +q1e3 +q2e4 +q3e5 e3 +q4e4 +q5e5 e4 e5

2*N7,13 [x1,ei] e1 p1e3 + p2e4 + p3e5 p5e5 p6e5
2-7 [x2,ei] e2 +q1e3 +q2e4 +q3e5 e3 +q5e5 e4 +q6e5 e5

2*N7,14 [x1,ei] e1 p1e3 + p2e4 + p3e5 p5e5 p6e5
2-7 [x2,ei] e2 +q1e3 +q2e4 +q3e5 e3 e4 +q6e5 e5

2*N7,15 [x1,ei] e1 p1e3 + p2e4 + p3e5 p4e5 p6e5
2-7 [x2,ei] e2 +q1e3 +q2e4 +q3e5 e3 e4 e5

2*N7,16 [x1,ei] e1 p1e3 + p2e4 + p3e5 p4e4 + p5e5 p6e5
2-7 [x2,ei] e2 +q2e4 +q3e5 e3 +q5e5 e4 e5

Continued on next page
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Table 1 – Continued from previous page
[xα ,e1] [xα ,e2] [xα ,e3] [xα ,e4] [xα ,e5]

2*N7,17 [x1,ei] e1 p1e3 + p2e4 + p3e5 p4e4 + p5e5 p6e5
2-7 [x2,ei] e2 +q3e5 e3 e4 e5

2*N7,18 [x1,ei] e1 p1e3 + p2e4 + p3e5 p4e4 + p5e5
2-7 [x2,ei] e2 +q2e4 +q3e5 e3 e4 e5

2*N7,19 [x1,ei] e1 + p1e2 e2 p3e5 p4e5
2-7 [x2,ei] q1e2 e3 +q3e5 e4 +q4e5 e5

2*N7,20 [x1,ei] e1 + p1e2 e2 p3e5
2-7 [x2,ei] q1e2 e3 +q2e4 +q3e5 e4 +q4e5 e5

2*N7,21 [x1,ei] e1 + p1e2 e2 e4 + p3e5 p4e5
2-7 [x2,ei] q1e2 e3 +q2e4 +q3e5 e4 +q4e5 e5

2*N7,22 [x1,ei] e1 + p2e3 e2 + p3e3 e3 −e5 e4
2-7 [x2,ei] q2e3 q3e3 e4 e5

2*N7,23 [x1,ei] e1 + p2e3 e2 e3 −e5 e4
2-7 [x2,ei] q1e2 +q2e3 q3e3 e4 e5

2*N7,24 [x1,ei] e1 + e2 + p2e3 e2 + p3e3 e3 −e5 e4
2-7 [x2,ei] q1e2 +q2e3 q3e3 e4 e5

2 Bracket relations for the real seven-dimensional solv-
able Lie algebras with five-dimensional Abelian nilradi-
cal and a one-dimensional center

Table 2: Non-zero bracket relations for the real seven-dimensional solvable Lie
algebras with five-dimensional Abelian nilradical and a one-dimensional center Z(g) =
⟨e5⟩. For all of the following algebras, [x1,x2] = e5.

[xα ,e1] [xα ,e2] [xα ,e3] [xα ,e4]

2*N7,25 [x1,ei] e1 a3e3 a4e4
2-6 [x2,ei] e2 b3e3 b4e4

2*N7,26 [x1,ei] e1 + p1e2 e2 −e4 e3
2-6 [x2,ei] q1e2 e3 e4

2*N7,27 [x1,ei] e1 p2e4 p3e4
2-6 [x2,ei] e2 +q2e4 e3 +q3e4 e4

2*N7,28 [x1,ei] e1 p2e4
2-6 [x2,ei] e2 +q1e3 +q2e4 e3 +q3e4 e4

2*N7,29 [x1,ei] e1 e3 + p2e4 p3e4
2-6 [x2,ei] e2 +q1e3 +q2e4 e3 +q3e4 e4

2*N7,30 [x1,ei] e1 + p1e2 e2 p2e4
2-6 [x2,ei] q1e2 e3 +q2e4 e4

2*N7,31 [x1,ei] e1 a3e3 + p1e4 a3e4
2-6 [x2,ei] e2 b3e3 +q1e4 b3e4

2*N7,32 [x1,ei] e1 −e4 e3
2-6 [x2,ei] e2 e3 e4

Continued on next page
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Table 2 – Continued from previous page
[xα ,e1] [xα ,e2] [xα ,e3] [xα ,e4]

2*N7,33 [x1,ei] −e2 + p1e3 + p2e4 e1 + p3e3 + p4e4 −e4 e3
2-6 [x2,ei] e1 +q1e3 +q2e4 e2 −q2e3 +q1e4 e3 e4

2*N7,34 [x1,ei] −e2 e1 b2e3 b2e4
2-6 [x2,ei] −e4 e3
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Abstract
A recent result is used to give a brief proof of the well-known fact that the set of
monomial matrices forms a subgroup of the set of invertible matrices. In addition,
another proof is given of the result that the inverse of an invertible nonnegative matrix
is nonnegative if and only if the matrix is monomial.

1 Introduction
In this note, we utilize a recent result [3, Lemma 3.3] to give a brief proof that the set
of monomial matrices forms a subgroup of the set of invertible matrices. The result is
well-known, but, to the best of our knowledge, a proof is not readily available in the
literature and deserves wider circulation. In addition, we give an elementary proof that
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the inverse of an invertible nonnegative matrix is nonnegative if and only if the matrix
is monomial.

2 Notation & Background
In this work, ‘F’ stands for C or R. The algebra of n-by-n matrices with entries over F
is denoted by Mn =Mn(F) and the subset of invertible n-by-n matrices with entries
from F is denoted by GLn = GLn(F). The set of all n-by-1 column vectors is identified
with the set of all ordered n-tuples with entries in F and thus denoted by Fn. If x ∈ Fn,
then Dx denotes the diagonal matrix such that dii = xi.

For n∈N, denote by Sn the symmetric group of degree n. Given σ ∈ Sn, the permutation
matrix with respect to σ , denoted by P = Pσ ∈ Mn, is the n-by-n matrix such that
pi j = δσ(i), j, where δ denotes the Kronecker delta function. The following facts
concerning permutation matrices are well-known:

Proposition 1. If σ , γ ∈ Sn, then:

(i) Pσ Pγ = Pγ◦σ ;

(ii) (Pσ )
−1 = Pσ−1 = (Pσ )

⊤; and

(iii) P is a permutation matrix if and only if P is a matrix with entries from {0,1} and every
row and every column of P contains exactly one nonzero entry.

3 Monomial matrices
Definition 1. If A ∈Mn, then A is called monomial, a monomial matrix, or a general-
ized permutation matrix if there is an invertible diagonal matrix D and a permutation
matrix P such that A = DP. The set of all n-by-n monomial matrices is denoted by
GPn = GPn(F)

Remark 2. If A is monomial with A = DP, then ai j = diiδσ(i), j. Following part (iii) of
Proposition 1, A is monomial if and only if every row and every column of A contains
exactly one nonzero entry.

If S ∈ GLn, then the relative gain array (RGA) of S, denoted by Φ(S), is defined by
Φ(S) = S ◦S−⊤, where ‘◦’ denotes the Hadamard or entrywise product and S−⊤ :=
(S−1)⊤ = (S⊤)−1. Johnson and Shapiro [4] showed that if A = SDxS−1, then

Φ(S)x =
[
a11 · · · ann

]⊤
. (1)

The following result, stated in slightly different terms, was established by Johnson and
Paparella [3, Lemma 3.3] via the RGA.

Lemma 1. If P is a permutation matrix and x ∈ Fn, then P⊤DxP = Dy, where y := P⊤x.

Proof. Because a permutation similarity effects a simultaneous permutation of the
rows and columns of a matrix, it follows that P⊤DxP is a diagonal matrix—say Dy.

Following (1) and part (ii) of Proposition 1,
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y = Φ(P⊤)x = [P⊤ ◦ (P⊤)−⊤]x =
[
P⊤ ◦P⊤]x = P⊤x.

The following characterization is immediate from Lemma 1.

Corollary 1. If A ∈ Mn, then A is monomial if and only if A = PD, where D is an
invertible diagonal matrix and P is a permutation matrix. Furthermore, if A = DxP,
where x ∈ Fn, then A = PDy, where y := P⊤x.

Recall that if A ∈Mn(R), then A is called (entrywise) nonnegative (respectively, pos-
itive), denoted by A ≥ 0 (respectively, A > 0), if ai j ≥ 0,1 ≤ i, j ≤ n (respectively,
ai j > 0,1 ≤ i, j ≤ n).

Lemma 2. If A is monomial, then A is invertible and A−1 is monomial. Furthermore,
if A ≥ 0, then A−1 ≥ 0.

Proof. If A is monomial, then there is a vector x ∈ Fn with no zero entries and a
permutation matrix P such that A = DxP. By Corollary 1, A = PDy, where y = P⊤x.
The matrix A is invertible as it is the product of invertible matrices and

A−1 = (PDy)
−1 = (Dy)

−1P−1 = Dy−1P⊤,

where y−1 :=
[
x1

−1 · · · xn
−1
]⊤. By Definition 1, A−1 is a monomial matrix.

Notice that A ≥ 0 if and only if y > 0. Thus, if A ≥ 0, then y−1 > 0 and A−1 ≥ 0 as it
is the product of nonnegative matrices.

Theorem 3. GPn is a subgroup of GLn.

Proof. The identity matrix is clearly monomial, so GPn is nonempty. In view of
Lemma 2, it suffices to demonstrate closure. To this end, if A,B ∈ GPn(F), then there
are permutation matrices P and Q such that A = DxP and B = DyQ. Thus,

AB = (DxP)(DyQ)

= Dx((PDy)Q) (associativity)
= Dx((DzP)Q) (Lemma 1 with z := Py)
= (DxDz)(PQ) (associativity)
= Dx◦z(PQ),

where ‘◦’ denotes the Hadamard product.

4 Nonnegative subgroups of Invertible Matrices
In 2013, Ding and Rhee [1] proved that an invertible matrix and its inverse are stochastic
(i.e., entrywise nonnegative with rows summing to unity) if and only if the invertible
matrix is a permutation matrix. In a subsequent work [2], they gave another proof
of this result and used the result to show that an invertible matrix and its inverse are
entrywise nonnegative if and only if the invertible matrix is monomial.

The import of the second result above can be gleaned from the following context.
Recall that the set of invertible nonnegative matrices with matrix multiplication forms a
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monoid, i.e., it satisfies the closure, associativity, and identity group-axioms. However,
as can be readily seen with two-by-two matrices, the inverse of an invertible nonnegative
matrix need not be nonnegative.

The set of permutation matrices forms a nonnegative multiplicative subgroup of the set
of invertible matrices, and it is natural to ask whether there are other nontrivial subsets
of invertible nonnegative matrices that form a subgroup.

Theorem 3 above and Theorem 4 below provide the answer.

Theorem 4. If A is nonnegative and invertible, then A−1 ≥ 0 if and only if A is
monomial.

Proof. The sufficiency of this condition was shown in Lemma 2.

To demonstrate necessity, we modify the elementary argument given by Ding and Rhee
[1] for stochastic matrices.

To this end, suppose that A is a nonnegative invertible matrix and that A−1 ≥ 0. For
convenience, write B = A−1. Since AB = I, it follows that

n

∑
k=1

aikbk j = δi j.

In particular, if i ̸= j, then
n

∑
k=1

aikbk j = 0. (2)

Fix i ∈ {1, . . . ,n}. Because A is invertible, the ith row of A must possess at least one
positive entry—say air. The nonnegativity of both matrices ensures that each summand
on the left-hand side of (2) equals zero, i.e., aikbk j = 0, ∀k ∈ {1, . . . ,n}. Since air > 0,
it follows that br j = 0 whenever j ̸= i. Since the rth row of B cannot be zero, it must
be the case that bri > 0.

Next, we show that air is the only nonzero entry in the ith row of A. To the contrary,
if ais > 0, with r ̸= s, then the argument above implies that bs j = 0 whenever j ̸= i
and bsi > 0. Thus, the rth and sth rows of B are (positive) multiples of each other,
contradicting the invertibility of B.

Since A⊤B⊤ = I, another application of the argument above with respect to the rth row
of A⊤ demonstrates that air is the only nonzero entry in the rth column of A. As i was
arbitrary, the result applies to every row of A and because A is invertible, it must be the
case that every row and every column of A contains exactly one nonzero entry, i.e., A is
monomial.

Corollary 2. Any subgroup of invertible matrices in which every matrix is nonnegative
must be a subgroup of the set of nonnegative momonial matrices.
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Abstract
We will consider expansions of CRAM, a game frequently studied in the area of
combinatorial game theory. The game of CRAM is classically played with dominoes,
a type of polyomino. We will define CRAM WITH HIGHER POLYOMINOES and use
efficient packing results to establish the outcome classes for several board shapes and
choices of polyominoes.

1 Introduction and Background
Combinatorial Game theory studies finite strategy games of perfect information.

Definition 1.1 [from [1]]. A combinatorial game

(i) is finite: the game must end and cannot end in a tie;

(ii) is based on pure strategy: it has no elements of chance such as coin tosses, dice
rolls, or randomly drawn cards; nor of skill, such as darts or hockey;

(iii) is sequential: has alternating players who take turns moving;
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Figure 1: A game position of CRAM on a 5×4 board.

(iv) is a game of perfect information: all players know all possible moves they can
make as well as all moves the other players can make.

Examples of combinatorial games include chess and go. Tic-tac-toe does not meet this
definition since the game might end in a tie, while any games with secret information,
such as most card games, are not included.

Our discussion focuses on games with only two players, a Left Player and a Right
Player. We will assume the Left Player plays first, followed by the Right Player.

While analyzing these games, we assume both players play perfectly. In other words, if
a player has a move or strategy that will allow the player to win, the player will play
it.

A common example of a combinatorial game is CRAM. We define this game below,
but it is well studied in, for example, [2] and [1].

Definition 1.2 The game of CRAM is played on a board of square tiles. These boards
can be of any size and arrangement. The two players alternately play a domino on two
vertically or horizontally adjacent tiles. Any tile on the board can only hold a single
cell of a domino. The game ends when the next player cannot play another domino.
The last player to play wins.

An example of a CRAM position can be seen in Figure 1. As each domino played is
indistinguishable from all other dominoes and as both players have the same choice of
possible moves, CRAM is an impartial game.

In Section 2 we introduce the idea of arbitrary polyominoes, and in Section 3 we extend
the definition of CRAM to use these polyominoes instead of just dominoes. Then in
Section 4 we study one version of this extended CRAM game using square polyominoes
and are able to characterize the outcome of most games played on square boards. If
the board is sufficiently small relative to the size of the piece then the first player to
play will always have a winning strategy. If the board is square and exactly one less
than three times the size of the piece then the second player has a winning strategy.
Finally, if the board is square and three times the size of the piece or more, and the
piece and board size are congruent mod 2 then the first player will have a winning
strategy.

1.1 Outcome Classes
One final idea from combinatorial game theory is that of the outcome class of a game.
The Fundamental Theorem of Combinatorial Games tells us how potential outcomes
from these games are limited.
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Theorem 1.3 (from [1]) For any game played between two players, either the Left
Player can force a win moving first or the Right Player can force a win moving second.
Both cannot be true.

This theorem implies that any game has one of four potential outcomes, Left Player
will win regardless if she moves first or second, Right Player will win regardless if he
moves first or second, the next player to play will win regardless of who that player is,
or the second player to play will win. A second player win is also known as a previous
player win since at any given moment in a game, the player who just moved is going to
be the second player to play.

These outcomes are known as outcome classes and we will classify game positions
according to their outcome classes. For a game position G , the outcome class is denoted
as o(G ). Because CRAM is an impartial game, any winning strategy for Left Player
will work for Right Player, so our study focuses on the Next, N , and Previous, P ,
outcomes.

Definition 1.4 A game G where the next player to play can force a win has the outcome
class Next, denoted o(G ) = N .

A game G where the previous player who played can force a win has the outcome class
Previous, denoted o(G ) = P .

An example of a game with outcome class N is CRAM on a 1×4 board since the next
player to play may place their domino on the middle two tiles. This ends the game as
there are no more valid moves available.

An example of a game with the outcome class P is CRAM on a 2×2 board. Exactly
two dominoes must be played before the game ends. As the first player cannot block
the second player from playing a piece, the game has the outcome class P .

2 Polyomino Preliminaries

Our goal is to extend CRAM to games using other pieces, so we take a moment to
generalize the idea of a domino.

Definition 2.1. A polyomino, P, is a finite collection of square cells such that each cell
is vertically or horizontally adjacent to another cell.

Figure 2: Examples of polyominoes.



42 BSU Undergraduate Mathematics Exchange Vol. 17, No. 1 (Fall 2023)

See Figure 2 for examples of polyominoes. In this paper we will focus in particular on
rectangular polyominoes.

Definition 2.2. A rectangular polyomino Ru,v is made of u columns of cells and v rows
of cells.

A square polyomino, denoted Ru, is a rectangular polyomino with u = v.

Examples are shown in Figure 3. We focus our attention specifically on square poly-
ominoes, Ru.

Figure 3: Examples of R4,2, R1,3, and R4.

One common area of study for polyominoes is the study of packings and we will use
some of these ideas in our results.

Definition 2.3 A packing is an arrangement of polyominoes on a board such that no
other polyominoes can be placed on the board.

A packing number is the number of polyominoes in a packing. An efficient packing
on some board B of a polyomino P is a packing which uses the most possible copies
of P. The number of copies used is the efficient packing number and is denoted
pB(P).

Similarly, a clumsy packing on some board B of a polyomino P is a packing which
uses the fewest possible copies of P. The number of copies used is the clumsy packing
number and is denoted cpB(P).

Figure 4: Examples of possible packings of a R2 on a 4 × 4 board B. In this case,
cpB(P)(R2) = 1 and cpB(P)(R2) = 4.

Additional resources that highlight packings include [5], [6], and [7]. Previous work
on clumsy packings on finite boards specifically can be seen in [4]. An example of
packings can be seen in Figure 4.
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As an example, note that the efficient packing of Ru,v on a rectangular board is triv-
ial.

Observation 2.4. For any Ru,v efficient packing on a rectangular n×m board B, the
pB(Ru,v) =

⌊ n
u

⌋
×
⌊m

v

⌋
. In particular, if n = m and u = v, pB(Ru) =

⌊ n
u

⌋2.

3 CRAM with Higher Polyominoes
We now extend the classical rules of CRAM to include general polyominoes and
consider when we may determine the outcome class of such a game.

Definition 3.1. For any polyomino P, we define the game of CRAM WITH P as played
on a board B. Two players alternately play a free P on Bsuch that any tile of Bcan
hold at most one cell of a P. The game ends when the next player cannot play another
polyomino. The last player to play wins. In general, we call this class of games CRAM
WITH HIGHER POLYOMINOES.

CRAM WITH HIGHER POLYOMINOES was previously defined in [3] where the authors
refer to the game as CRAMOMINOES.

We begin with some results relating game play in CRAM WITH HIGHER POLYOMINOES
to packings of polyominoes. We then use these results to determine the outcome class
of several games played on square boards.

3.1 CRAM and Packings
Since a game of CRAM WITH HIGHER POLYOMINOES ends when there is a packing,
we will consider the packing of polyominoes on finite boards to determine the outcome
of a game.

Lemma 3.2. For a completed game position G of CRAM WITH P on a board B, the
number of moves to reach the position G , n(G ), satisfies

cpB(P)≤ n(G )≤ pB(P).

Proof. As a game G of CRAM WITH P on a board Bmust end with a packing, the
smallest possible number of moves is the clumsy packing number, cpB(P). The largest
possible number of moves is the packing number, pB(P). Thus,

cpB(P)≤ n(G )≤ pB(P).

We cannot simply use the clumsy packing number to determine the outcome of a game.
For example, on a 9×2 board B, cpB(R2) = 3. However, if Left Player plays the move
from Figure 5 the board must have a packing number of 4, which is greater than the
clumsy packing number of the entire board.
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Figure 5: An example of a move which forces the number of moves in the finished
game to be greater than the clumsy packing number.

However, for CRAM WITH P on a board B, if cpB(P) = pB(P), then the number of
moves in a completed game must satisfy n(G ) = cpB(P) by Lemma 3.2. In this case
then, the outcome class of a game comes down to whether the packing numbers are
odd or even.

Corollary 3.3. For a game G of CRAM WITH P on a board B, where cpB(P) = pB(P),
if cpB(P) is even, the game has the outcome class P and if cpB(P) is odd, the game
has the outcome class N .

Figure 6: A game of CRAM with R2 on a 6× 2 board has the clumsy packing of 2,
however, the game has the outcome class N since the first player may play as shown
above. This leaves exactly two moves left and a win for the first player.

Unfortunately, if the cpB(P) ̸= pB(P) and if cpB(P) is odd, the game does not neces-
sarily have the outcome class N as discussed in the previous example with Figure 5.
Similarly, if the cpB(P) ̸= pB(P) and if cpB(P) is even, the game does not necessarily
have the outcome class P . An example of this can be seen in Figure 6.

The following observation is a trivial alternative for establishing specific cases of games
with the outcome class N and P . Typically, if one piece can be played to win the
game, that game has the outcome class N . The following observation provides a
method for determining the outcome class of a game using the clumsy packing number
to prove that one piece can win the game. This means we do not need to consider all
other possible moves to determine the outcome. Similarly, if no pieces can be played
to start the game, that game has the outcome class P .

Observation 3.4. Let G be CRAM WITH P on a board B, if cpB(P) = 1 then,
o(G ) = N and if cpB(P) = 0 then, o(G ) = P .

In the following section we will consider CRAM WITH P specifically when playing
with square polyominoes.

4 u×u Square Cram
We consider CRAM WITH P using u×u square polyominoes, Ru.

In many of the following proofs, for a game of CRAM WITH Ru it will be useful to
consider the center of a rectangular a×b board. For a square polyomino Ru, when u is
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odd, we will consider the single middlemost cell of the polyomino to be the center cell.
When u is even, we will consider the middlemost 2×2 set of cells to be the center cells.
An analogous idea used to define the center tile(s) on an a×b board when both a and b
are either odd or even. If a is odd and b is even then the two tiles in the intersection
of the center column with the two middlemost rows will be the center tiles. The case
when b is odd and a is even is similar.

Definition 4.1. We will say a player plays centerish if the number of center cells of a
polyomino placed in the center tiles of the board is maximized.

Note if both the board and polyomino have odd dimensions then there is only one
play that would be considered centerish. Similarly, if both have even dimensions there
is only one centerish play as all four center cells of the polyomino must be on all
four center tiles of the board. When one has odd dimensions and the other has even
dimensions there would be four plays that are considered centerish. See Figure 7 for an
example.

In the following theorems, we establish the outcome for CRAM WITH Ru played on
boards with sides less then or equal to 3u−1 and square boards greater than 3u−1 if
the board and piece are both even or odd. This covers all games of CRAM WITH Ru
played on square boards except when the size of the square board is even and u is odd
or vice-versa.

Theorem 4.2. Let n,u ∈ Z+, u > 1. If u ≤ n ≤ 3u− 2, then CRAM WITH Ru on an
n×n board has the outcome class N .

Proof. Assume n,u ∈ Z+. Let G be CRAM WITH Ru on a rectangular n× n board
Bwhere u ≤ n ≤ 3u− 2. If the Left Player plays centerish, the tiles without a cell
create at most a u−1 gap between the played piece and one or two of the edges of Bas
shown in Figure 7. As a u−1 gap cannot hold another polyomino, the cpB(Rn) = 1.
Therefore by Observation 3.4, o(G ) = N .

Figure 7: An example of CRAM WITH R3 on a 6×6 board showing one of the ways
for Left Player to play centerish.

Theorem 4.3. Let n,u ∈ Z+, u > 1. On an n× (3u−1) board, CRAM WITH Ru has the
outcome class P .
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Proof. Let G be CRAM WITH Ru on a n× (3u−1) board B. If n < u then no moves
are possible and the game is a previous player win, so assume n ≥ u. Let C be a
u× (3u−1) portion of the board. Then cpC (Ru) = pC (Ru) = 2 and so any complete
packing on C must contain 2 copies of Ru. As any set of u adjacent nonempty columns
is analogous to C , if the Left Player plays, the Right Player will always be able to play
directly above or below that piece ending play in these columns. Therefore, for any
move the Left Player makes, the Right Player has a response, and so o(G ) = P.

While Corollary 4.4 below follows directly from Theorem 4.2., we present an interesting
alternate proof here.

Corollary 4.4. Let u∈Z+, u> 1. Any game of CRAM WITH Ru on a (3u−1)×(3u−1)
board has the outcome class P .

Proof. Let G be CRAM WITH Ru on a rectangular (3u−1)× (3u−1) board B.

Consider any packing of Ru on B. Note a u×u region at every corner of Bmust contain
a cell of an Ru, an example is shown in Figure 8. If there is not a cell in this region, an
Ru may be played in that region. Since no one Ru may overlap more than one of these
regions, we need at least 4 copies of Ru to pack B. Thus, cpB(Ru)≥ 4.

By Observation 2.4, pB(Ru) =
⌊ 3u−1

u

⌋2
= 4.

As cpB(Ru) = pB(Ru) = 4 and 4 is an even number, by Corollary 3.3, o(G ) = P.

Figure 8: For a game of CRAM WITH R3 on a 8×8 board, the shaded regions represent
the 4 corner regions that must contain a piece of R3.

In the following proofs we will discuss boards where the polyomino and length of the
board are both even or both odd. In this situation, the piece can be played in the true
center of the board so that the edge of the piece is the same number of cells away from
the edge of the board on the top and bottom as well as the left and right. We will use
this idea to discuss a mirroring strategy for playing the game.

Theorem 4.5. Let u∈Z+, u> 1, and let k be a non-negative, even integer. If n= 3u+k
then CRAM WITH Ru on an n×n board has the outcome class N .

Proof. Given u, k as above, note u,n are both even or both odd.
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Assume u,n,∈ Z+. Let n ≥ 3u and u,n be even. Define G as CRAM WITH Ru on an
n×n board B. As the size of Band Ru are both even, the Left Player may play in the
true center of B. Then for any move Right Player makes, the Left Player has a response
using rotational symmetry as follows: if a piece is played in one location, rotate the
board 180◦ and place the polyomino in the same location. Thus after playing the first
polyomino, the Left Player has a response to every Right Player move resulting in
o(G ) = N .

A similar argument holds when u,n are both odd.

If the dimensions of the piece and the board are not both odd or even, then the first
piece can sometimes be played centerish followed by a rotational mirroring strategy
similar to that discussed in the proof of Theorem 4.6.

Theorem 4.6 Given u,n,a ∈ Z+. If u and n are both even or both odd with u ≤ n and
u ≤ a ≤ 3u−2 then CRAM WITH Ru on a n×a board has the outcome class N .

Proof. Assume u,n,a ∈ Z+. Let u and n be both even or both odd, u ≤ n and let
u ≤ a ≤ 3u−2. Let G be CRAM WITH Ru on a n×a board. If the Left Player plays
centerish, she splits the board into two disjoint n−u

2 ×a boards. As these are identical
boards, through a mirroring strategy we see that o(G ) = N .

5 Conclusion and Future Work
Moving forward, there are a number other board sizes (including boards which are
not rectangular) and different types of polyominoes to consider in the study of CRAM
WITH HIGHER POLYOMINOES. In addition, expansions that put restrictions on the
packings of the boards such as the ability for the polyomino/boards to rotate, adding a
component of gravity, changing the type of board (such as a torus or Klein Bottle), and
many more parameters could easily motivate future work in this area.
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Abstract
Given a continuous function f : [a,b]→R such that f (a) = f (b), we investigate the set
of distances |x− y| where f (x) = f (y). In particular, we show that the only distances
this set must contain are ones which evenly divide [a,b]. Additionally, we show that it
must contain at least one third of the interval [0,b−a]. Lastly, we explore some higher
dimensional generalizations.

1 Introduction
Imagine waking up on a crisp fall morning and deciding to use the day for a hike.
You drive to the trailhead and begin to chart a route. Since you must return to your
car, your elevation will be the same at the beginning and the end of your walk. Are
there other elevations through which you will pass twice? Clearly there are. If you
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begin on an ascent, you must descend to return to the trailhead, and if you begin with a
decent, you must eventually ascend. If the trail is perfectly flat, then at every moment
your elevation is shared by every other moment. This intuition is often given in an
introductory calculus course to illustrate the intermediate value theorem.

A natural follow up question: Can anything be said about the time elapsed between
two points of equal elevation? For instance, if your hike lasts an hour, we know that
there are two instants, separated by an hour, of equal elevation, namely the start and
the finish. Need there be two such instances separated by a half hour? The answer, it
turns out, is yes. Separated by 25 minutes? No, it’s possible to design a hike with no
25 minute time interval leaving you at the same elevation that you started. So what is
special about 30 minutes? Can we characterize all such durations? In this paper, we
answer this and related questions.

More abstractly, we will investigate the level sets of real-valued continuous functions
on closed intervals, whose endpoints get sent to the same real number. To map these
functions onto our hiking analogy, given f : [a,b]→ R, we can think of a and b as the
start and end times of our hike, and we can think of f (x) as our elevation at time x.
Then f must be continuous to rule out teleportation and f (a) = f (b) so that we begin
and end at the same elevation. Each level set of f can be thought of as a collection of
times of equal elevation (we will call these times isopoints). In this paper we will study
the distances between all isopoints. In our framing, the distance between isopoints
should be thought of as a time-distance; however, thinking of a and b as locations in
space is an equally valid interpretation.

In Theorem 1, we will show that every duration of time that evenly divides the total
length of the hike is a distance between isopoints. In Theorem 2, we will prove that
that Theorem 1 gives the only such distances common to all possible hikes. Lastly, we
will prove a sequence of Lemmas to build up to Theorem 3, our main result, which
states that at least one third of the time-lengths between 0 and the total duration of the
hike are distances between isopoints.

2 Notation
Given a nonempty closed interval [a,b]⊂R and a real number λ , we will use Cλ ([a,b])
to represent the set of continuous functions on [a,b] mapping both endpoints to λ .
More precisely,

Cλ ([a,b]) := { f : [a,b]→ R | f is continuous and f (a) = f (b) = λ}

We will use CR([a,b]) to refer to all functions in some Cλ ([a,b]):

CR([a,b]) :=
⋃

λ∈R
Cλ ([a,b]) = { f : [a,b]→ R | f is continuous and f (a) = f (b)}

Given a function f ∈CR([a,b]), and a subset X ⊆ [a,b], let
D f (X) := {d > 0 : |x− y|= d and f (x) = f (y) for some x,y ∈ X}

If X is absent as in D f , assume X = [a,b].

The contents of this paper are motivated by Exercise 5.4.6. in [1].
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Ao, A, and ∂A will be used to denote the topological interior, closure, and boundary of
A respectively. µ(A) will be used for the Lebesgue measure of A.

3 Main Results
We begin by proving that, for every f ∈ CR([a,b]), D f contains the sequence b− a,
b−a

2 , b−a
3 , . . .

Theorem 1. Let f be a real-valued, continuous function on the closed interval [a,b]
such that f (a) = f (b). Given any n ∈ N, there exist x and y in [a,b] such that |x− y|=
b−a

n and f (x) = f (y).

Proof. We may assume without loss of generality that [a,b] = [0,1]. If not, just apply
the result to f (a+(b−a)x).

Define g(x) = f (x+ 1
n )− f (x) and consider the sum

g(0)+g
(

1
n

)
+g
(

2
n

)
+ · · ·+g

(
n−1

n

)
(1)

= f
(

1
n

)
− f (0)+ f

(
2
n

)
− f

(
1
n

)
+ · · ·+ f (1)− f

(
n−1

n

)
(2)

= f (1)− f (0) = 0 (3)
where (3) follows from (2) due to cancellation.

If every term in (1) is 0, then the result follows immediately because f ( k+1
n ) = f ( k

n )
for k = 0,1, . . . ,n−1. If (1) contains one or more nonzero terms, then there must be
at least one positive and one negative term in order for the sum to be zero. That is,
g
(

k1
n

)
< 0 and g

(
k2
n

)
> 0 for some integers k1 and k2 between 0 and n−1. Thus, by

the intermediate value theorem, g(c) = 0 for some c between k1
n and k2

n (the continuity
of g follows from the continuity of f ). Therefore, we have f (c+ 1

n )− f (c) = 0.

Theorem 1 provides a partial answer to the question posed in the introduction. If we
hike for an hour, there will be two instants, 30 minutes apart, of equal elevation because
30 minutes is half of an hour. The same is true for 20 minutes, 15 minutes, etc. We
are not done, however, because we haven’t ruled out other durations. Our next result
shows that no other duration is guaranteed to separated two equipoints.

Theorem 2. Given a closed interval [a,b], let 0 < d < b−a. If d is not of the form b−a
n

for some n ∈N, then there exists a continuous function f : [a,b]→ R with f (a) = f (b)
such that d /∈ D f .

Proof. Once again, we can assume without loss of generality that [a,b] = [0,1]. First,
let p(x) be any continuous d-periodic function with p(0) ̸= p(1). Note that the exis-
tence of such functions hinges on the fact that d ̸= 1

n . Next, let m(x) be any strictly
monotone continuous function such that m(0) = 0 and m(1) = p(0)− p(1). We can
insist on strict monotonicity since m(0) = 0 ̸= p(0)− p(1) = m(1). Then p+m is

The definitions of CR([a,b]) and D f are given in Section 2: Notation.
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continuous as the sum of continuous functions. Furthermore, (p+m)(0) = p(0) =
p(1)+ p(0)− p(1) = (p+m)(1).

To finish, we must show that d /∈ Dp+m. Indeed, for all x ∈ [0,1−d], we have
(p+m)(x+d)− (p+m)(x) = p(x+d)− p(x)+m(x+d)−m(x)

= 0+m(x+d)−m(x) ̸= 0
using the monotonicity of m and the periodicity of p.

Taken together, Theorem 1 and Theorem 2 tell us that, on a hike that begins and ends
at the same height, the only durations we know, a priori, will separate times of equal
elevation, must evenly divide that total time of the hike. This is expressed formally in
the following corollary:

Corollary 1. ⋂
f∈CR([a,b])

D f =

{
b−a

n
: n ∈ N

}
.

Proof. Theorem 1 gives one inclusion and Theorem 2 gives the other.

Corollary 1 characterizes the distances which are common to all functions in CR([a,b]).
One then might wonder whether this represents a small intersection of large overlapping
sets or there is a particular f ∈CR([a,b]) such that D f =

{ b−a
n : n ∈ N

}
. It turns out to

be the former. Each D f is considerably larger than the set of divisors of b−a. In fact,
we show in Theorem 3 that each D f contains at least a third of the numbers between 0
and b−a. Before we prove it, we need to develop a series of lemmas about D f . We will
start with results about the size of D f for very simple functions, and generalize until
we can analyze D f for arbitrary f ∈CR([a,b]). We begin by showing that shrinking
the domain of f shrinks D f .

Lemma 1. If A ⊆ B, then D f (A)⊆ D f (B).

Proof. Assume d ∈ D f (A). Then there are points x,y ∈ A such that |x− y| = d and
f (x) = f (y). But A ⊆ B, so x and y are also in B. Thus, d ∈ D f (B).

Next, we will show that for constant functions f , D f is at least as big as the domain of
f .

Lemma 2. Let f be a constant function on a bounded set A ⊂ R. Assume A has a
maximum value m. Then µ(D f (A))≥ µ(A).

Proof. Notice that D f (A) contains the set m−A= {m−a | a ∈ A}. Therefore µ(D f (A))≥
µ(m−A) = µ(A).

In subsequent lemmas, it will be convenient to make assumptions like f (x)> λ for all
x ∈ A or maxA1( f )≤ maxA2( f ). To help ensure we don’t lose any generality, we will
prove that certain transformations of f preserve D f . More precisely, we will prove that
D f is invariant with repsect to horizontal and vertical reflections and translations of the
graph of f . Since it’s no extra work, we will prove a more general fact: that applying
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injective functions to the range of f and isometric functions to the domain of f does
not affect D f .

Lemma 3. Let f be any real valued function on A ⊆ R. If g : f (A)→ R is injective
and T : A → R is isometric, then D f (A) = Dg◦ f (A) = D f◦T−1(T (A)).

Proof. Since g is injective, f (x) = f (y) if and only if g( f (x)) = g( f (y)). Hence
d ∈ D f (A) if and only if d ∈ Dg◦ f (A), and so D f (A) = Dg◦ f (A).

Since all isometries are invertible, we have f (x) = f (y) if and only if f (T−1T x) =
f (T−1Ty). Furthermore, |T x−Ty|= |x− y| because T is isometric. Therefore, given
any d ≥ 0 there exist points x,y ∈ A such that d = |x− y| and f (x) = f (y) if and only
if there exists points x′,y′ ∈ T (A) such that f (T−1x′) = f (T−1y′) and d = |x′ − y′|.
Indeed, this correspondance is given by x′ = T x and y′ = Ty. Therefore, D f (A) =
D f◦T−1(T (A)).

In the next lemma, we will consider the case of continuous functions f : [a,b]→ R
where f (a) and f (b) are both either global minima or global maxima. In other words,
we will look at functions f ∈Cλ ([a,b]) where a and b are the only points where f = λ .
It becomes quite easy to calculate D f in this case.

Lemma 4. Let f ∈Cλ ([a,b]) and suppose either f (x)> λ for all a< x< b or f (x)< λ

for all a < x < b. Then D f ([a,b]) = (0,b−a].

Proof. We may assume without loss of generality that f (x) > λ for all a < x < b
because D f ([a,b]) does not change when the graph of f is reflected over the line y = λ ,
i.e., D f ([a,b]) = D− f+2λ ([a,b]), as we established in Lemma 3.

It is clear that b−a ∈ D f ([a,b]) since f (a) = f (b), so we will let d ∈ (0,b−a) and
show that d ∈ D f ([a,b]). Define g(x) = f (x+d)− f (x). Note that g(a) = f (a+d)−
f (a) = f (a+d)−λ > 0 because f (a+d)> λ . Also, g(b−d) = f (b)− f (b−d) =
λ − f (b−d)< 0 because f (b−d)> λ .

The intermediate value theorem guarantees the existence of a c ∈ (a,b−d) such that
g(c) = f (c+d)− f (c) = 0, i.e., f (c+d) = f (c). Therefore d ∈ D f ([a,b]).

Having settled the case where the global minima or maxima of f are located at the
endpoints of a single closed interval, we will now ask the same question when f is
defined on the union of two intervals. Once again, assuming that f has global minima at
every endpoint point or global maxima at every endpoint, what does D f look like? By
Lemma 4, we already know how each interval will contribute to D f when considered
separately. In the following lemma, we characterize the ”interactions” between the
two intervals. For convenience, we will assume that every endpoint is the location of a
global minimum and we will make an assumption about where the global maximum
is located. After proving the lemma, we will discuss how those assumptions can be
discarded using Lemma 3.

Lemma 5. Given any a1 < a2 ≤ a3 < a4, define A= [a1,a2]∪ [a3,a4], and let f : A→R
be a continuous function such that f (ak) = λ for 1 ≤ k ≤ 4. If f (x)> λ for all x ∈ Ao

and max[a1,a2]( f )≥ max[a3,a4]( f ), then D f (A)⊇ [a3 −a1,a4 −a1].
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Proof. It is clear that a3 − a1,a4 − a1 ∈ D f (A) since f (a1) = f (a3) = f (a4), so we
will let d ∈ (a3 − a1,a4 − a1) and show that d ∈ D f (A). We will do this in three
cases, depending on whether d is greater than, less than, or equal to a4 −a2. Define
g(x) = f (x+d)− f (x).

Case 1: d > a4 −a2.

In this case, we compute g(a1) = f (a1 +d)− f (a1) = f (a1 +d)−λ > 0 and g(a4 −
d) = f (a4)− f (a4 −d) = λ − f (a4 −d)< 0. Here, we’ve used that a1 +d ∈ (a3,a4)
and a4 −d ∈ (a1,a2) and f > λ on these two open intervals. The intermediate value
theorem then guarantees a c ∈ (a1,a4−d) such that g(c) = f (c+d)− f (c) = 0. Hence
d ∈ D f (A).

Case 2: d < a4 −a2.

In this case, once again we compute g(a1) = f (a1 +d)− f (a1) = f (a1 +d)−λ > 0.
This time, however, we observe that g(t)≤ 0 for some t ∈ (a1,a2). Otherwise, we would
have f (t +d)> f (t) for all t ∈ (a1,a2), contradicting the assumption max[a1,a2]( f )≥
max[a3,a4]( f ).

If g(t) = 0, we have f (t +d) = f (t). If g(t)< 0, then the intermediate value theorem
gives a c ∈ (t,a2) such that g(c) = f (c+d)− f (c) = 0. In either case, d ∈ D f (A).

Case 3: d = a4 −a2.

This case is trivial as f (a2) = λ = f (a4) = f (a2 +d).

The hypotheses we’ve inserted into Lemma 5 impose significant constraints on the
scope of the result, so it’s worth pausing to consider how these can be relaxed, be-
ginning with the assumption that f (x) > λ for all x ∈ Ao. It’s not so simple as
stating that D f is invariant with respect to vertical reflections since the inequality
max[a1,a2]( f )≥ max[a3,a4]( f ) becomes min[a1,a2](− f )≤ min[a3,a4](− f ). However, as
a corollary to Lemma 5, we will show that we can combine the two cases by insisting
that max[a1,a2](| f −λ |)≥ max[a3,a4](| f −λ |).

Corollary 2. Given any a1 < a2 ≤ a3 < a4, define A= [a1,a2]∪ [a3,a4], and let f : A→
R be a continuous function such that f (ak) = λ for 1 ≤ k ≤ 4. Suppose either f (x)> λ

for all x ∈ Ao or f (x) < λ for all x ∈ Ao. If max[a1,a2](| f −λ |) ≥ max[a3,a4](| f −λ |),
then D f (A)⊇ [a3 −a1,a4 −a1].

Proof. If f (x)> λ for all x ∈ Ao then | f −λ |= f −λ , and adding λ to both sides of
max[a1,a2]( f −λ )≥ max[a3,a4]( f −λ ) gives max[a1,a2]( f )≥ max[a3,a4]( f ), so D f (A)⊇
[a3 −a1,a4 −a1] by Lemma 5.

On the other hand, if f (x)< λ for all x ∈ Ao then | f −λ |=− f +λ and subtracting λ

from both sides of max[a1,a2](− f +λ ) ≥ max[a3,a4](− f +λ ) gives max[a1,a2](− f ) ≥
max[a3,a4](− f ). Applying Lemma 5 to − f and invoking the invariance proven in
Lemma 3, we have D f (A) = D− f (A)⊇ [a3 −a1,a4 −a1].
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We cannot easily discard the max[a1,a2](| f −λ |) ≥ max[a3,a4](| f −λ |) hypothesis of
Corollary 2. It’s tempting to say that we do not lose generality due to Lemma 3,
however, we must be careful. Indeed, Lemma 3 says that D f (A) = D f◦T−1(T (A))
for all isometries T : A → R. However, given f : [a1,a2]∪ [a3,a4] → R such that
max[a1,a2](| f − λ |) < max[a3,a4](| f − λ |), there is no isometry T mapping [a1,a2]∪
[a3,a4] to itself such that max[a1,a2](| f ◦T−1 −λ |)≥ max[a3,a4](| f ◦T−1 −λ |) unless
[a1,a2] and [a3,a4] are the same length.

Now that we’ve studied D f for functions defined on a single interval and the union of
two intervals, we will generalize to functions defined on n intervals. Locating specific
intervals becomes very complicated due to interactions among the intervals, so we will
return to our goal of lower bounding the size of D f .

Lemma 6. Given any a1 < b1 ≤ a2 < b2 ≤ ·· · ≤ an < bn, define A = ∪n
k=1[ak,bk] and

let f : A → R be a continuous function such that f (ak) = f (bk) = λ for 1 ≤ k ≤ n.
Suppose either f (x)> λ for all x ∈ Ao or f (x)< λ for all x ∈ Ao. Then µ(D f (A))≥
µ(A).

Proof. We will use proof by induction on n, the number of intervals.

Base case (n=1):

The base case is covered by Lemma 4, which gives us D f ([a1,b1]) = (0,b1 − a1].
Therefore, µ(D f ([a1,b1])) = µ([a1,b1]) = b1 −a1.

Induction Step:

Our goal is to prove that µ(D f (∪n+1
k=1[ak,bk])) ≥ µ(∪n+1

k=1[ak,bk]). Assume, without
loss of generality, that max[a1,b1](| f −λ |) ≥ max[an+1,bn+1](| f −λ |). We do not lose
generality because D f is invariant with respect to horizontal reflections, i.e., D f (x) =
D f (−x). Then, by Corollary 2, D f ([a1,b1]∪ [an+1,bn+1]) ⊇ (an+1 − a1,bn+1 − a1).
Combining this fact with Lemma 1 gives

D f (∪n+1
k=1[ak,bk])⊇ D f (∪n

k=1[ak,bk])∪D f ([a1,b2]∪ [an+1,bn+1])

⊇ D f (∪n
k=1[ak,bk])∪ (an+1 −a1,bn+1 −a1).

Next, observe that (an+1 − a1,bn+1 − a1) and D f (∪n
k=1[ak,bk]) are disjoint. Indeed,

if d ∈ D f (∪n
k=1[ak,bk]), then d ≤ bn −a1 ≤ an+1 −a1. Computing the length of both

sides and applying the induction hypothesis, we get
µ(D f (∪n+1

k=1[ak,bk]))≥ µ(D f (∪n
k=1[ak,bk])∪ (an+1 −a1,bn+1 −a1))

= µ(D f (∪n
k=1[ak,bk]))+µ((an+1 −a1,bn+1 −a1))

≥ µ(∪n
k=1[ak,bk])+µ((an+1 −a1,bn+1 −a1))

= µ(∪n+1
k=1[ak,bk])
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Having established a lower bound on the size of D f when f is defined on the finite
union of closed intervals, we will now use a simple limiting argument to generalize to
functions defined on the countable union of closed intervals.

Lemma 7. Let {In} be a countable collection of closed intervals and define A=∪∞
n=1In.

Assume that A is bounded and {In} have disjoint interiors. Let f be a continuous
function on A such that f (x) = λ on the endpoints of each In and either f (x)> λ for
all x ∈ Ao or f (x)< λ for all x ∈ Ao. Then µ(D f (A))≥ µ(A).

Proof. Fix ε > 0. Since A is bounded and {In} have disjoint interiors, we know that
lim
n→∞

µ
(
∪∞

k=nIk
)
= 0. Thus there exists some N ∈N such that µ

(
∪∞

k=NIk
)
< ε . Applying

Lemma 6 and Lemma 1 yields
µ(D f (A))≥ µ

(
D f
(
∪N

k=1Ik
))

≥ µ
(
∪N

k=1Ik
)

= µ(A)−µ (∪∞
k=NIk)

> µ(A)− ε

Therefore, µ(D f (A))≥ µ(A) because ε was arbitrary.

With access to these lemmas, we are now prepared to prove that D f ([a,b]) must contain
at least a third of the distances in (0,b−a].

Theorem 3. If f ∈Cλ ([a,b]) then µ(D f )≥ b−a
3 .

Proof. Let A>, A<, and A= be the subsets of [a,b] on which f is greater than, less than,
and equal to λ respectively.

A> and A< are the preimages of open sets under a continuous function and are thus
open. Therefore, each is a countable union of open intervals. Applying Lemma 7
to the closure of each tells us that µ(D f (A>))≥ µ(A>) = µ(A>) and µ(D f (A<))≥
µ(A<) = µ(A<)

1. Applying Lemma 2 to A= gives µ(D f (A=))≥ µ(A=). Combining
these three inequalities with Lemma 1, we have

µ(D f ([a,b]))≥ max
(
µ(D f (A>)),µ(D f (A<)),µ(D f (A=))

)
≥ max(µ(A>),µ(A<),µ(A=))

≥ b−a
3

where the last line follows from µ(A>)+µ(A<)+µ(A=) = b−a.

4 Future Work

4.1 Is b−a
3 a minimum?

Theorem 3 establishes a lower bound on D f for functions in Cλ ([a,b]). The key was to
restrict our attention to A> = {x : f (x)> λ} because if f (x) = f (y), then either both x

1Dropping the closure doesn’t change the length because the union of countably many intervals has a
countable boundary.
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and y are in A> or neither are. The same holds for A< and A=. In other words, points
in D f cannot arise due to "interactions" among A>, A<, and A=. With this in mind, the
bound in Theorem 3 seems tight: simply define a function which is positive on the first
third of [a,b], negative on the second third, and zero on the last third. Then each of A>,
A<, and A= should contribute (0, b−a

3 ] to D f . For example, let

f (x) =

{
sinx if 0 ≤ x ≤ 2π

0 if 2π ≤ x ≤ 3π
.

The reason this strategy doesn’t work is A=. Indeed, D f (A>) = D f (A<) = (0,π].
However, A= = {0,π}∪ [2π,3π] and D f (A=) = (0,3π]. This makes D f as large as
possible due to interactions between the points 0 and π and the interval [2π,3π].

The trouble with the previous example is the presence of isolated points 0 and π in A=.
The former is unavoidable, but we can eliminate the latter by making f zero between
the intervals on which it is positive and negative. Let

f (x) =


sinx if 0 ≤ x ≤ π

0 if π ≤ x ≤ 2π

−sinx if 2π ≤ x ≤ 3π

.

Now A= = {0,3π}∪ [π,2π] and D f (A=) = (0,2π], but D f is still strictly greater than
the bound established in Theorem 3.

Had we defined D f slightly differently to ignore the endpoints of the domain of f , the
previous example would prove Theorem 3 is sharp. More precisely, if we instead define
D f = {d > 0 : |x− y|= d and f (x) = f (y) for some a < x < y < b}, then D f = (0,π]
in the previous example.

However, if we stick to our original definition, is there an f ∈Cλ ([a,b]) with µ(D f ) =
b−a

3 ? If not, what is the infimum of D f over all such f ?

4.2 Generalization
What does D f (X) look like when X is not a closed interval? We could broaden the
class of functions we look at by defining

Cλ (X) =
{

f : X → R | f is continuous and f (x) = λ for all x ∈ ∂X
}
.

What is
⋂

D f over all such f and what is the infimum of µ(D f )?

We could also explore functions with an n-dimensional domain and/or m-dimensional
codomain.

What does D f (X) look like when X is n-dimensional? The more general definition of
Cλ (X) proposed above works just fine in this case. For simplicity, we might want to
start with cubes or spheres, and slowly relax the constraints on X . Additionally, as in
Section 4.1 we should amend the definition D f to ignore the boundary of X . Otherwise
D f = (0,(X)] always (unless X is disconnected).

What does D f ([a,b]) look like when the codomain of f is m-dimensional? If m > 1 the
minimum D f ([a,b]) becomes {b−a}. Consider, for example, f : [0,2π]→R2 defined
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by f : x 7→ (cosx,sinx). The only pair of points in [0,2π] which get mapped to the
same output are 0 and 2π , so D f = {2π}.

To construct an interesting generalization, we must then restrict our attention to func-
tions mapping a closed interval to some subset A ⊂ Rm. If A contains any "loops," the
minimum D f ([a,b]) becomes {b−a}, so A should be a one-dimensional "loop-free"
set.

Lastly, if the previous questions are settled, perhaps we could define
Cλ (X ,Y ) =

{
f : X → Y | f is continuous and f (x) = λ for all x ∈ ∂X

}
and classify D f in terms of X ⊂ Rn and Y ⊂ Rm.
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Abstract
Independent Component Analysis (ICA) is a blind-source separation method, meaning
that it takes in a recording with multiple sensors and attempts to unmix it into the
original sources. For example, suppose there are 4 people (sources) speaking in a room
with 4 microphones (sensors), then ICA unmixes the recording from the 4 microphones
to give tracks of the individual people called ICA components. ICA is currently used
to decompose a variety of signals with many sensors, including fMRI and EEG data.
However, its use in interpreting data with fewer sensors, such as the local field potential
(LFP), is limited because of concerns about how it handles over-complete data (data
with more sources than sensors). While there has been some success in enhancing
ICA so that it can extract more sources than sensors, we focus on how ICA handles
over-complete data. In this paper, we show that ICA consistently bins sources with
similar spatial maps together when there are 3 sinusoidal sources and 2 sensors.

1 Introduction
Many neurophysiological recordings of the brain used to study micro-circuits include
the local field potential (LFP). There are a wide variety of LFP recordings freely avail-
able [45], as well as recent technological developments in recording the LFP [19, 22].
One of the benefits of field potential recordings is that they often simultaneously record
nearby action potentials along with field potentials reflecting the summation of many
cells acting at once, some possibly from far away [26, 46]. While these recordings may
have limited spatial resolution, they tend to have very high time resolution. Standard
methods of decomposing the LFP for further analysis include spectral analysis, which
addresses frequency content, and current source density, which uses field potential
physical properties to derive current sources and sinks. Another decomposition method
is independent component analysis (ICA), which can be used to separate overlapping
sources that contributed to the recording. For example, suppose there are two voices
recorded over two microphones, so that their amplitude differs on each microphone.
By taking advantage of the distinct voices and their spatial differences in amplitude,
ICA attempts to separate the two-sensor recording so that each component contains an
individual voice. (See figure 1 for an illustration.)

ICA is one of many methods of blind-source separation. While there are many
resources describing this method in detail [6, 24, 25], we will briefly describe the
framework here using the LFP as an example. Suppose there are n sources s⃗(t) =
[ s0(t) s1(t) ... sn−1(t) ] affecting the LFP, and the LFP is recorded by an elec-
trode with n sensors x⃗(t) = [ x0(t) x1(t) ... xn−1(t) ]. ICA will take the data from
the sensors, and separate them into n components c⃗(t)= [ c0(t) c1(t) ... cn−1(t) ]
so that the time series of the components are as statistically independent as possible.
ICA assumes that sources are mixed linearly onto each sensor. That means ICA
assumes there is some mixing matrix M so that x⃗ = Ms⃗, where the columns of M
represent the source spatial maps or relative amplitude across sensors. Likewise, ICA
decomposes signals by returning an unmixing matrix U , so that c⃗ = Ux⃗. Assuming
all the original sources are independent, then c⃗(t) is a linear estimate of s⃗(t). Unlike
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the other common decomposition methods principal component analysis (PCA) or
factor analysis (FA), ICA does not necessarily make restrictions on whether the spatial
maps of the components are oriented at right-angles, and doesn’t necessarily favor
high-amplitude directions. This makes ICA a relatively flexible decomposition method,
which is used in many fields besides neuroscience [36], including analytical chemistry
[33], cancer omics datasets [43], gravity and magnetic signal processing [49], and
image processing [4, 9, 10].

Figure 1: Illustration of ICA A) Different sources have differing amplitudes on
each sensor. Therefore, each sensor will have its own mixture of all sources. In this
illustration, the top microphone picks up more of the blue speaker than the red speaker,
so its voice mixture is represented as deep purple. At the same time, the bottom
microphone picks up more of the red speaker than the blue speaker, so its mixture is
represented as fuchsia. B) ICA attempts to separate sources so they are as independent
as possible. In this case, ICA would take the recorded mixtures and attempt to separate
them into components containing the original voices. (Figure originally published in
[44], reprinted with permission.)

ICA is relatively straightforward to interpret if the recording involves a lot of sensors. If
there are more sensors than sources, then higher amplitude components may summarize
major sources (above the signal-to-noise ratio), while smaller amplitude components
may represent noise in the recording. Currently, ICA is used to analyze a variety of
neurophysiological data, including fMRI [8], MRI [50], MEG [5], EEG [3, 36], voltage
sensitive dye [1, 14, 21, 39], and PET [48]. Many of these data sets have an abundant
number of sensors that are assumed to be greater than the number of relevant sources,
and there is research on how to choose a subset of ICA components so that they are
reliable and match biologically plausible or known sources [11, 13, 31, 51]. There are
several studies that use ICA to interpret LFP data, even though these recordings tend to
have fewer sensors [20]. However, these studies cannot necessarily assume that there
are fewer relevant sources than sensors.

While ICA is thought to work well if there are no more sources than sensors, it
is still unclear how ICA handles over-complete or under-determined data where there
are more sources than sensors. Several methods try to address this issue by modifying
the ICA algorithm so that more sources are extracted, possibly taking advantage of
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sparseness or other features in the data [36]. There are other studies which demonstrate
that ICA can produce consistent results, across multiple ICA runs and subjects, even
when data is over-complete [2, 13, 15, 25, 27, 28, 32, 35]. While some of these studies
compare ICA components by measuring similarity between spatial maps, none of these
address how and why certain sources may be combined into a single component. The
uncertainty in how to interpret ICA components extracted from over-complete data,
along with some instability of ICA components, may be the reason why ICA is not
always recommended as an analysis tool for decomposing LFP. Reviews may instead
point to decompositions which rely more on spectral analysis or on forward models
of known biophysical structures [12, 17, 19, 29, 38, 41, 47]. On the other hand, ICA
is more readily used in studies involving EEG [2, 3, 30] and fMRI [48, 42], where
recordings tend to contain many more sensors.

We focus on describing how ICA handles over-complete data. In particular, we ran
simulations to test how ICA separates 3 noisy sinusoidal sources recorded on 2 sensors
into 2 components. Our results show that ICA can separate sources in a predictable
manner, namely sources with similar spatial maps across the sensors are binned to-
gether. There is very little variation in how sources are binned together across different
ICA runs, as long as 2 of the 3 sources are closer together in terms of their spatial map.
If all 3 sources have equidistant spatial maps, then we see more variation between ICA
runs. Our results indicate we may be able to determine how ICA bins original sources
together by looking at the reliability and spatial maps of ICA components over the
sensors. Moreover, viewing ICA components as binned sources may have advantages
in interpreting the original data. For example, in a recording of a 4-part chorus, we
may be more interested in components that contain the 4 voice parts, not the individual
voices.

2 Methods
We ran simulations using Google Colaboratory1 , which used Python version 3.6.9. For
each simulation, we used the same 3 sources:

s0 = sin(2 ·2πt)+ random noise
s1 = sin(3 ·2πt)+ random noise
s2 = sin(5 ·2πt)+ random noise

where the random noise is uniformly distributed over [−0.5,0.5]. Our 3 sources are
illustrated in figure 2. We used sinusoidal functions with relatively prime frequencies
so we could easily distinguish which sources were separated into which components
using Fourier analysis. We added non-Gaussian noise at the same amplitude as the
sinusoidal function to help satisfy the conditions of ICA, which are that original sources
are independent and non-Gaussian. Without noise, we may see a pattern in the data
since the combined signals repeat every 2 ·3 ·5 seconds. With the added noise, we will
see that these signals appear fairly independent when plotted against each other. For
our analysis, all sources were sampled at 1000 Hz, and recorded for 100 s.

We mixed the sources onto two sensors using a mixing matrix M of the following
1Google Research, https://colab.research.google.com, accessed June 2022

https://colab.research.google.com
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form:

M =
[

m⃗0 m⃗1 m⃗2
]
=

[
cos(α0) cos(α1) cos(θ)
sin(α0) sin(α1) sin(θ)

]
so that the recorded data mixtures are x⃗(t) = Ms⃗(t). The angles α0, α1, and θ in our
mixing vectors represent the spatial map or relative amplitude of the original sources on
each sensor. For instance, an angle of 0◦ means the source is recorded entirely on the
first sensor, while an angle of 90◦ means the source is recorded entirely on the second
sensor. All other angles represent how the source is distributed across both sensors.
Angles that are > 90◦ or < −0◦ represent mixtures where the source sign is flipped
from one sensor to another, which can frequently occur in voltage recordings.

Figure 2: Figure 2: Original sources A) Time series of the 3 original sources. Each
source is a sine wave at a different frequency combined with uniform noise. We used
the same sources in all simulations. B) The amplitude of the Fourier transform of each
source.

While the mixing vectors in M all have an amplitude of 1, the same data mixture can
be produced by any reciprocal pair of mixing vectors and sources. For example, the
negative mixing vector and matching source would produce the same mixture:[

−m⃗0 m⃗1 m⃗2
] −s0

s1
s2

=−m⃗0(−s0)+ m⃗1(s1)+ m⃗2(s2) = x⃗

Similarly, if we scale one mixing vector by a constant k and its source by 1/k, we
would also get the same data mixture. For this reason, the scaled mixing vector km⃗i is
considered equivalent to the unit vector m⃗i and we can use the angle to represent the
spatial map for both vectors. Moreover, since −m⃗i is equivalent to m⃗i, then we only
consider angles from −45◦ to 135◦.

We ran several cases, where we focus on a fixed α0 and α1 and vary θ from −45◦ to
135◦. For each value of θ , we apply ICA to the data mixture 10 times, using both
the FastICA algorithm [37] and the extended infomax algorithm ([16], Version 1.2.1:
10.5281/zenodo.7314185). The algorithm returns the un-mixing matrix U and esti-
mated mixing matrix Mest =U−1. Note that Mest is both the mixing matrix of the ICA
components and the algorithm’s best attempt at estimating M with a 2×2 matrix. We
calculated the angles of the estimated mixing vectors within Mest, and compared them
to the angles of the original mixing vectors.
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We also applied the discrete Fourier transform to the ICA components [18], and com-
pared the frequency content of the components with the original sources by calculating
the relative amplitude as follows: Let |yi(t)| be the root mean square (RMS) amplitude
of a signal yi(t), and Yi(ω) be the Discrete Fourier transform coefficient of the signal
at frequency ω Hz. Then the relative amplitude for frequency ω in component ci(t)
compared to the original source s j(t) is |Ci(ω)|/|ci(t)|

|S j(ω)|/|s j(t)| .

3 Results

3.1 A detailed case: spatial maps of the first two sources are 90◦

apart.
For our first case, we show what happens in detail with 2 sources and 2 sensors when
α0 = 0◦ and α1 = 90◦, and with 3 sources and 2 sensors where θ =−30◦ for the third
source. We used the FastICA algorithm for all results shown below. The extended
infomax algorithm yielded nearly identical results. Figure 3 shows the data mixtures
presented to ICA, along with the time series for the components Ux⃗(t) = c⃗(t) and their
Fourier transforms. Note that, while we give the ICA algorithm the entire data mixture,
ICA disregards all time information. For example, in the 2-source case, the algorithm
only takes the data set shown in figure 3Ai into account. ICA appears to separate the
2 sources mixed onto 2 sensors perfectly. On the other hand, the 2-dimensional data
mixture of the 3 sources appears to be separated so that source s1 is contained in c0
while sources s0 and s2 are mostly contained in c1. It appears that s1 is separated out
of c1 entirely, while c0 contains some amount of the frequencies found in s0 and s2,
though not enough to cloud s1.

To compare the ICA components with the original sources further, we also looked at
the estimated mixing matrix Mest = U−1, whose columns are mixing vectors which
represent the ICA component’s spatial map or relative amplitude across the sensors.
Both the original mixing vectors and the estimated mixing vectors are shown in figure
4. Since the scale of the mixing vectors doesn’t affect the spatial maps, as explained in
Methods, we can represent them with an angle between −45◦ and 135◦.

We combine the frequency and angle comparisons, as shown in figure 5. The angles
illustrate how the spatial map of the original sources may be binned in the ICA
components. Frequency content is represented by color, where the relative amplitude
of each frequency is represented by color intensity. With these comparisons, we see
that the separation for 2 sources is very close to the original sources. Likewise, for 3
sources one ICA component is almost entirely dedicated to the original source with
angle 90◦, while the other two sources are binned in terms of both angle and frequency
content. In fact, figure 5 shows results for 10 ICA runs, overlaid on top of each other.
These results show that there is very little variation between ICA runs for these data
mixtures.

We now expand our analysis so that θ varies from −45◦ to 135◦. Figure 6 shows
three cases where α0 and α1 are 90◦ apart. We see in all of these cases that the ICA
components follow the original sources in both angle and frequency content. The
ICA components tend to bin together whichever sources have spatial maps with closer
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A
(i) (ii) (iii)

B

(i) (ii) (iii)

Figure 3: ICA applied to mixtures with 2 or 3 sources A) (i) The data mixture with
2 sources, α0 = 0◦, and α1 = 90◦. This is the same data where s0 is recorded entirely
on the first sensor and s1 is recorded entirely on the second sensor. (ii) Example ICA
components. Components can be returned in either order, and may be scaled differently
than the original sources. Both of these components are negative relative to the original
sources. (iii) The amplitude of the component Fourier coefficients confirm that the
sources are separated very well, with each component almost entirely containing a
single frequency. B) (i) The sources s0, s1, and s2 mixed onto the two sensors using
M with α1 = 0◦, α2 = 90◦, and θ = −30◦. (ii) Example ICA components. The first
component c0 appears to contain mostly s1 (which oscillates at 3 Hz), while the second
component c1 appears to be a mixture of s0 and s2. (iii) The amplitude of the component
Fourier coefficients confirm that c0 is predominantly composed of s1, but also contains
some of the other sources. We also see that c1 contains a fairly even amount of s0 and
s2 since their frequency amplitude is about the same.
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A B

Figure 4: Angles represent the spatial map or relative amplitude over sensors.
A) Mixing vectors representing the spatial maps of sources s0 and s1 on each sensor
(red, magnified 200 times), along with vectors representing the spatial maps of ICA
components as reported in Mest (shown in blue). We use these vectors to calculate
the angles for the original sources and the ICA components. In our analysis, if the
component amplitude vector has angle <−45◦ or > 135◦ then we reflect the vector
across the origin. B) Mixing vectors representing the spatial maps of the original 3
sources on each sensor (red, magnified 200 times), along with the ICA components
(blue). From these vectors, it appears that ICA separated s1 into a single component,
and s0 and s2 into the other component, similar to figure 3.

A B

Figure 5: Comparison of angle and frequency distribution for α1 = 0, α2 = 90,
θ =−30 degrees. Angles for the spatial maps of the original sources are on the left,
while angles for the ICA component spatial maps are on the right. Color indicates the
relative amplitude of different frequencies: red for 2 Hz, green for 3 Hz, and blue for 5
Hz. Both panels show trials for 10 ICA decompositions, where the marker for each run
has opacity set to 1/10. A) Two sources and two sensors. B) Three sources and two
sensors.



ICA Consistently Bins Similar Sources 67

angles. Since −45◦ is considered equivalent to 135◦, then angles may be closer across
this angle threshold. There appears to be almost no variation between ICA runs. The
only instance with some variation is where θ is half-way between α0 and α1.

A

B

C

Figure 6: Comparison of angle and frequency distribution: base angles are 90◦

apart. Solid lines represent the spatial map angle of the original sources, along with
their color-coded frequency: red for 2 Hz, green for 3 Hz, and blue for 5 Hz. Dots
represent the angle and frequency content for the ICA components, similar to figure 5.
A) Results for ICA runs with θ ranging from −30◦ to 135◦ when α0 = 0 and α1 = 90◦.
B) Results for α0 =−30◦ and α1 = 60◦. C) Results for α0 = 30◦ and α1 = 120◦.

3.2 Cases where spatial maps of the first two sources are less than
90◦ apart.
Figure 7 shows results for cases where α0 and α1 are 60◦ apart. The ICA components
still follow the original sources in most cases. However, now that α0 and α1 are 60◦

apart, it is possible for all three angles to be equidistant over the 180◦ range. When
they are equidistant, we see a lot more variability between ICA runs using the FastICA
algorithm. This makes sense since there is no true optimal separation of sources if
they are equidistant. The results for the extended infomax algorithm didn’t show as
much variety, but instead showed some discontinuity in results when the sources are
equidistant. (See figure 1.1 in the appendix.) There may be more variability in the
results for values of θ in between the ones chosen.

Figures 8 and 9 show results where α0 and α1 are 45◦ apart and 30◦ apart, respectively.
When α0 and α1 are 45◦ apart, we still see some variability between ICA runs when
the angles are more equidistant, but the majority of the ICA runs return components
that bin together the original sources with the closest angle. When α0 and α1 are 30◦

apart, we see almost no variability, similar to the case where α0 and α1 are 90◦ apart.
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Figure 7: Comparison of angle and frequency distribution: base angles are 60◦

apart. Results where all combinations of α0 and α1 are 60◦ apart, starting with
α0 =−30◦ and α1 = 30◦. Since angles that are 180 degrees apart are equivalent, then
we also consider cases where the angle is 60◦ apart across the boundary: −45◦ = 135◦.
For instance α0 = −30◦ = 150◦ and α1 = 90◦ are also 60◦ apart. Since all possible
angles span 180◦, we see the greatest instability when the 3 sources are all equidistant
at 60◦.

In line with previous examples where ICA bins sources with the closest angle together,
the original sources with spatial map angles α0 and α1 are binned together until θ is
within 30◦ of either angle.

4 Discussion

We applied the ICA algorithm to 2-sensor data mixtures composed of 3 noisy sinusoidal
sources. The spatial map of each source across the sensors is characterized by the angle
of its mixing vector. We found that ICA systematically binned sources with the closest
angle together. ICA would evenly split sources if one source’s angle was equidistant
to the other two. The ICA components were stable across multiple ICA runs in most
cases. The largest variability was seen when all 3 source angles were equidistant. Our
results give evidence that ICA predictably separates sources and that ICA components
can be interpreted as estimated groups of original sources.

While we examined the stability of ICA components systematically based on their
spatial maps, several other studies demonstrated the stability of ICA components with
biologically plausible data [2, 25, 13, 15, 27, 28, 32]. Also, while we examined how
ICA components bin sources together by their spatial maps, there are several methods
that compare ICA spatial maps to choose the ideal number of components when there
are an abundant number of sensors [11, 23].

Understanding how ICA bins sources together may shed light on how best to use
ICA to decompose data. Researchers can run ICA multiple times to see whether ICA
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D

Figure 8: Comparison of angle and frequency distribution: base angles are 45◦

apart. We see more stability when the base angles are closer together. However, there
are some cases with instability when all 3 sources are close to equidistant.

A

B

C

D

E

F

Figure 9: Comparison of angle and frequency distribution: base angles are 30◦

apart. Source separation appears very stable when two sources are significantly closer
together.
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components are consistent across ICA runs [32]. If the ICA components have a high
degree of variability, then the underlying original sources may have equidistant spatial
maps. While we defined distance using the dot product, other studies have used a
variety of different measures to compare spatial maps [11, 27]. If there are equidistant
sources, decreasing the total number of components may bin the equidistant sources
together so that the ICA components are more stable. ICA components may also be
more stable by increasing the total number of components enough to resolve equidistant
sources. If there are fewer sensors than desired ICA components, this may be done
with a reliable method to extract more sources than sensors.

The idea that ICA bins sources together can help address the consistency of ICA
components across different recordings. For instance, suppose we have a set of 10 LFP
recordings, each taken from a different animal under the same context, so we have the
same number of neurophysiological sources. Suppose further that each recording used
32 sensors, but that some of the sensors are faulty in 5 of the recordings. The faulty
sensors still pick up the LFP, but their baseline voltage drifts - which can happen often
since neural electrodes are highly sensitive. These faulty sensors add an extra source,
which ICA may pick out as a single component since the spatial map is concentrated
on one sensor - making it very distinct from other spatial maps. This leaves fewer
components for the neurophysiological sources. So some of the neurophysiological
sources that ICA separated in recordings without faulty sensors may be binned together
in recordings with faulty sensors. We may be able to tell which sources are binned
together by looking at their spatial maps. Most current studies that use ICA on LFP
focus on large-amplitude, easily replicable components. Unlocking which components
are binned together may allow a better interpretation of smaller-amplitude components.

Seeing how ICA bins sources together can help ICA components be seen as rele-
vant functional groups of sources. These functional groups may not necessarily be
neuronal populations, but may represent afferent synapses, active cell parts such as
dendrites, glia, or cell assemblies [7, 34, 35, 40, 41]. We may even be able to quantify
how well sources are separated from each other based on the relative distance between
the spatial maps of the ICA components.

Our results represent an initial study in how ICA treats over-complete data, where we
focus on 3 sinusoidal sources with the same amplitude separated into 2 components.
We used the same 3 sources for all of our simulations. Future work in this area could
consider many different types of sources that vary in frequency spectrum and amplitude,
along with different combinations in the number of sources and components. In partic-
ular, natural sources can include a whole range of frequencies at varying amplitudes.
If two sources share some of the same frequencies, then ICA may have a harder time
distinguishing between the two sources. Also, ICA normalizes the data given to it so
that amplitudes in all directions are the same. This means lower-amplitude sources may
not be normalized if they are not mixed in a distinct direction. Therefore, ICA may
bin sources differently in over-complete data if some of the sources have much higher
amplitude than others. We used the FastICA algorithm and the extended infomax
algorithm in all our simulations. While the results using both of these algorithms were
nearly identical, we did note some differences in ICA component stability when spatial
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maps are equidistant. Other ICA algorithms may yield different results in the amount
of variability between ICA runs as well as distribution of angles between components.

ICA is designed to separate sources so that components are as independent as possible.
The idea that ICA bins similar sources together not only follows this goal, but can
allow for more insightful interpretation of separated sources. Indeed, binning sources
together may be the most desirable outcome. For example, in the LFP we may be more
interested in separating functional groups of neurons than many individual neurons
with similar activity. While current studies that use ICA in interpreting the LFP tend
to focus on just a few replicable components, ICA separation allowed them to have
insights that may not have been possible by other means. Therefore, using ICA may
allow immediate insights into micro-circuits in the brain.

1 Results for the extended infomax algorithm when
base angles are 60◦ apart.

A

B

C

D

E

F

Figure 1.1: Comparison of angle and frequency distribution using the extended
infomax algorithm: base angles are 60◦ apart. Instead of the instability we see with
the FastICA algorithm, results tend to jump discontinuously. However, we may see
some instability if we try finer-grained values for θ .
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[15] Głąbska, H., Potworowski, J., Łęski, S., and Wójcik, D. K. (2014). Independent
Components of Neural Activity Carry Information on Individual Populations. PLoS
ONE, 9(8):e105071.

[16] Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck,
C., Goj, R., Jas, M., Brooks, T., Parkkonen, L., and Hämäläinen, M.S. (2013). MEG
and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7(267):1–13.

[17] Gratiy, S. L., Devor, A., Einevoll, G. T., and Dale, A. M. (2011). On the estimation
of population-specific synaptic currents from laminar multielectrode recordings.
Frontiers in neuroinformatics, 5:32.

[18] Harris, C. R., Millman, K. J., Walt, S. J. v. d., Gommers, R., Virtanen, P., Courna-
peau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer,
S., Kerkwijk, M. H. v., Brett, M., Haldane, A., Río, J. F. d., Wiebe, M., Peter-
son, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H.,
Gohlke, C., and Oliphant, T. E. (2020). Array programming with NumPy. Nature,
585(7825):357–362.

[19] Harris Bozer, A. L., Uhelski, M. L., and Li, A.-L. (2017). Extrapolating mean-
ing from local field potential recordings. Journal of Integrative Neuroscience,
16(1):107–126.

[20] Herreras, O., Makarova, J., and Makarov, V. A. (2015). New uses of LFPs:
Pathway-specific threads obtained through spatial discrimination. Neuroscience,
310:486–503.

[21] Hill, E. S., Moore-Kochlacs, C., Vasireddi, S. K., Sejnowski, T. J., and Frost, W.
N. (2010). Validation of Independent Component Analysis for Rapid Spike Sorting
of Optical Recording Data. Journal of Neurophysiology, 104(6):3721–3731.

[22] Hong, G. and Lieber, C. M. (2019). Novel electrode technologies for neural
recordings. Nature Reviews Neuroscience, 20(6):330–345.

[23] Hu, G., Waters, A. B., Aslan, S., Frederick, B., Cong, F., and Nickerson, L. D.
(2020). Snowball ICA: A Model Order Free Independent Component Analysis Strat-
egy for Functional Magnetic Resonance Imaging Data. Frontiers in Neuroscience,
14:569657.

[24] Hyvärinen, A. and Oja, E. (2000). Independent component analysis: algorithms
and applications. Neural Networks, 13(4-5):411–430.

[25] Jung, T.-P., Makeig, S., McKeown, M. J., Bell, A. J., Lee, T.-W., and Sejnowski,
T. J. (2001). Imaging brain dynamics using independent component analysis. Pro-
ceedings of the IEEE, 89(7):1107–1122.

[26] Kajikawa, Y. and Schroeder, C. E. (2011). How local is the local field potential?
Neuron, 72(5):847–858.

[27] Makarov, V. A., Makarova, J., and Herreras, O. (2010). Disentanglement of local
field potential sources by independent component analysis. Journal of Computa-
tional Neuroscience, 29(3):445 301–457.



74 BSU Undergraduate Mathematics Exchange Vol. 17, No. 1 (Fall 2023)

[28] Makarova, J., Ibarz, J. M., Makarov, V. A., Benito, N., and Herreras, O. (2011).
Parallel Readout of Pathway-Specific Inputs to Laminated Brain Structures. Fron-
tiers in Systems Neuroscience, 5:77.

[29] Martínez-Cañada, P., Noei, S., and Panzeri, S. (2021). Methods for inferring
neural circuit interactions and neuromodulation from local field potential and elec-
troencephalogram measures. Brain Informatics, 8(1):27.

[30] Martínez-Cancino, R., Delorme, A., Truong, D., Artoni, F., Kreutz-Delgado,
K., Sivagnanam, S., Yoshimoto, K., Majumdar, A., and Makeig, S. (2021). The
open EEGLAB portal Interface: High-Performance computing with EEGLAB.
NeuroImage, 224:116778.

[31] McConn, J. L., Lamoureux, C. R., Poudel, S., Palsson, B. O., and Sastry, A. V.
(2021). Optimal dimensionality selection for independent component analysis of
transcriptomic data. BMC Bioinformatics, 22(1):584.

[32] Meinecke, F., Ziehe, A., Kawanabe, M., and Müller, K.-R. (2002). A re-
sampling approach to estimate the stability of one-dimensional or multidimen-
sional independent components. IEEE transactions on bio-medical engineering,
49(12Pt2):1514–1525.

[33] Monakhova, Y. B. and Rutledge, D. N. (2019). Independent components analysis
(ICA) at the “cocktail-party” in analytical chemistry. Talanta, 208:120451.

[34] Munro, E. and Kopell, N. (2012). Subthreshold somatic voltage in neocortical
pyramidal cells can control whether spikes propagate from the axonal plexus to axon
terminals: a model study. Journal of Neurophysiology, 107(10):2833–2852.

[35] Munro Krull, E., Sakata, S., and Toyoizumi, T. (2019). Theta Oscillations Al-
ternate With High Amplitude Neocortical Population Within Synchronized States.
Frontiers in neuroscience, 13:316.

[36] Naik, G. R. and Kumar, D. K. (2011). An Overview of Independent Component
Analysis and Its Applications. Informatica, 35(1):63–81.

[37] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,
and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12:2825–2830.

[38] Pesaran, B., Vinck, M., Einevoll, G. T., Sirota, A., Fries, P. ,Siegel, M., Truc-
colo, W., Schroeder, C. E., and Srinivasan, R. (2018). Investigating large-scale
brain dynamics using field potential recordings: analysis and interpretation. Nature
Neuroscience, 21(7):903–919.

[39] Reidl, J., Starke, J., Omer, D. B., Grinvald, A., and Spors, H. (2007). Independent
component analysis of high-resolution imaging data identifies distinct functional
domains. NeuroImage, 34(1):94–108.



ICA Consistently Bins Similar Sources 75

[40] Sakurai, Y., Osako, Y., Tanisumi, Y., Ishihara, E., Hirokawa, J., and Manabe,
H. (2018). Multiple Approaches to the Investigation of Cell Assembly in Memory
Research—Present and Future. Frontiers in Systems Neuroscience, 12:21.

[41] Sinha, M. and Narayanan, R. (2022). Active Dendrites and Local Field Poten-
tials: Biophysical Mechanisms and Computational Explorations. Neuroscience,
489:111–142.

[42] Smitha, K., Raja, K. A., Arun, K., Rajesh, P., Thomas, B., Kapilamoorthy, T.,
and Kesavadas, C. (2017). Resting state fMRI: A review on methods in resting
state connectivity analysis and resting state networks. The Neuroradiology Journal,
30(4):305–317.

[43] Sompairac, N., Nazarov, P. V., Czerwinska, U., Cantini, L., Biton, A., Molkenov,
A., Zhumadilov, Z., Barillot, E., Radvanyi, F., Gorban, A., Kairov, U., and Zinovyev,
A. (2019). Independent Component Analysis for Unraveling the Complexity of
Cancer Omics Datasets. International Journal of Molecular Sciences, 20(18):4414.

[44] Talebi, S. (2021). Independent Component Analysis (ICA): Finding hidden
factors in data. Towards Data Science, https://towardsdatascience.com/
independent-component-analysis-ica-a3eba0ccec35. Accessed 27 Octo-
ber 2023.

[45] Teeters, J. L., Harris, K. D., Millman, K. J., Olshausen, B. A., and Sommer,
F. T. (2008). Data Sharing for Computational Neuroscience. Neuroinformatics,
6(1):47–55.

[46] Torres, D., Makarova, J., Ortuño, T., Benito, N., Makarov, V. A., and Herreras,
O. (2019). Local and Volume-Conducted Contributions to Cortical Field Potentials.
Cerebral Cortex, 29(12):5234–5254.

[47] Unakafova, V. A. and Gail, A. (2019). Comparing Open-Source Tool boxes for
Processing and Analysis of Spike and Local Field Potentials Data. Frontiers in
Neuroinformatics, 13:57.

[48] Yakushev, I., Drzezga, A., and Habeck, C. (2017). Metabolic connectivity: meth-
ods and application. Current Opinion in Neurology, 30(6):677–685.

[49] Zhang, N. and Nie, J. (2015). Independent Component Analysis Based Blind
Source Separation Algorithm and its Application in the Gravity and Magnetic Signal
Processing. 2015 12th International Conference on Fuzzy Systems and Knowledge
Discovery (FSKD), pages 269–273.

[50] Zhang, Q., Hu, G., Tian, L., Ristaniemi, T., Wang, H., Chen, H., Wu, J., and
Cong, F. (2018). Examining stability of independent component analysis based
on coefficient and component matrices for voxel-based morphometry of structural
magnetic resonance imaging. Cognitive Neurodynamics, 12(5):461–470.

[51] Zhao, W., Li, H., Hu, G., Hao, Y., Zhang, Q., Wu, J., Frederick, B. B., and Cong,
F. 367 (2021). Consistency of independent component analysis for FMRI. Journal
of Neuroscience Methods, 351:109013.

https://towardsdatascience.com/independent-component-analysis-ica-a3eba0ccec35
https://towardsdatascience.com/independent-component-analysis-ica-a3eba0ccec35


76 BSU Undergraduate Mathematics Exchange Vol. 17, No. 1 (Fall 2023)

Ball State Undergraduate Mathematics Exchange
https://digitalresearch.bsu.edu/mathexchange
Vol. 17, No. 1 (Fall 2023)
Pages 76 – 92

Irrationality of the Riemann-Zeta function at the
positive integers

Yoochan Noh*

Yoochan Noh is a high school student at Korea International School,
with a serious focus on college-level mathematics subjects. After
graduation, he plans to pursue degrees in Applied Mathematics and
Computer Science, driven by his passion for problem-solving and the
transformative potential of technology. Inspired by previous small
individual research projects, Yoochan sought to undertake a more
substantial and profound research endeavor in mathematics. This led
him to explore the complex and deep theme of the Riemann-Zeta
function. Yoochan’s aspiration extends beyond this research, as he
hopes to engage in various types of research in the future, further
expanding his understanding and contributing to the advancement of
mathematical knowledge.

Abstract

The Riemann Zeta function, usually denoted by the Greek letter ζ , was defined in 1737
by a Swiss mathematician Leonhard Euler. This function is an infinite converging sum
of powers of natural numbers, and it has explicit expressions in terms of π at positive
even integers. In this paper we will discuss various irrationality proofs, focusing on
irrationality of certain values of the Zeta function.

1 Introduction

We start with the definition of the Riemann-Zeta function (that we will just call Zeta
function from now on).
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Definition 1.1. On the complex half-plane {(z)> 1 | z ∈C} the Riemann-Zeta function
is defined by the following expression:

ζ (z) =
∞

∑
n=1

1
nz =

1
1z +

1
2z +

1
3z + ...+

1
nz + ...

It is easy to show that the sum converges in this region.

Definition 1.1 will suffice for our purposes, but ζ (s) can be extended to the whole
complex plane by [2]. Leonhard Euler did some basic computations with ζ (s). In
particular, he famously solved the Basel Problem which is the question of determining
the precise value of ζ (2). We cover his proof in the modern language in Section . Euler
also generalized the computation to all positive even integers. One of the main results
of this paper is a different proof of this formula that we give in Section 6.

The rest of the paper is organized as follows:

In Section 2 we discuss preliminaries needed to solve the Basel problem. In Section 3
we prove that certain radical expressions, and π , are irrational. In Section 4 we solve
the Basel problem and compute ζ (4). In Section 5 we define Bernoulli numbers, an
important preliminary for computing the Zeta function at the even integers. In Section
6 we discuss how the Zeta function at the even integers can be expressed in terms
of Bernoulli numbers. In Section 7 we introduce the notion of being transcendental
and explain that transcendentality of π [10] implies that ζ (2k), k ≥ 1 is irrational. In
Section 8 we prove that ζ (3) is irrational following [3, Theorem 2]. In Section 9 we
show some advanced results, generalizations, and conjectures of the irrationality of the
Zeta function.

2 Preliminaries

In order to prove irrationality of the Zeta function at certain values, it is necessary
to understand certain preliminaries such as the infinite product formula for the sine
function.

2.1 Logarithms of infinite products

Lemma 2.1. For an infinite convergent product

S =
∞

∏
n=1

an

it is always the case that

log(S) =
∞

∑
n=1

log(an)

Proof. If the infinite product converges to a positive number, continuity of the logarithm
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function permits the interchange of the limit and the logarithm. So,

log
∞

∏
n=1

an = log

(
lim
k→∞

k

∏
n=1

an

)

= lim
k→∞

log

(
k

∏
n=1

an

)

= lim
k→∞

k

∑
n=1

log(an)

=
∞

∑
n=1

log(an)

2.2 Derivatives of infinite sums
Lemma 2.2. Suppose we have a sequence of functions fn differentiable on [a,b]. If we
have the series ∑

∞
n=1 fn(x) converging to f (x) on [a,b]:

f (x) =
∞

∑
n=1

fn(x)

and the series of derivatives ∑
∞
n=1 f ′n(x) converges uniformly on [a,b], then we have

f ′(x) =
∞

∑
n=1

f ′n(x) (a ≤ x ≤ b)

Proof. This is a standard result, see e.g. [11, Theorem 7.17].

2.3 Infinite product of the sine function
Theorem 2.3. We have the equalities

sin(x) = x

(
∞

∏
k=1

(
1+

x
kπ

)(
1− x

kπ

))
= x

(
∞

∏
k=1

(
1− x2

k2π2

))
and

sin(x)
x

=
∞

∏
k=1

(
1− x2

k2π2

)
that may be understood as expressing sin(x) as an infinite product over its roots at nπ

for n ∈ Z.

We refer to [8] for the proof.

3 Irrationality of radicals, and of π

In this section we give some elementary irrationality proofs. In particular, we prove that
π is irrational using integral techniques. Somewhat similar, but much more advanced,
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methods will be used in Section 8 to prove that ζ (3) is irrational, a famous result due
to Apéry [1].

Proposition 3.1. For a prime number k, n
√

k is an irrational number, for any n ∈ Z≥2.

Proof. We first observe that n
√

k is a root of the polynomial xn − k. According to the
rational root theorem, which uses ratios of the factors of the leading coefficient and the
constant of a polynomial to determine its integer roots, a rational root of a polynomial
with integer coefficients that is written in lowest terms p

q must have denominator q that
divides the leading coefficient, and numerator p that divides the constant coefficient.
Here, 1 ≡ 0 (mod q), so q has to be 1, while k ≡ 0 (mod p), so p is either k or 1.
Therefore, any rational root of xn − k must be an integer.

The only way for n
√

k to be an integer is if k is an n-th power of an integer, where n ≥ 2.
Since k is a prime number, it can only be expressed as p1 when factorized. However,
1 ̸≡ 0 (mod n), so n

√
k cannot be an integer, and hence not a rational number.

Corollary 3.2. For prime numbers k and l, n
√

k+ m
√

l is an irrational number for any
n,m ∈ Z>0

Proof. We can first assume that n
√

k+ m
√

l is rational, thereby stating that
n
√

k+ m√l =
p
q
, where p,q ∈ Z

This gives

k+ m√l =
pn

qn

m√l =
pn

qn − k

Since both pn

qn and k are rational, it can be concluded that m
√

l is also rational. However,

have already shown that m
√

l is irrational in Proposition 3.1, which contradicts the initial
hypothesis. Therefore, n

√
k+ m

√
l has to be irrational.

Theorem 3.3 (Irrationality of π). The number π is irrational.

Proof. For any integrable function f (x) by integration by parts we have:∫
f (x)sinxdx =− f (x)cosx+ f ′(x)sinx−

∫
f ′′(x)sinxdx

By using the values of sin(0) = 0, cos(0) = 1, sin(π) = 0, and cos(π) =−1,∫
π

0
f (x)sinxdx = f (π)+ f (0)−

∫
π

0
f ′′(x)sinxdx

If f (x) is a polynomial of degree 2n, n ∈ Z>0, then repeating the calculation n+ 1
times would give∫

π

0
f (x)sinxdx = F(π)+F(0)+

∫
π

0
f (2n+2)(x)sinxdx = F(π)+F(0) (1)



80 BSU Undergraduate Mathematics Exchange Vol. 17, No. 1 (Fall 2023)

where F(x) = f (x)− f ′′(x)+ f (4)(x)−·· ·+(−1)n f (2n)(x) and the last equality is from
f (2n+2)(x) = 0 (here f (k)(x) stands for the k-th derivative of f (x)).

Assume that π is rational, that is π = p
q with p,q ∈ Z and q ̸= 0. We will choose a

particular polynomial f (x) such that F(0)+F(π) is an integer. Then, we will also
show that

∫
π

0 f (x)sinxdx lies between 0 and 1, exclusively. Since no such integer can
exist, this will obtain contradiction and π has to be irrational.
For n ∈ Z>0, let

f (x) =
xn(p−qx)n

n!
. (2)

For F(π)+F(0) to be an integer, we need to show that both f (2n)(π) and f (2n)(0) are
integers.
For the chosen function f (x),

f (π−x)= f
(

p
q
− x
)
=

(
p
q − x

)n(
p−q

(
p
q − x

))n

n!
=

(
p
q − x

)n
(qx)n

n!
=

xn(p−qx)n

n!
= f (x)

Also, using the chain rule we see that for any k ∈ Z>0 we have
f (k)(x) = (−1)n f (k)(π − x)

and
f (2n)(0) = (−1)2n f (2n)(π) = f (2n)(π)

So, if we show that f (2n)(0) is an integer, f (2n)(π) would also be an integer. We can
express the function f (x) in 2 ways:

f (x) =
xn(p−qx)n

n!
=

2n

∑
j=0

c j

n!
x j

for some c j ∈ Z. Also (according to the Taylor series),

f (x) =
f (0)
0!

+
f ′(0)
1!

x+
f ′′(0)

2!
x2 + · · ·+ f (2n)(0)

(2n)!
x2n.

The coefficients at x j for both equations should be equal.

c2n

n!
=

f (2n)(0)
(2n)!

Thus,
(2n)!

n!
c2n = f (2n)(0)

Since (2n)!
n! c2n is an integer, then f (2n)(0) would also be an integer, which proves that∫

π

0 f (x)sinxdx is an integer.
The next step is to show that (1) equates to a value strictly between 0 and 1.

f (x) =
xn(p−qx)n

n!
=

xn

n!
(p−qx)n

For 0< x < π , xn

n! > 0, and (p−qx)n > 0, so f (x)> 0 for 0< x < π . Also, since sinx >
0 for 0 < x < π too, f (x)sinx > 0 for the same domain, and therefore

∫
π

0 f (x)sinxdx >
0. If the domain for x is 0 < x < π , it can also be written as 0 < π − x < π . By
multiplying the 2 together, we get 0 < x(π − x)< π2.
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Then,

0 < f (x) =
xn(p−qx)

n!
= qn xn(π − x)n

n!
< qn π2n

n!
Since we are free to choose the value of n, we just need to show that

lim
n→∞

qn π2n

n!
<

1
2

(3)

Indeed, then we have f (x)< 1
2 so∫

π

0
f (x)sinxdx <

1
2

∫
π

0
sinxdx = 1.

To show (3), we just need to look at the Taylor series of the value of eqπ2

eqπ2
= 1+

qπ2

1!
+

q2π4

2!
+

q3π6

3!
+ . . .

So, this infinite series converges to eqπ2
, a real number. However, if a particular infinite

series ∑
∞
n=0 an converges and an > 0, then

lim
n→∞

an = 0 <
1
2

In our case,

lim
n→∞

qn π2n

n!
= 0 <

1
2

Therefore, using proof by contradiction, this shows that π is irrational.

4 Elementary computation of ζ (2) and ζ (4).
A famous question, known as the Basel problem, is computing ζ (2). This result
demonstrates that the infinite sum of the squares of the inverses of positive natural
numbers is equal to the square of the number π divided by 6. We can write this
as:

ζ (2) =
1
12 +

1
22 +

1
32 + ...+

1
n2 + ...=

π2

6
The proof that we give below goes back to Euler [12, Theorem 1]. We also generalize
the computation to calculate ζ (4).

4.1 Solving the Basel problem
Through the infinite product of the sine function formula seen in 2.3, we have concluded
that:

sinx
x

=
∞

∏
k=1

(
1− x2

k2π2

)
=

(
1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)(
1− x2

42π2

)
. . .

(4)
In addition to this, we can use the Taylor series to achieve the following equa-
tion:

sinx =
∞

∑
n=0

(−1)nx2n+1

(2n+1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ . . .
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sinx
x

=
∞

∑
n=0

(−1)nx2n

(2n+1)!
= 1− x2

3!
+

x4

5!
− x6

7!
+

x8

9!
− . . . (5)

Theorem 4.1 (Basel problem). We have

ζ (2) =
π2

6
(6)

Proof. The idea is to compare the coefficients at x2 obtained using formulas (5) and
(4). The coefficient at x2 using (5) is − 1

6 . Let us compute the coefficient using (4). We
have

sinx
x

= lim
n→∞

(
sinx

x

)
n

(7)

where (
sinx

x

)
n

:=
n

∏
k=1

(
1− x2

k2π2

)
(8)

We can investigate the finite order terms
( sinx

x

)
n starting with n = 3. Note that we have(

sinx
x

)
3
=

(
1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)
=

=

(
1− x2

π2 − x2

22π2 +T4 (2)x4
)(

1− x2

32π2

)
= 1− x2

π2 −
x2

22π2 −
x2

32π2 +T4 (3)x4+T6 (3)x6 =

= 1− x2

π2 − x2

22π2 − x2

32π2 +T (3)

where we denote by Tm (n) the coefficient at xm in the expansion of
( sinx

x

)
n and by

T (n) the sum ∑
2n
m=4 Tm (n)xm.

Similarly one can compute(
sinx

x

)
4
= 1− x2

π2 − x2

22π2 − x2

32π2 − x2

42π2 +T (4)(
sinx

x

)
5
= 1− x2

π2 − x2

22π2 − x2

32π2 − x2

42π2 − x2

52π2 +T (5)

Using the same pattern, for an arbitrary n ≥ 3 we get

(
sinx

x

)
n
= 1− x2

π2 − x2

22π2 − x2

32π2 −·· ·− x2

n2π2 +T (n) (9)

= T (n)+1−
(

1
π2 +

1
22π2 +

1
32π2 + · · ·+ 1

n2π2

)(
x2) . (10)

Now due to (7), by taking the limits of both sides, the coefficient at x2 in (4) is equal to

−
(

1
π2 +

1
22π2 +

1
32π2 + · · ·+ 1

n2π2 + · · ·
)

Therefore, we can equate the obtained coefficients to get
1

π2 +
1

22π2 +
1

32π2 + · · ·+ 1
n2π2 + · · ·= 1

3!
.
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Multiplying by π2 both sides of the equation, we get:
1
12 +

1
22 +

1
32 + · · ·+ 1

n2 + · · ·= π2

6
which proves the result.

4.2 Computing ζ (4)

It has previously been stated that:

ζ (2) =
∞

∑
i=1

1
i2

(11)

Also, by following on with the definition of the Riemann Zeta function:

ζ (4) =
∞

∑
i=1

1
i4

(12)

Theorem 4.2. We have

ζ (4) =
π2

90
(13)

Proof. Here, we are trying to modify equation (11) by squaring it, and also modify
equation (7) so that it can be compared with the original equation and find the coefficient
of x4. Both of the modified equations will then be used to find ζ (4) .

(ζ (2))2 =

(
∞

∑
i=1

1
i2

)(
∞

∑
j=1

1
j2

)

=
∞

∑
i=1

∞

∑
j=1

1
i2

1
j2 =

∞

∑
i=1

1
i4
+

∞

∑
i=1

∞

∑
j=i+1

1
i2

1
j2 +

∞

∑
j=1

∞

∑
i= j+1

1
i2

1
j2

= ζ (4)+2
∞

∑
i=1

∞

∑
j=i+1

1
i2

1
j2

Recall equation (8). From here, through the equation (and the proof of the Basel
theorem above), we can see that the number of terms in the sum determining the
coefficient at x2 is

(n
1

)
, and that the number of terms in the sum determining the

coefficient at x4 is
(n

2

)
For example,(

sinx
x

)
3
= 1− x2

π2

(
1
12 +

1
22 +

1
32

)
+

x4

π4

(
1
12

1
22 +

1
12

1
32 +

1
22

1
32

)
−·· ·

= 1− x2

π2

(
3

∑
i=1

1
i2

)
+

x4

π4

(
∑

1≤i< j≤3

1
i2

1
j2

)
−·· ·

So, in general:(
sinx

x

)
n
= 1− x2

π2

(
n

∑
i=1

1
i2

)
+

x4

π4

(
n−1

∑
i=1

n

∑
j=i+1

1
i2

1
j2

)
−·· ·
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In equation (7) we have established that:

lim
n→∞

(
sinx

x

)
n
=

sinx
x

= 1− x2

3!
+

x4

5!
− ...

Therefore,

lim
n→∞

1
π4

n−1

∑
i=1

n

∑
j=i+1

1
i2

1
j2 =

1
5!

and

lim
n→∞

n−1

∑
i=1

n

∑
j=i+1

1
i2

1
j2 =

π4

5!
. (14)

It was previously shown that:

(ζ (2))2 = ζ (4)+2
∞

∑
i=1

∞

∑
j=i+1

1
i2

1
j2

So, applying equation (14) we get

ζ (4) = (ζ (2))2 −2
π4

5!
But then

ζ (4) = (ζ (2))2 −2
π4

5!
=

(
π2

6

)2

− π4

60
=

π4

36
− π4

60
=

π4

90

5 Bernoulli numbers
Definition 5.1. Bernoulli numbers, often denoted Bn, are set of rational numbers that
are often used in analysis. They are defined via the equation:

t
et −1

=
∞

∑
k=0

Bk

k!
tk

One can modify the equation(
et −1

t

)(
∞

∑
k=0

Bk

k
tk

)
= 1

by using the Taylor series expansion for et−1
t :(

1
1!

+
t
2!

+
t2

3!
+ . . .

)(
B0

0!
+

B1

1!
t + . . .

)
= 1

Here, we can see that B0 = 1, and the coefficient of tk becomes:
Bk

k!
1
1!

+
Bk−1

(k−1)!
1
2!

+
Bk−2

(k−2)!
1
3!

+ · · ·+ B0

0!
1

(k+1)!
= 0

Or,

B0 = 1,
(

k+1
k

)
Bk +

(
k+1
k−1

)
Bk−1 + · · ·+

(
k+1

0

)
B0 = 0

This gives a recursive way to compute Bk.
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6 Computing ζ (2k) for k ≥ 1

According to equation (4), we have:
sinx

x
=

(
1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)(
1− x2

42π2

)
. . .

Or, we can rewrite this equation by putting the natural log on both sides:

log
(

sinx
x

)
= log

((
1− x2

π2

)(
1− x2

22π2

)(
1− x2

32π2

)(
1− x2

42π2

)
. . .

)
log(sinx)− logx =

∞

∑
k=1

log
(

1− x2

k2π2

)
So, if we take the derivative on both sides of the equation in terms of x, we get (as long
as |x|< π):

cotx− 1
x
=

∞

∑
k=1

(
− 2x

k2π2

)
1

1− x2

k2π2

Therefore

cotx =
1
x
+

∞

∑
k=1

(
− 2x

k2π2

)
1

1− x2

k2π2

=

=
1
x
−2

∞

∑
k=1

(
− x

k2π2

)(
1+

x2

k2π2 +
x4

k4π4 + . . .

)
=

=
1
x
−2
(

ζ (2)
π2 x+

ζ (4)
π4 x3 +

ζ (6)
π6 x5 + . . .

)
and so

cosx
sinx

=
1
x
−2

∞

∑
k=1

ζ (2k)
π2k x2k−1 (15)

According to Euler’s formula, we have the equation:
eix = isinx+ cosx

If we substitute −x instead of x into the equation, we get:
e−ix = isin(−x)+ cos(−x) =−isinx+ cosx

Therefore,
eix + e−ix

2
= cosx

And,
eix − e−ix

2i
= sinx

So, using these two equations we have

cosx
sinx

=
eix+e−ix

2
eix−e−ix

2i

= i
(

eix + e−ix

eix − e−ix

)
= i
(

e2ix +1
e2ix −1

)
= i
(

1+
2

e2ix −1

)
= i+

1
x

(
2ix

e2ix −1

)
Substituting into (15) gives
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i+
1
x

(
2ix

e2ix −1

)
− 1

x
=−2

∞

∑
k=1

ζ (2k)
π2k x2k−1

According to Definition 5.1

i+
1
x

∞

∑
k=0

Bk

k!
(2ix)k − 1

x
=−2

∞

∑
k=1

ζ (2k)
π2k x2k−1

This equation implies that
∞

∑
k=2

Bk

k!
(2ix)k =−2

∞

∑
k=1

ζ (2k)
π2k x2k

since the other coefficients in the sum on the left hand side cancel out. If we compare
the coefficients of x2k on both sides, we get

B2k

(2k)!
(2i)2k =−2

ζ (2k)
π2k

ζ (2k) =
B2k

(2k)!
(2i)2k −π2k

2
This simplifies to a general expression

ζ (2k) =
(−1)k+122k−1π2kB2k

(2k)!
(16)

generalizing (6) and (13).

7 Transcendentality of π and irrationality of ζ (2k), k ≥
1

We now explain that (16) implies that the numbers ζ (2k), k ≥ 1 are irrational. Indeed,
it is well-known that π is not just irrational but transcendental (refer to [10]).

Definition 7.1. A number α ∈ R is transcendental if it is not a root of any polynomial

anxn +an−1xn−1 + · · ·+a1x+a0

with integer coefficients ai ∈ Z.

Proposition 7.2. If α ∈ R is transcendental, it is also irrational.

Proof. Suppose that α is rational that is we have α = p
q for p,q ∈ Z with q ̸= 0. Then

α is a root of qx− p = 0 contradicting Definition 7.1.

According to (16), the numbers ζ (2k), k ≥ 1 are of the form aπ2k for a∈Q (since B2k ∈
Q for any k ≥ 1). Therefore, irrationality of ζ (2k), k ≥ 1 follows from transcendentality
of π and the following fact that generalizes Proposition 7.2.

Proposition 7.3. If α ∈ R is transcendental then αk is irrational for any k ≥ 1.

Proof. The proof is similar to the proof of Proposition 7.2. Fix a k ≥ 1 and suppose
that αk is rational that is we have αk = p

q for p,q ∈ Z with q ̸= 0. Then α is a root of
qxk − p contradicting Definition 7.1.
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8 Irrationality of ζ (3)

In this section, we are going to integrate certain expressions involving logarithms and
polynomials to show that ζ (3) is irrational. This is a famous result of Apéry [1]. We
are going to follow the more elementary exposition of Beukers [3] while trying to give
more details and some motivation.

First of all, we choose a certain polynomial and prove that it has integer coefficients.
The choice of this polynomial is akin to the particular choice of the function f (x) of
(2) in the proof of Theorem 3.3 that π is irrational. We use the notation f (n)(x) for the
n-th derivative of f (x).

Lemma 8.1. The polynomial Pn(x) = 1
n! (x

n(1− x)n)(n) has integer coefficients.

Proof.

Pn(x) =
1
n!

(xn(1− x)n)(n) =
1
n!
((x− x2)n)(n)

According to the binomial theorem, this becomes

1
n!

((
n
0

)
xn(−x2)0 +

(
n
1

)
xn−1(−x2)1 +

(
n
2

)
xn−2(−x2)2 + · · ·+

(
n
n

)
x0(−x2)n

)(n)

Let ai := (−1)i
(n

i

)
, which is an integer. Then,

Pn(x) =
(a0

n!
xn +

a1

n!
xn+1 + · · ·+ an

n!
x2n
)(n)

=
n!a0

n!0!
+

(n+1)!a1

n!1!
x1 + · · ·+ (2n)!an

n!n!
xn

=

(
n
0

)
a0 +

(
n+1

1

)
a1x1 + · · ·+

(
2n
n

)
anxn

Since
(p

q

)
∈ Z , Pn(x) is an polynomial with integer coefficients.

Now, we prove that a certain double integral is a rational expression in terms of 1 and
ζ (3), and provide a bound on the denominator of this expression. A more complicated
integral of a similar form (with xr and ys replaced by Pn(x) and Pn(y)) will be used later
in the proof. This later integral may be regarded as the analog of

∫
π

0 f (x)sinxdx in the
proof of Theorem 3.3 that π is irrational and the lemma below is analagous to proving
that

∫
π

0 f (x)sinxdx is an integer.

Lemma 8.2. Fix an n ∈ Z>0. Then for any 0 ≤ s ≤ r ≤ n, we have∫ 1

0

∫ 1

0
− log(xy)

1− xy
xrys dxdy =

A+B ·ζ (3)
(1, . . . ,n)3

for some A,B ∈ Z

Proof. Consider the integral: ∫ 1

0

∫ 1

0
− logxy

1− xy
xrys dxdy
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Note that the integral is proper since the integrand is bounded near xy = 1 and conver-
gent near xy = 0 (even if r = s = 0). Since for |xy|< 1 we have

1
1− xy

= 1+ xy+ x2y2 + x3y3 + . . . (17)

the integral is equal to

−
∫ 1

0

∫ 1

0
log(xy)xrys(1+ xy+ x2y2 + . . .)dxdy =

=−
∫ 1

0

∫ 1

0

∞

∑
k=0

log(xy)xrysxkyk dxdy

=−
∫ 1

0

∞

∑
k=0

∫ 1

0
log(xy)xr+kys+k dxdy

(the interchange of the sum and the integral is justified since for any fixed y ∈ (0,1) the
convergence in (17) is uniform in x ∈ [0,1]). Integrating with respect to x and using
integration by parts, it is easy to deduce:

−
∫ 1

0

∞

∑
k=0

∫ 1

0
log(xy)xr+kys+k dxdy =−

∞

∑
k=0

(∫ 1

0

ys+k log(y)
r+ k+1

−
∫ 1

0

ys+k

(r+ k+1)2 dy
)

By integrating with respect to y in a similar way, we get:

−
∞

∑
k=0

(∫ 1

0

ys+k log(y)
r+ k+1

−
∫ 1

0

ys+k

(r+ k+1)2 dy
)
=

∞

∑
k=0

(
1

(r+ k+1)(s+ k+1)2 +
1

(r+ k+1)2(s+ k+1)

)

=
∞

∑
k=0

(
r+ s+2k+2

(r+ k+1)2(s+ k+1)2

)
Since

1
(s+ k+1)2 − 1

(r+ k+1)2 =
(r− s)(r+ s+2k+2)
(r+ k+1)2(s+ k+1)2

and
∞

∑
k=0

(
1

(s+ k+1)2 − 1
(r+ k+1)2

)
=

1
(s+1)2 − 1

(r+1)2 +
1

(s+2)2 − 1
(r+2)2 + . . .

We can conclude that for r > s:
∞

∑
k=0

(
r+ s+2k+2

(r+ k+1)2(s+ k+1)2

)
=

1
r− s

(
∞

∑
k=0

1
(s+ k+1)2 −

∞

∑
k=0

1
(r+ k+1)2

)
=

1
r− s

r−s

∑
k=1

· 1
(s+ k)2

where the last equality follows by cancelling out the terms of the two series. Also,
since r− s < n, (s+ k)2(r− s) would be a divisor of (1, . . . ,n)3 since r < n. Therefore,∫ 1

0

∫ 1

0
− logxy

1− xy
xrys dxdy

is a rational number with denominator dividing (1, . . . ,n)3 for r > s.
On the other hand, for r = s, the equation becomes:

∞

∑
k=0

(
1

(r+ k+1)(s+ k+1)2 +
1

(r+ k+1)2(s+ k+1)

)
= 2

∞

∑
k=0

1
(r+ k+1)3
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Since ζ (3) is equal to ∑
∞
k=1

1
k3 ,

2
∞

∑
k=0

1
(r+ k+1)3 = 2

(
ζ (3)−

r

∑
k=1

1
k3

)
(18)

This implies the result since every k3 in the expression ∑
r
k=1

1
k3 divides (1, . . . ,n)3.

To continue the analogy with the proof of Theorem 3.3 that π is irrational, we also need
to be able to bound above the integral that we use for the irrationality proof. Recall that
in that proof, we just wanted to show that

∫
π

0 f (x)sinxdx lies between 0 and 1; here
the argument will be more complicated.

Lemma 8.3. Fix an n ∈ Z>0. Let Pn(x) be as in Lemma 8.1. Then we have∫ 1

0

∫ 1

0
− log(xy)

1− xy
Pn(x)Pn(y)dxdy ≤ 2

(
1

27

)n

ζ (3)

Proof. Consider the integral:∫ 1

0

∫ 1

0
− log(xy)

1− xy
Pn(x)Pn(y)dxdy

Since

− log(xy)
1− xy

=
∫ 1

0

1
1− (1− xy)z

dz (19)

we can rewrite the integral as a triple integral:∫ 1

0

∫ 1

0

∫ 1

0

1
1− (1− xy)z

dzPn(x)Pn(y)dxdy

We have∫ 1

0

∫ 1

0

∫ 1

0

1
1− (1− xy)z

Pn(x)Pn(y)dzdxdy=
1
n!

∫ 1

0

∫ 1

0

∫ 1

0

1
1− (1− xy)z

Pn(y)d
(
(xn(1− x)n)(n−1)

)
dydz

Swapping the order of integration and integrating by parts with respect to x, we get

1
n!

∫ 1

0

∫ 1

0

∫ 1

0
yz ·
(

1
1− (1− xy)z

)2

(xn(1− x)n)(n−1)Pn(y)dxdydz

using the fact that (xn(1− x)n)(n−1) is 0 at x = 0 and x = 1. Integrating with respect to
x by parts n−1 more times in a similar fashion, we get
1
n!

∫ 1

0

∫ 1

0

∫ 1

0
n!

xnynzn(1− x)nPn(y)
(1− (1− xy)z)n+1 dxdydz=

∫ 1

0

∫ 1

0

∫ 1

0

xnynzn(1− x)nPn(y)
(1− (1− xy)z)n+1 dxdydz

We now make a change of variables x = u, y = v, z = 1−w
1−(1−uv)w . One can check that

this defines a differentiable bijective map [0,1]3 → [0,1]3 with Jacobian

(u,v,w) =
−uv

(1− (1−uv)w)2

Let

f (x,y,z) =
xnynzn(1− x)nPn(y)
(1− (1− xy)z)n+1

By changing the variables in the integral (see [11]) we have (this requires a bit of
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computation)∫ 1

0

∫ 1

0

∫ 1

0
f (x,y,z)dxdydz=

∫ 1

0

∫ 1

0

∫ 1

0
f (x(u,v,w),y(u,v,w),z(u,v,w))|(u,v,w)|dudvdw=

=
∫ 1

0

∫ 1

0

∫ 1

0
(1−w)n(1−u)n Pn(v)

1− (1−uv)w
dudvdw

Integrating with respect to v by parts n times (and switching the order of integration)
similarly to before, this integral is equal to∫ 1

0

∫ 1

0

∫ 1

0

un(1−u)nvn(1− v)nwn(1−w)n

(1− (1−uv)w)n+1 dudvdw

The integrand expression is easy to estimate. Indeed, we have
1− (1−uv)w = (1−w)+uvw ≥ 2

√
1−w

√
uvw

on [0,1]3 by arithmetic-geometric mean inequality. Therefore, we have
u(1−u)v(1− v)w(1−w)

1− (1−uv)w
≤ 1

2
√

u(1−u)
√

v(1− v)
√

w(1−w)

on [0,1]3. The maximum of g(t) =
√

t(1− t) for t ∈ [0,1] occurs at t = 1
3 and the

maximum of h(t) = t(1− t) for t ∈ [0,1] occurs at t = 1
2 . This implies that

u(1−u)v(1− v)w(1−w)
1− (1−uv)w

≤ 1
27

Therefore, we have∫ 1

0

∫ 1

0

∫ 1

0

un(1−u)nvn(1− v)nwn(1−w)n

(1− (1−uv)w)n+1 dudvdw =∫ 1

0

∫ 1

0

∫ 1

0

(
u(1−u)v(1− v)w(1−w)

1− (1−uv)w

)n 1
1− (1−uv)w

dudvdw ≤(
1
27

)n ∫ 1

0

∫ 1

0

∫ 1

0

1
1− (1−uv)w

dudvdw ≤(
1

27

)n ∫ 1

0

∫ 1

0
− log(uv)
(1−uv)

dudv = 2
(

1
27

)n

ζ (3)

where the penultimate inequality is by (19) and the last equality follows from (18) in
the proof of Lemma 8.2.

Finally, we are ready to show that ζ (3) is irrational.

Theorem 8.4. ζ (3) is irrational.

Proof. Consider the integral

In :=
∫ 1

0

∫ 1

0
− log(xy)

1− xy
Pn(x)Pn(y)dxdy

from Lemma 8.3. Then there exist some A′,B′ ∈ Z such that

In =
A′+B′ ·ζ (3)
(1, . . . ,n)3
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Indeed, if Pn(x) = ∑
n
i=0 bixi, then bi ∈ Z by Lemma 8.1. But then we have

In =
n

∑
r=0

n

∑
s=0

brbs

∫ 1

0

∫ 1

0
− log(xy)

1− xy
xrys dxdy

by linearity and the claim follows from Lemma 8.2.

Suppose that ζ (3) is rational. Then we have ζ (3) = p
q for some p,q ∈ Z with q > 0.

Consider |A′+B′ζ (3)|. Note that all the terms in the integrand expression of In are
positive on (0,1) (one can check that Pn(x) is a polynomial in x(1− x) with positive
coefficients) so In ̸= 0. On one hand, we have

|A′+B′
ζ (3)|= |A′+B′ p

q
|= |A′q+B′p|

q
≥ 1

q
(20)

On the other hand,

|A′+B′
ζ (3)|= In(1, . . . ,n)3 ≤ 2

(
1

27

)n

ζ (3)(1, . . . ,n)3 (21)

It is enough to show that limn→∞ 2
( 1

27

)n
ζ (3)(1, . . . ,n)3 = 0. Indeed, then we have

2
(

1
27

)n

ζ (3)(1, . . . ,n)3 <
1
q

for n large enough which is a contradiction with (20) and (21). However, it is well-
known that the Prime Number Theorem [5] implies that limn→∞

n
√
(1, . . . ,n) = e. But

then

lim
n→∞

2
(

1
27

)n

ζ (3)(1, . . . ,n)3 = lim
n→∞

2
(

1
27

)n

ζ (3)e3n = 2
(

e3

27

)n

ζ (3) = 0

where the last equality is since e3

27 < 1.

9 Advanced results
In this paper we have shown that the the Riemann-Zeta function is irrational at the even
positive integers and gave an exposition of Beukers’ proof [3] that ζ (3) is irrational.
Not much is known about irrationality of the Riemann-Zeta function at odd integers
ζ (2k+1), for k > 1. We finish this paper by listing some known results:

(i) Infinitely many of ζ (2k+1), for k ≥ 1 are irrational, see [7].

(ii) It was shown in [13] that one of ζ (5),ζ (7), . . . ,ζ (17),ζ (19) is irrational. The
same author also proved a stronger result that one of ζ (5),ζ (7),ζ (9),ζ (11) is
irrational.

These partial result motivate the following conjecture, widely believed to be true but
inaccessible with the current tools.

Conjecture 9.1. All the ζ (2k+1),k ≥ 1 are irrational. Moreover, they are transcen-
dental and algebraically independent from powers of π .

Here being algebraically independent from powers of π means that no ζ (2k+1),k ≥ 1
is a root of any polynomial with coefficients of the form

a0 +a1π +a2π
2 + · · ·+anπ

n
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for some n ∈ N and ai ∈ Z, 1 ≤ i ≤ n.
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Abstract
The integral

∫
|z|=1

zβ

z−α
dz for β = 1

2 has been comprehensively studied by Mortini and
Rupp for pedagogical purposes. We write for a similar purpose, elaborating on their
work with the more general consideration β ∈C. This culminates in an explicit solution
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in terms of the hypergeometric function for |α| ̸= 1 and any β ∈ C. For rational β ,
the integral is reduced to a finite sum. A differential equation in α is derived for this
integral, which we show has similar properties to the hypergeometric equation.

1 Introduction

The purpose of this paper is to investigate integrals of the form∫
|z|=1

zβ

z−α
dz. (1)

Our personal interest in this type of integral stems from a recent paper due to Mortini
and Rupp [1], in which the authors evaluate (1) for β = 1

2 using various methods.

Initially we note that the function zβ must be defined, for general β ∈ C, in terms
of some branch of the complex logarithm. In our notation, for 0 < θ < 2π , logθ (z)
will represent the branch of the complex logarithm with branch cut {reiθ : r ≥ 0}; it
is defined on the simply connected domain C\{reiθ : r ≥ 0}, and we fix logθ (1) = 0.
Under these conditions our branch is

logθ (z) = ln |z|+ iargθ (z)

where argθ is the argument function with values in (θ −2π,θ).
This branch can be related to the branch of the square root discussed in [1] by taking
t0 = θ −2π .
We denote by Arg(z) the argument of z falling in the range [0,2π), and by arg(z)
the equivalence class (modulo 2π) of all possible values for the argument of z. Any
condition with arg(z) is considered satisfied if one representative satisfies the condi-
tion.

The implications of using a branch of the complex logarithm to define the complex
power are that even when we choose |α| ̸= 1, the meromorphic function

mα,β ,θ (z) :=
zβ

z−α
=

eβ logθ (z)

z−α
(2)

will not be analytic, or even continuous, on the boundary of the unit disk. This is
due to the branch cut necessary for the logθ function used in (2). The discontinuity
at the branch cut, although merely a jump, prevents a simple evaluation with direct
application of Cauchy’s Residue Theorem. Rather, one must proceed using different
methods.

The main results of the paper are explicit expressions of (1) in the two cases of |α|> 1
and |α|< 1. Specifically, we prove:

Theorem 1. When |α|> 1,

∫
∂D

mα,β ,θ =


−2πiαβ β ∈ Z<0,

0 β = 0,
eiβθ

(
1− e−2πiβ

) 1
β

[
1− 2F1(1,β ;1+β ;α−1eiθ )

]
β ∈ C\Z≤0.
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When |α|< 1,∫
∂D

mα,β ,θ =

{
2πiαβ β ∈ Z≥0,

eiβθ
(
1− e−2πiβ

) 1
β 2F1(1,−β ;1−β ;αe−iθ ) β ∈ C\Z≥0.

In §2, the unit circle is approximated with a contour of integration which avoids the
branch cut in order to derive an equation involving (1). The connection between (1)
and the hypergeometric function, 2F1, is made in §3 through the identification of a
core integral in §3.1. In §4, series manipulation leads to the proof of Theorem 1. The
particular case when β ∈ Q \Z is further simplified in §5, and in §6 we include a
derivation of a differential equation for which (1) is a solution. Provided in §7, the
appendix, is a discussion of measure theory topics leading up to the statement of
Lebesgue’s Dominated Convergence Theorem; adequate references are cited there for
the curious reader.

2 Contour Method
We first extend §1 in [1], evaluating (1) via contour integration. For this section alone
(§2) it is additionally assumed that Arg(α) ̸= θ and α ̸= 0, so that α does not lie on the
branch cut. Furthermore, we assume that ℜ(β )> 0, as this condition will be necessary
for certain bounds. The purpose of this section is to prove the following lemma:

Lemma 1. If Arg(α) ̸= θ , and ℜ(β )> 0, then for 0 < |α|< 1,∫
∂D

mα,β ,θ = 2πiαβ + eiβθ (1− e−2πiβ )
∫ 1

0

eβ ln t

t −αe−iθ dt,

and for |α|> 1, ∫
∂D

mα,β ,θ = eiβθ (1− e−2πiβ )
∫ 1

0

eβ ln t

t −αe−iθ dt.

Proof. There are 3 main steps:

§2.1) constructing a proper contour;

§2.2) finding singularities and computing their residues;

§2.2) using limits to derive a useful equation.

The lemma follows from plugging (11), (35), (13), (38), and (22) all back into (9).

2.1 Constructing the Contour
Take a branch of the complex logarithm logθ in the definition of zβ , and let the contour
of integration Γε,θ ,ρ consist of:

a) the line segment Lε,θ ,ρ := {z ∈ C : ρ ≤ |z| ≤ 1,argz = θ + ε},

b) the arc Cε,θ := {z ∈ C : |z|= 1,θ + ε ≤ argz ≤ θ +2π − ε},

c) the line segment Mε,θ ,ρ := {z ∈ C : 1 > |z|> ρ,argz = θ +2π − ε},

d) the arc Dε,θ ,ρ := {z ∈ C : |z|= ρ,θ +2π − ε ≥ argz ≥ θ + ε},
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oriented as usual, with the bounded region enclosed on the left as we trace the contour.
For example, for the principal branch of log (logπ in our notation), the contour is as in
Figure 2.1. Under this definition, we have

Figure 2.1: Contour for θ = π .

∫
Γε,θ ,ρ

mα,β ,θ =
∫

Cε,θ

mα,β ,θ +
∫

Dε,θ ,ρ

mα,β ,θ +
∫

Lε,θ ,ρ

mα,β ,θ +
∫

Mε,θ ,ρ

mα,β ,θ . (3)

One can choose any parameterization of the four curves, noting that smooth equivalence
of parameterizations will guarantee generality. In particular, we choose

a) Lε,θ ,ρ : z(t) = tei(θ+ε) for ρ ≤ t ≤ 1,∫
Lε,θ ,ρ

mα,β ,θ (z) dz =
∫ 1

ρ

mα,β ,θ (te
i(θ+ε))ei(θ+ε) dt; (4)

b) Cε,θ : z(t) = eit for θ + ε ≤ t ≤ θ +2π − ε ,∫
Cε,θ

mα,β ,θ (z) dz =
∫

θ+2π−ε

θ+ε

mα,β ,θ (e
it) ieitdt; (5)

c) Mε,θ ,ρ : z(t) = tei(θ+2π−ε) for 1 ≥ t ≥ ρ ,∫
Mε,θ ,ρ

mα,β ,θ (z) dz =
∫

ρ

1
mα,β ,θ (te

i(θ+2π−ε))ei(θ+2π−ε) dt; (6)

d) Dε,θ ,ρ : z(t) = ρeit for θ +2π − ε ≥ t ≥ θ + ε ,∫
Dε,θ ,ρ

mα,β ,θ (z) dz =
∫

θ+ε

θ+2π−ε

mα,β ,θ (ρeit) iρeitdt. (7)
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2.2 Applying the Residue Theorem

Applying Cauchy’s Residue Theorem requires computing residues for singularities
contained within the contour. To compute the residues of the meromorphic function
mα,β ,θ (z) defined in (2), first note that eβ logθ (z) is analytic in C\{reiθ ∈C : r ≥ 0}, so
the only singularity of mα,β ,θ is at α , and this singularity only becomes relevant when
|α| ≤ 1. This singularity is a simple pole, since

lim
z→α

(z−α)mα,β ,θ (z) = lim
z→α

eβ logθ (z) = α
β ̸= 0 (8)

but

limz→α(z−α)2mα,β ,θ (z) = limz→α(z−α)eβ logθ (z) = 0.

Evaluating as in (8), the residue at α is found to be αβ . In order to derive an equation
involving (1), one might consider first taking the limit ε → 0+ and then ρ → 0+ in
(3):

lim
ρ→0+

lim
ε→0+

∫
Γε,θ ,ρ

mα,β ,θ = lim
ρ→0+

lim
ε→0+

[∫
Cε,θ

mα,β ,θ +
∫

Dε,θ ,ρ

mα,β ,θ +
∫

Lε,θ ,ρ

mα,β ,θ +
∫

Mε,θ ,ρ

mα,β ,θ

]
.

(9)
Since the contour Γε,θ ,ρ in (9) lies in the interior of the simply connected domain of
logθ whenever ε,ρ > 0, mα,β ,θ is analytic on the path of integration so long as α does
not lie on Γε,θ ,ρ . In this case, Cauchy’s Residue Theorem applies and so∫

Γε,θ ,ρ

mα,β ,θ = 2πi n(Γε,θ ,ρ ,α)Res(mα,β ,θ ,α) = 2πiαβ n(Γε,θ ,ρ ,α)

where n(Γε,θ ,ρ ,α) is the winding number of Γε,θ ,ρ around α . Note that by definition
of the contour, and because Arg(α) ̸= θ by assumption, we have

n(Γε,θ ,ρ ,α) =

{
1 if 0 < ε < minarg(α){|arg(α)−θ |} and 0 < ρ < |α|< 1,
0 otherwise,

(10)
where the notation minarg(α) in (10) denotes that the minimum is taken over all possible
representatives of arg(α). It follows that

lim
ε→0+

n(Γε,θ ,ρ ,α) =

{
1 if 0 < ρ < |α|< 1,
0 otherwise,

since ε can certainly be made smaller than |arg(α)−θ |> 0, and that

lim
ρ→0+

lim
ε→0+

n(Γε,θ ,ρ ,α) =

{
1 if 0 < |α|< 1,
0 otherwise

since ρ can certainly be made smaller than |α|> 0. Therefore

lim
ρ→0+

lim
ε→0+

∫
Γε,θ ,ρ

mα,β ,θ =

{
2πiαβ if 0 < |α|< 1,
0 otherwise.

(11)
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In evaluating limρ→0+ limε→0+
∫

Cε,θ
mα,β ,θ , we use (5) to express

lim
ρ→0+

lim
ε→0+

∫
Cε,θ

mα,β ,θ = lim
ρ→0+

lim
ε→0+

∫
θ+2π−ε

θ+ε

mα,β ,θ (e
it) ieitdt,

= lim
ε→0+

∫
θ+2π−ε

θ+ε

mα,β ,θ (e
it) ieitdt,

= PV
∫

θ+2π

θ

mα,β ,θ (e
it) ieitdt,

=
∫

θ+2π

θ

mα,β ,θ (e
it) ieitdt, (12)

=
∫
|z|=1

mα,β ,θ (z) dz. (13)

To see that the value of the improper integral in (12) is the same as its principal value,
note that whenever an improper integral converges, its principal value converges as
well (and to the same value). By convention, (12) is evaluated as∫

θ+2π

θ

mα,β ,θ (e
it) ieitdt = lim

ε→0

∫
θ+π

θ+ε

mα,β ,θ (e
it) ieitdt+ lim

ε ′→0

∫
θ+2π−ε ′

θ+π

mα,β ,θ (e
it) ieitdt.

(14)
It suffices to show that g(t) = mα,β ,θ (eit) ieit is bounded on [θ ,θ + 2π] in order for
the right hand side of (14) to converge, and thus for the desired improper integral to
converge. We first bound the real part of β logθ (z), noting that

β logθ (z) = [ℜ(β )+ iℑ(β )] [ln |z|+ iargθ (z)] ,

= [ℜ(β ) ln |z|−ℑ(β )argθ (z)]+ i[ℜ(β )argθ (z)+ℑ(β ) ln |z|], (15)
where argθ := ℑ(logθ ). Since we fix logθ (1) = 0 for every 0 < θ < 2π , the continuity
of logθ on its simply connected domain implies that

−2π < argθ (z)< 2π

for all z in the domain and for all θ . Further, continuity also implies that even as z
approaches the branch cut (in a limiting sense),

−2π ≤ argθ (z)≤ 2π. (16)
Equations (15) and (16) along with the assumption ℜ(β )> 0 give the bound

ℜ(β logθ (z)) = ℜ(β ) ln |z|−ℑ(β )argθ (z)≤ ℜ(β ) ln |z|+2π|ℑ(β )|. (17)
Since |ez|= eℜ(z), we can now bound

|mα,β ,θ (z)|=
|eβ logθ (z)|
|z−α|

,

=
eℜ(β logθ (z))

|z−α|
, (18)

≤ eℜ(β ) ln |z|+2π|ℑ(β )|

||z|− |α||
. (19)

For t ∈ [θ ,θ +2π], the bound (19) immediately gives

|mα,β ,θ (e
it) ieit | ≤ eℜ(β ) ln |eit |+2π|ℑ(β )|

||eit |− |α||
=

e2π|ℑ(β )|

|1−|α||
. (20)



On the Cauchy Transform of the Complex Power Function 99

Thus both limits on the right hand side of (14) converge, and hence the equality in (12)
is justified.

Now we show that the portion of the integral over the contour Dε,θ ,ρ approaches 0 as
ε → 0+,ρ → 0+. Using (19) and applying an ML-bound to (7) yields∣∣∣∣∣

∫
Dε,θ ,ρ

mα,β ,θ (z) dz

∣∣∣∣∣=
∣∣∣∣∫ θ+ε

θ+2π−ε

mα,β ,θ (ρeit) iρeitdt
∣∣∣∣ ,

≤ ρ
eℜ(β ) ln |ρ|+2π|ℑ(β )|

|ρ −|α||
(2π −2ε),

≤ 2πe2π|ℑ(β )| ρℜ(β )

| |α|
ρ
−1|

. (21)

Since |α|> 0, (21) gives∣∣∣∣ lim
ρ→0+

lim
ε→0+

∫
Dε,θ

mα,β ,θ (z) dz
∣∣∣∣≤ lim

ρ→0+
lim

ε→0+

2πe2π|ℑ(β )| ρℜ(β )

| |α|
ρ
−1|

 ,
= lim

ρ→0+

2πe2π|ℑ(β )| ρℜ(β )

| |α|
ρ
−1|

 ,
= 0. (22)

We now consider the limiting value of the integral along Lε,θ ,ρ . The core difficulty of
this part of the contour integral is in evaluating

lim
ε→0+

∫ 1

ρ

mα,β ,θ (te
i(θ+ε))ei(θ+ε) dt. (23)

The strategy is to use Lebesgue’s Dominated Convergence Theorem (see §7, specifically
Theorem 2). Take the family of functions defined on t ∈ [0,1]:

FL :=
{

fε(t) = mα,β ,θ (te
i(θ+ε))ei(θ+ε)

∣∣∣ 0 < ε < π

}
. (24)

The function tei(θ+ε) is continuous in the positive real variable t, and mα,β ,θ is continu-
ous on its simply connected domain except at the point α ; this singularity is undesirable.
To achieve continuity of the functions in question, we restrict our view to the following
collection instead:

Fix r with 0 < r < minarg(α) |arg(α)−θ |, and define

F ∗
L :=

{
fε(t) = mα,β ,θ (te

i(θ+ε))ei(θ+ε)
∣∣∣ 0 < ε < r

}
. (25)

The point α is outside the sector between θ −r and θ +r (see Figure 2.3 for illustration),
so now the functions are continuous. This allows us to conclude that F ∗

L is a set of
Lebesgue measurable functions.
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Moreover, in F ∗
L , we have

lim
ε→0+

fε(t) = lim
ε→0+

mα,β ,θ (te
i(θ+ε))ei(θ+ε),

= lim
ε→0+

eβ logθ (te
i(θ+ε))

tei(θ+ε)−α
ei(θ+ε),

= lim
ε→0+

eβ (ln t+i(θ−2π+ε))

tei(θ+ε)−α
ei(θ+ε),

=
eβ (ln t+i(θ−2π))

teiθ −α
eiθ =: gθ (t). (26)

Note that t ∈ [ρ,1]⊆ (0,∞) above, and since Arg(α) ̸= θ we have that teiθ −α ̸= 0
in the limit. The limit above is evaluated using this fact along with continuity of the
exponential.
Equivalently, this means that for any sequence εn → 0+, fεn converges pointwise to gθ

as n → ∞.

In fact, the conditions for Lebesgue’s Dominated Convergence Theorem above can be
shown for FL rather than F ∗

L using a slightly more advanced argument. For the last
condition however, which requires us to bound functions in the family by a Lebesgue
integrable function, it is much easier to consider only F ∗

L . For a given fε ∈ F ∗
L , let

δ := minarg(α){|arg(α)− (θ + ε)|}. That is, δ gives the minimum difference in angle
between θ + ε and the vector from the origin out to α .

If δ ≥ π

2 , simple geometry gives that α is at least a distance of |α| away from the
segment tei(θ+ε) for t ∈ [ρ,1]. To see this, consider Figure 2.2 and note that the side of

Figure 2.2: Illustration of the case δ ≥ π

2 .

the triangle opposite the angle of size δ is the longest side of the triangle (since δ is
either right or obtuse). Thus the shortest distance d from α to the line segment Lε,θ ,ρ

is bounded below:
d > |α|. (27)
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If instead δ < π

2 , then α is at least a distance of |α|sin(δ ) away from the segment
tei(θ+ε) for t ∈ [ρ,1]. To see this consider the similar picture in Figure 2.3 and note

Figure 2.3: Illustration of the case δ < π

2 .

that the altitude dropped from α to the line containing Lε,θ ,ρ is precisely of length
|α|sin(δ ) (although the distance will be greater if |α| is so small or so large that the
altitude dropped onto the line does not strike within the segment parameterized by
t ∈ [ρ,1]).
Now in our consideration of F ∗

L , we have ε < r < δ and so

|α|sin(δ )> |α|sin
(

min
arg(α)

{
|arg(α)− (θ ± r)|

})
> k > 0,

for a fixed constant k dependent on r, θ , and α . Thus in this case as well, the shortest
distance d from α to the line segment Lε,θ ,ρ is bounded below:

d > k. (28)

Consequently, for K := max{ 1
|α| ,

1
k}, we have that every function fε ∈ F ∗

L has for all
t ∈ [ρ,1] that

| fε(t)|= |mα,β ,θ (te
i(θ+ε))ei(θ+ε)|,

= |mα,β ,θ (te
i(θ+ε))|,

=
eℜ(β logθ (te

i(θ+ε)))

|tei(θ+ε)−α|
, (29)

≤ Keℜ(β ) ln |tei(θ+ε)|+2π|ℑ(β )|,

≤ Keℜ(β )|t|+2π|ℑ(β )| =: hr(t). (30)
(The third equality holds by (18); the first inequality holds by (17) and the reasoning
which led to (27) and (28); the final inequality holds since |t|> ln |t| for all t ∈ R and
the because exponential is strictly increasing on R.)
Clearly this hr is integrable on [ρ,1] for all ρ > 0, since it is simply a scaled exponential.
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Now, consider any arbitrary sequence (εn)→ 0+ with εn < r, and define a sequence of
functions ( fεn); note fεn ∈ F ∗

L for all n. From (26) we have ( fεn)→ gθ pointwise, and
| fεn(t)| ≤ hr(t) for all n and for all t ∈ [0,1], as shown in (30). Therefore Lebesgue’s
Dominated Convergence Theorem implies that

lim
n→∞

∫ 1

ρ

fεn(t) dt =
∫ 1

ρ

gθ (t) dt. (31)

for all ρ > 0.
Dispensing with the condition εn < r, it is still true for any arbitrary sequence (εn)→ 0+

that

lim
n→∞

∫ 1

ρ

fεn(t) dt =
∫ 1

ρ

gθ (t) dt (32)

since (εn)→ 0+ has a tail which is completely bounded above by r, and thus conver-
gence of the tail shown in (31) implies convergence of the whole sequence. Since (32)
holds for arbitrary (εn), this implies

lim
ε→0+

∫ 1

ρ

fε(t) dt =
∫ 1

ρ

gθ (t) dt. (33)

for fε ∈ FL.

Hence we evaluate (23) and find

lim
ε→0+

∫ 1

ρ

mα,β ,θ (te
i(θ+ε))ei(θ+ε) dt =

∫ 1

ρ

lim
ε→0+

mα,β ,θ (te
i(θ+ε))ei(θ+ε)dt,

=
∫ 1

ρ

eβ (ln t+i(θ−2π))

teiθ −α
eiθ dt,

= eiβ (θ−2π)
∫ 1

ρ

eβ ln t

t −αe−iθ dt. (34)

But gθ is continuous for t ∈ (0,1] and bounded as t → 0. Therefore, allowing im-
proper integrals, and drawing from equations (4) and (34) it is straightforward to
compute

lim
ρ→0+

lim
ε→0+

∫
Lε,θ ,ρ

mα,β ,θ (z) dz = lim
ρ→0+

lim
ε→0+

∫ 1

ρ

mα,β ,θ (te
i(θ+ε))ei(θ+ε) dt,

= lim
ρ→0+

[
eiβ (θ−2π)

∫ 1

ρ

eβ ln t

t −αe−iθ dt

]
,

= eiβ (θ−2π)
∫ 1

0

eβ ln t

t −αe−iθ dt. (35)

Finally we take limits in the last integral on the right hand side of (9) along Mε,θ ,ρ .
Similarly the difficulty in this case is evaluating

lim
ε→0+

∫
ρ

1
mα,β ,θ (te

i(θ+2π−ε))ei(θ+2π−ε) dt (36)

using Lebesgue’s Dominated Convergence Theorem. Analogous steps as those used
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for Lε,θ ,ρ can be applied to the Mε,θ ,ρ case to show that

lim
ε→0+

∫
ρ

1
mα,β ,θ (te

i(θ+2π−ε))ei(θ+2π−ε) dt =−
∫ 1

ρ

lim
ε→0+

mα,β ,θ (te
i(θ+2π−ε))ei(θ+2π−ε) dt,

=−
∫ 1

ρ

eβ (ln(t)+iθ)

tei(θ+2π)−α
ei(θ+2π) dt,

=−eiβθ

∫ 1

ρ

eβ ln t

t −αe−iθ dt. (37)

Just as before the integrand is bounded on [0,1]. Using (37) there is no issue writ-
ing

lim
ρ→0+

lim
ε→0+

∫
Mε,θ ,ρ

mα,β ,θ (z) dz = lim
ρ→0+

lim
ε→0+

∫
ρ

1
mα,β ,θ (te

i(θ+2π−ε))ei(θ+2π−ε) dt,

= lim
ρ→0+

[
−eiβθ

∫ 1

ρ

eβ ln t

t −αe−iθ dt

]
,

=−eiβθ

∫ 1

0

eβ ln t

t −αe−iθ dt. (38)

3 The Hypergeometric Function Connection

3.1 A Core Integral

In order to fully evaluate (1) using the contour method outlined in §2, the following
integral from Lemma 1 must be evaluated:∫ 1

0

eβ ln t

t −αe−iθ dt, (39)

which exists for ℜ(β )>−1. The integral in (39) is in fact an improper integral and
can be written

lim
ρ→0

∫ 1

ρ

eβ ln t

t −αe−iθ dt.

Algebraic manipulations give

eβ ln t

t −αe−iθ =
eln t

t −αe−iθ e(β−1) ln t ,

=
t −αe−iθ +αe−iθ

t −αe−iθ e(β−1) ln t ,

=

(
1+

αe−iθ

t −αe−iθ

)
e(β−1) ln t . (40)

Integrating first over the interval [ρ,1] and using (40) yields∫ 1

ρ

eβ ln t

t −αe−iθ dt =
∫ 1

ρ

e(β−1) ln t dt +αe−iθ
∫ 1

ρ

e(β−1) ln t

t −αe−iθ dt. (41)
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Notice that the function e(β−1) log(t) is the derivative of 1
β

eβ log(t), which is analytic on
[ρ,1]. Thus ∫ 1

ρ

e(β−1) ln t dt =
1
β

eβ ln(1)− 1
β

eβ ln(ρ) =
1
β
− 1

β
eβ ln(ρ). (42)

Substituting (42) into (41) and taking limits gives

lim
ρ→0

∫ 1

ρ

eβ ln t

t −αe−iθ dt = lim
ρ→0

[
1
β
− 1

β
eβ ln(ρ)

]
+αe−iθ lim

ρ→0

∫ 1

ρ

e(β−1) ln t

t −αe−iθ dt,

∫ 1

0

eβ ln t

t −αe−iθ dt =
1
β
+αe−iθ

∫ 1

0

e(β−1) ln t

t −αe−iθ dt; (43)

the integral on the right hand side of (43) exists for ℜ(β )> 0. Again the convergence
of improper integrals follows from the boundedness of the integrands. Moving the
constant inside the integral in (43) gives∫ 1

0

eβ ln t

t −αe−iθ dt =
1
β
−
∫ 1

0

e(β−1) ln t

1−
( 1

α
eiθ
)

t
dt. (44)

Therefore finding a solution to (1) using the contour integration method necessitates
working with the following “core integral” for z = 1

α
eiθ :∫ 1

0
tβ−1(1− zt)−1 dt. (45)

The choice to write tβ−1 rather than e(β−1) ln t in (45) is intentional, since generality
is not lost when any branch logθ for θ ̸≡ 0 is used to define this complex power of
t ∈ [0,1].

3.2 Definition & Relevant Identities

We investigate the integral in (45) by making use of the well-studied hypergeometric
function 2F1(a,b,c;z). For |z|< 1, this function is defined as the infinite series

2F1(a,b,c;z) =
∞

∑
n=0

(a)n(b)n

(c)nn!
zn, c ∈ C\Z≤0 (46)

where (x)n =
Γ(x+n)

Γ(x) is the rising Pochhammer symbol.

The hypergeometric series generalizes the geometric series, and is prominent in the
study of linear differential equations with three regular singular points. The hyperge-
ometric function is notably a solution to the hypergeometric equation, discussed in
§6.

A comprehensive collection of identities involving 2F1 can be found in [2]. The most
notable for our purposes is the following:

For |z|< 1 and ℜ(c)> ℜ(b)> 0,

2F1(a,b,c;z) =
Γ(c)

Γ(b)Γ(c−b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−a dt. (47)
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Letting a = 1, b = β , and c = 1+β under the conditions for (47) gives

2F1(1,β ,1+β ;z) =
Γ(1+β )

Γ(β )Γ(1)

∫ 1

0
tβ−1(1− t)0(1− tz)−1 dt,

= β

∫ 1

0
tβ−1(1− zt)−1 dt, (48)

such that the integral above is exactly the integral in (45), only scaled.

3.3 Final Steps of the Contour Method

We conclude the contour method for |α| > 1 by proving the following statement,
making use of the hypergeometric identity (48).

Proposition 1. When |α|> 1, Arg(α) ̸= θ , θ ̸= 0 (mod 2π), and ℜ(β )> 0,

∫
∂D

mα,β ,θ = eiβθ (1− e−2πiβ )
1
β

[
1− 2F1(1,β ;1+β ;α

−1eiθ )
]
. (49)

Proof. Since |α|> 1, the last argument in the hypergeometric function satisfies∣∣∣∣ 1
α

eiθ
∣∣∣∣= 1

|α|
< 1.

Under the assumption ℜ(β )> 0, one can apply the identity (48) and find∫ 1

0

tβ−1

1− (α−1eiθ ) t
dt =

1
β

2F1(1,β ;1+β ;α
−1eiθ ). (50)

With this expression for the core integral, an application of Lemma 1 and (44) completes
the proof.

The case 0 < |α|< 1 cannot be approached in the same manner. While the initial steps
in the contour method still hold, the integral identity from (48) does not apply since the
last argument in the hypergeometric function now satisfies∣∣∣∣ 1

α
eiθ
∣∣∣∣= 1

|α|
> 1;

which is outside the domain of (47).

4 Series Method

Fortunately there exist methods outside of contour integration which allow us to
express (1) in terms of the hypergeometric function in all cases. Rather than dealing
with integral identities of the hypergeometric function, one can work with series to
produce a term of the form (46).
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4.1 Proof of the main result

Consider first |α|> 1. Recall from (12) and (13) that∫
∂D

mα,β ,θ (z) dz =
∫
|z|=1

eβ logθ (z)

z−α
dz,

= lim
ε→0+

∫
θ−ε

θ−2π+ε

mα,β ,θ (e
it)ieit dt. (51)

For θ −2π < t < θ , logθ (e
it) = it, so one can then rewrite the integrand as

mα,β ,θ (e
it)ieit =

eβ (logθ (e
it ))

eit −α
ielogθ (e

it ),

= i
e(β+1)(logθ (e

it ))

eit −α
,

= i
ei(β+1)t

eit −α
,

=− iei(β+1)t

α
· 1

1− 1
α

eit
,

=− iei(β+1)t

α

∞

∑
k=0

α
−keikt ; (52)

where (52) follows by rewriting in terms of a convergent geometric series. Pulling the
factor of eit inside the series yields

mα,β ,θ (e
it)ieit =−ieiβ t

∞

∑
k=0

α
−(k+1)ei(k+1)t ,

=−ieiβ t
∞

∑
k=1

α
−keikt ,

=−i
∞

∑
k=1

α
−kei(β+k)t . (53)

For a fixed |α|> 1 we have that |α|−1 < 1, so∣∣∣∣∣ ∞

∑
k=1

α
−keikt

∣∣∣∣∣≤ ∞

∑
k=1

|α−keikt |=
∞

∑
k=1

|α|−k =: Kα < ∞.

We define a sequence of functions ( fn), where fn : [θ −2π,θ ]→C are given by

fn(t) :=
n

∑
k=1

α
−kei(β+k)t = eiβ t

n

∑
k=1

α
−keikt .

Each function in the sequence is bounded via

| fn(t)|=

∣∣∣∣∣eiβ t
n

∑
k=1

α
−keikt

∣∣∣∣∣ ,
≤ Kα |eiβ t |,

= Kα e−ℑ(β )t =: gα(t).

Note that gα is integrable on [θ −2π + ε,θ − ε] since it is simply a scaled exponential.
It is clear that each fn is continuous as a finite sum of analytic functions, so again



On the Cauchy Transform of the Complex Power Function 107

this continuity means the functions are measurable. Since their pointwise limit is the
expression in (53), Lebesgue’s Dominated Convergence Theorem (see §7, Theorem 2
specifically) implies∫

θ−ε

θ−2π+ε

∞

∑
k=1

α
−kei(β+k)t dt = lim

n→∞

∫
θ−ε

θ−2π+ε

n

∑
k=1

α
−kei(β+k)t dt,

= lim
n→∞

n

∑
k=1

∫
θ−ε

θ−2π+ε

α
−kei(β+k)t dt,

=
∞

∑
k=1

∫
θ−ε

θ−2π+ε

α
−kei(β+k)t dt, (54)

where the second equality holds since it is merely the interchange of an integral and
finite sum.

Using (54) along with (53) yields∫
θ−ε

θ−2π+ε

mα,β ,θ (e
it)ieit dt =−i

∫
θ−ε

θ−2π+ε

∞

∑
k=1

α
−kei(β+k)t dt,

=−i
∞

∑
k=1

∫
θ−ε

θ−2π+ε

α
−kei(β+k)t dt,

=−i
∞

∑
k=1

α
−k
∫

θ−ε

θ−2π+ε

ei(β+k)t dt. (55)

An individual summand of (55) consists of an α−k term multiplied by an integral. The
integrand, ei(β+k)t , is an entire function of t and thus is bounded on the compact set
t ∈ [θ −2π,θ ] by some M. Note that this bound M can be chosen independent of k by
letting

M > e−ℑ(β )t = |ei(β+k)t | ∀t ∈ [θ −2π,θ ].

The length of the curve being integrated over is at most
(θ − ε)− (θ −2π + ε) = 2π −2ε < 2π =: L,

where L does not depend on ε . Because the integrand is entire it must be continuous on
the path of integration, and so the ML-bound gives that∣∣∣∣∫ θ−ε

θ−2π+ε

ei(β+k)t dt
∣∣∣∣≤ ML,

where M and L are given above and independent of ε and k. Thus each term of the
series in (55) is bounded in modulus by ML|α|−k, so that∣∣∣∣∣ ∞

∑
k=1

α
−k
∫

θ−ε

θ−2π+ε

ei(β+k)t dt

∣∣∣∣∣≤ ∞

∑
k=1

ML|α|−k. (56)

Since |α|> 1, the right hand side of (56) converges, and the Weierstrass M-test implies
that the series in (55) is uniformly convergent. Substituting the expression from (55)
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back into (51) allows the exchange of limit and infinite sum in (57) to find that∫
∂D

mα,β ,θ (z) dz = lim
ε→0+

[
−i

∞

∑
k=1

α
−k
∫

θ−ε

θ−2π+ε

ei(β+k)t dt

]
,

=−i
∞

∑
k=1

α
−k lim

ε→0+

∫
θ−ε

θ−2π+ε

ei(β+k)t dt, (57)

=−i
∞

∑
k=1

α
−k
∫

θ

θ−2π

ei(β+k)t dt. (58)

The integrand in (58) is entire, and it has an antiderivative ei(β+k)t

i(β+k) when β + k ̸= 0; this
antiderivative is also entire. This fact not only ensures the equality between (57) and
(58), but it also allows the use of the Complex Fundamental Theorem of Calculus to
conclude that for β /∈ Z<0,∫

θ

θ−2π

ei(β+k)t dt =

[
ei(β+k)t

i(β + k)

]θ

θ−2π

=
ei(β+k)θ

i(β + k)

(
1− e−2πiβ

)
. (59)

Using definition (46) as well as our intermediates (58) and (59) we find∫
∂D

mα,β ,θ (z) dz =−i
∞

∑
k=1

α
−k ei(β+k)θ

i(β + k)

(
1− e−2πiβ

)
,

=−eiβθ

(
1− e−2πiβ

) ∞

∑
k=1

α
−k eikθ

β + k
,

=−eiβθ

(
1− e−2πiβ

) 1
β

[(
∞

∑
k=0

β

β + k
(α−1eiθ )k

)
−1

]
,

=−eiβθ

(
1− e−2πiβ

) 1
β

[(
∞

∑
k=0

(1)k(β )k

(1+β )kk!
(α−1eiθ )k

)
−1

]
,

=−eiβθ

(
1− e−2πiβ

) 1
β

[
2F1(1,β ;1+β ;α

−1eiθ )−1
]
,

= eiβθ

(
1− e−2πiβ

) 1
β

[
1− 2F1(1,β ;1+β ;α

−1eiθ )
]
, (60)

so long as β ̸= 0. This completes the proof of Theorem 1 in the case where β ∈C\Z≤0.
To handle the cases when β ∈ Z≤0, note that∫

θ

θ−2π

ei(β+k)t dt =

{
2π β + k = 0,
0 β + k ∈ Z\{0},

(61)

since the bounds of integration align with the period of the exponential unless the
exponent is 0. Thus when β ∈ Z≤0,∫

∂D
mα,β ,θ (z) dz =−i

∞

∑
k=1

α
−k2πδβ ,−k (62)

where δβ ,−k is the classical Kronecker delta function. This completes the proof of
Theorem 1 in the case where β ∈ Z≤0, the first part of the main result.

Next consider |α|< 1. We proceed in a manner analogous to that of the |α|> 1 case,
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omitting details for the sake of brevity. It holds that∫
∂D

mα,β ,θ =

{
eiβθ

(
1− e−2πiβ

)
∑

∞
k=0

αk

β−k e−ikθ β /∈ Z≥0,

2πiαβ β ∈ Z≥0.
(63)

An application of (46) shows that for β ̸= 0,
∞

∑
k=0

αk

β − k
e−ikθ =

1
β

∞

∑
k=0

−β

−β + k

(
αe−iθ

)k
,

=
1
β

∞

∑
k=0

(1)k(−β )k

(1−β )kk!

(
αe−iθ

)k
,

=
1
β

2F1(1,−β ;1−β ;αe−iθ ). (64)

Combining (63) and (64) completes the proof of Theorem 1.

4.2 Reconciling Methods
Note that the steps of the contour method described in §2 and the simplifications in
§3.1 still hold so long as Arg(α) ̸= θ , ℜ(β ) > 0, θ ̸= 0 (mod 2π), and |α| ≠ 0,1.
The nontrivial equations of the series method hold so long as |α| ≠ 1 and β /∈ Z≥0.
Thus under all these conditions one can write an identity for (45) in the case where
0 < |α|< 1:

eiβθ

(
1− e−2πiβ

) 1
β

2F1(1,−β ;1−β ;αe−iθ ) = 2πiαβ + eiβθ

(
1− e−2πiβ

)∫ 1

0

eβ ln t

t −αe−iθ dt,

(65)

1
β

2F1(1,−β ;1−β ;αe−iθ ) =
2πiαβ

eiβθ
(
1− e−2πiβ

) +∫ 1

0

eβ ln t

t −αe−iθ dt,

1
β

2F1(1,−β ;1−β ;αe−iθ ) =
2πiαβ

eiβθ
(
1− e−2πiβ

) + 1
β
−
∫ 1

0

e(β−1) ln t

1−
( 1

α
eiθ
)

t
dt,

(66)∫ 1

0

e(β−1) ln t

1−
( 1

α
eiθ
)

t
dt =

2πiαβ

eiβθ
(
1− e−2πiβ

) + 1
β

[
1− 2F1(1,−β ;1−β ;αe−iθ )

]
(67)

where the equality in (65) follows from Lemma 1 and (64), and the equality in (66)
follows from (44).

5 Computing the Example β = m
n

Since the hypergeometric function gives the value of (1) as an infinite series which
is still difficult to explicitly evaluate, it is desirable to compute examples for which
the hypergeometric function can be simplified more. We show this is the case when
β = m

n ∈Q\Z, with m ∈ Z, n ∈ N. We ignore the cases β ∈ Z since these are easily
evaluated without need of the hypergeometric function.
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Corollary 1. Let β = m
n ∈Q\Z. When |α|< 1,∫

∂D
mα,β ,θ = α

−m
n (1− e−2πi m

n )
n−1

∑
j=0

e
2πi jm

n log
(

1− e
2πi j

n
n
√

αe−iθ
)

and when |α|> 1∫
∂D

mα,β ,θ = (1− e−2πi m
n )

(
n
m

ei m
n θ +α

m
n

n−1

∑
j=0

e−
2πi jm

n log
(

1− e
2πi j

n
n
√

α−1eiθ
))

.

Proof. From Theorem 1, one has for β /∈ Z that∫
∂D

mα,m
n ,θ

=

ei m
n θ

(
1− e−2πi m

n

)
n
m 2F1(1,−m

n ;1− m
n ;αe−iθ ) |α|< 1,

ei m
n θ

(
1− e−2πi m

n

)
n
m

[
1− 2F1(1,+m

n ;1+ m
n ;α−1eiθ )

]
|α|> 1.

(68)
Therefore the main difficulty in evaluating (68) lies in computing

2F1

(
1,

m
n

;1+
m
n

;z
)

(69)

for non-integral m
n and for 0 < |z|< 1.

Since m
n /∈ Z, it is never the case that the parameter c = 1+ m

n in (69) is 0 or a negative
integer. The hypergeometric series is therefore well defined, and using the definition
(46) yields

2F1

(
1,

m
n

;1+
m
n

;z
)

: =
∞

∑
k=0

(1)k(
m
n )k

k!(1+ m
n )k

zk.

=
∞

∑
k=0

m
n

k+ m
n

zk

= m
∞

∑
k=0

1
m+nk

zk

=
m
z

m
n

∞

∑
k=0

1
m+nk

z
m
n +k =: G(z). (70)

Note also that since 0 < |z|, division by a fractional power of z causes no issue. The
particular choice of branch for defining the nth root does not matter so long as the
choice is consistent across the fractional powers (see remarks 1 and 2).

Notice that the expression for G(z) produces an even simpler expression for G(zn),
given by

G(zn) =
m
zm

∞

∑
k=0

1
m+nk

zm+nk (71)

On the other hand, for any branch of the logarithm with log(1) = 0 analytic in a ball of
radius 1 at z = 1, we have

log(1− z) =
∞

∑
k=1

−1
k

zk

whenever |z|< 1. The difference between the above expression and that in (71) is that
only terms of the form zm+nk for k ∈ N∪{0} appear in (71), whereas a zk term appears
in the series for log(1− z) for every k ∈ N. To rectify this we express G(zn) as some
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series ∑
∞
s=1

δs
s zs, possibly with leading factors, where δs takes on the value 1 whenever

n divides s−m (so that s is of the form m+nk for some k ∈ N) and is 0 otherwise.

To find a suitable function δs, recall that the sum of all of the nth roots of unity is 0 for
n > 1. It is natural then that

δs =
1
n

n−1

∑
j=0

e
2πi j(s−m)

n =

{
1 if n | (s−m)

0 otherwise
(72)

is the desired function. To see the validity of this claim, we first consider when
n | (s−m). In this case, we have s−m

n ∈ Z, and so

1
n

n−1

∑
j=0

e
2πi j(s−m)

n =
1
n

n−1

∑
j=0

1 = 1 (73)

since j(s−m)
n ∈Z. On the other hand, when n ∤ (s−m), let d := gcd(n,s−m) and define

η := n
d . Note that d < n else we have n | (s−m), and thus η > 1. Now

e
2πi(s−m)

n = ζ
s−m

d
η (74)

where ζη is the first primitive η th root of unity. Note also that because d is the greatest

common divisor of s−m and n, then s−m
d is coprime to η . This implies that ζ

s−m
d

η is
another primitive η th root of unity. Now

δs =
1
n

n−1

∑
j=0

e
2πi j(s−m)

n ,

=
1

dη

dη−1

∑
j=0

ζ
s−m

d j
η ,

=
1

dη

(
η−1

∑
j=0

ζ
s−m

d j
η +

2η−1

∑
j=η

ζ
s−m

d j
η + · · ·+

dη−1

∑
j=(d−1)η

ζ
s−m

d j
η

)
, (75)

=
1
η

η−1

∑
j=0

ζ
s−m

d j
η , (76)

= 0. (77)

The equality between (75) and (76) holds since ζ
s−m

d j
η = ζ

s−m
d j′

η when j ≡ j′ (mod η).
The final equality, (77), holds since the sum over every η th root of 1 is 0.

One can therefore express

G(zn) =
m
zm

∞

∑
s=1

δs

s
zs (78)

since this series gives the same terms as the series in (71). To evaluate this series, note

that for each j in {0, . . . ,n−1}, the series ∑
∞
s=1

∣∣∣∣ e
2πi j(s−m)

n
s

∣∣∣∣zs is a power series which

converges absolutely for |z|< 1. Letting the value of this series be denoted b j, we also
note that ∑

n−1
j=0 b j converges since it is a finite sum. We may therefore exchange the
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order of summation to get
n−1

∑
j=0

∞

∑
s=1

e
2πi j(s−m)

n

s
zs =

∞

∑
s=1

n−1

∑
j=0

e
2πi j(s−m)

n

s
zs = G(zn) (79)

which allows evaluation of G(zn) by simplifying the left hand side of (79):

G(zn) =
m
zm

n−1

∑
j=0

∞

∑
s=1

e
2πi j(s−m)

n

s
zs =

m
zm

n−1

∑
j=0

e−
2πi jm

n

∞

∑
s=1

e
2πi js

n

s
zs,

=
m
zm

n−1

∑
j=0

−e−
2πi jm

n

∞

∑
s=1

−1
s
(e

2πi j
n z)s,

=
m
zm

n−1

∑
j=0

−e−
2πi jm

n log(1− e
2πi j

n z). (80)

Remark 1. Notice that the only requirement of the branch of log we choose is that it is
analytic in the ball of radius 1 at z = 1, and that log(1) = 0.

Finally, to come up with an expression for G(z) as opposed to G(zn), simply substitute
z

1
n in the expression above, yielding

G(z) =−m
n

z−
m
n

n−1

∑
j=0

e−
2πi jm

n log(1− e
2πi j

n n
√

z) (81)

whenever |z|< 1.

Remark 2. The choice of branch for n
√
· does not matter, so long as the choice is

consistent across the expression for G(z). To see this more clearly, rewrite

G(z) =−m
n

n−1

∑
j=0

(
e−

2πi j
n

1
n
√

z

)m

log
(

1− e
2πi j

n n
√

z
)
. (82)

This sum is symmetric over the nth roots of z. Any branch of n
√
· must map an input z to

one of the n possible roots ω of ωn = z. The symmetry in (82) implies that, no matter
the branch chosen, this sum will always have the same terms.

From (70) we know that G(z) = 2F1
(
1, m

n ;1+ m
n ;z
)
, and hence (81) allows us to

conclude that for β = m
n ∈Q\Z with m ∈ Z, n ∈ N,

2F1

(
1,

m
n

;1+
m
n

;z
)
=−m

n
z−

m
n

n−1

∑
j=0

e−
2πi jm

n log(1− e
2πi j

n n
√

z) (83)

for all |z|< 1. Finally, when |α|< 1 we have |αe−iθ |< 1, so substituting z = αe−iθ

into (83) proves the first conclusion of Corollary 1. Similarly, when |α| > 1, we
have that | 1

α
eiθ | < 1, and hence substituting z = α−1eiθ into (83) proves the second

conclusion.
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6 Differential Equation

A key feature of the hypergeometric equation

z(1− z)
d2F
dz2 +(c− (a+b+1)z)

dF
dz

−abF = 0 (84)

is its regular singular points, and it is well-known that they are 0,1,∞. Hence, one
might wish to derive a second-order ordinary differential equation in the variable α for
which I(α) =

∫
∂D mα,β ,θ is a solution, and determine its regular singular points.

6.1 The case |α|> 1

For |α|> 1, β /∈Z≤0, the desired equation follows by relating (1) to the hypergeometric
function F(z) = 2F1(a,b,c;z), which is famously a solution of (84).
Let f (z) = 2F1(1,β ,1+β ;z). Then f solves the equation

z(z−1)
d2 f
dz2 +((1+β )− (2+β )z)

d f
dz

−β f = 0. (85)

Consider the change in variables α = 1
z eiθ (equiv. z = 1

α
eiθ ), and make the following

necessary calculations:
d f
dz

=
dα

dz
d f
dα

=− 1
z2 eiθ d f

dα
=−α

2e−iθ d f
dα

,

d2 f
dz2 =

dα

dz
· d

dα

d f
dz

=−α
2e−iθ

(
−α

2e−iθ d2 f
dα2 −2αe−iθ d f

dα

)
= α

4e−2iθ d2 f
dα2 +2α

3e−2iθ d f
dα

.

By substituting into (85), notice that f∗(α) := f
( 1

α
eiθ
)

solves

α
−1eiθ

(
α
−1eiθ −1

)(
α

4e−2iθ d2 f∗
dα2 +2α

3e−2iθ d f∗
dα

)
+
(
(1+β )− (2+β )(α−1eiθ )

)(
−α

2e−iθ d f∗
dα

)
−β f∗= 0,

which after some simplification becomes

p2(α)
d2 f∗
dα2 + p1(α)

d f∗
dα

−β f∗ = 0, (86)

where p2(α) = α2 −α3e−iθ , p1(α) = α(β +4)−α2(β +3)e−iθ .
From Theorem 1, f∗(α) = 1− kI(α), with the abbreviation k = β

eiβθ (1−e−2πiβ )
, and we

calculate the derivatives to be
d f∗
dα

=
d f∗
dI

dI
dα

=−k
dI
dα

,

d2 f∗
dα2 =−k

d2I
dα2 .

Substitution into (86) yields that I(α) solves the equation

p2(α)

(
−k

d2I
dα2

)
+ p1(α)

(
−k

dI
dα

)
−β (1− kI) = 0,
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or rather,

p2(α)
d2I
dα2 + p1(α)

dI
dα

−β I = eiβθ (e−2πiβ −1). (87)

From (87) it is clear that the normalized coefficients p1(α)
p2(α)α and −β

p2(α)α2 are analytic

in a neighborhood of 0. Similarly, p1(α)
p2(α) (α − eiθ ) and −β

p2(α) (α − eiθ )2 are analytic in a

neighborhood of eiθ . These coefficients have poles at 0 and eiθ , so these are regular
singular points. To classify the point at infinity, let x = 1/α and rewrite (87) in x. Akin
to a previous change of variables, one has

dI
dα

=−x2 dI
dx

,

d2I
dα2 = x4 d2I

dx2 +2x3 dI
dx

,

so that (87) becomes

p2

(
1
x

)(
x4 d2I

dx2 +2x3 dI
dx

)
+ p1

(
1
x

)(
−x2 dI

dx

)
−β I = eiβθ (e−2πiβ −1),

or equivalently,

q2(x)
d2I
dx2 +q1(x)

dI
dx

−β I = eiβθ (e−2πiβ −1), (88)

where q2(x) = x2 − xe−iθ , q1(x) = −x(β + 2) + (β + 1)e−iθ . By a similar line of
reasoning, the regular singular points of (88) are x = 0 and x = e−iθ , so α = ∞ and
α = eiθ are both regular singular points of (87).
Thus equation (87), for which (1) is a solution, has precisely three regular singular
points at 0,eiθ ,∞, reminiscent of (84). Any function satisfying a differential equation
with three regular singular points may be expressed using the hypergeometric function,
so this result supports the validity of the relationship derived.

6.2 The case |α|< 1

When |α|< 1, β /∈ Z≥0, one can proceed exactly as §6.1 and make use of Theorem 1.
Let g(z) = 2F1(1,−β ,1−β ,z). Then g solves the equation

z(z−1)
d2g
dz2 +((1−β )− (2−β )z)

dg
dz

+βg = 0.

The change of variables α = zeiθ gives that g∗(α) := g(αe−iθ ) solves

r2(α)
d2g∗
dα2 + r1(α)

dg∗
dα

+βg∗ = 0, (89)

where r2(α) = α2 −αeiθ , r1(α) = (1−β )eiθ − (2−β )α . Theorem 1 gives g∗(α) =

kI(α), where again k = β

eiβθ (1−e−2πiβ )
. This scaling does not change the equation, so

I(α) is also a solution of (89), with g∗ replaced with I. Just as before, one reasons
that α = 0,eiθ are regular singular points of this equation. In the variable x = 1

α
, the

equation (89) written for I is

s2(x)
d2I
dx2 + s1(x)

dI
dx

+β I = 0,
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where s2(x) = x2 − x3eiθ ,s1(x) = βx− (1+ β )eiθ x2, of which the regular singular
points are x = 0,e−iθ . Finally, one concludes that the regular singular points of the
hypergeometric-like differential equation that I(α) solves are 0,eiθ ,∞.

7 Appendix
In order to use Lebesgue’s Dominated Convergence Theorem, which is essential to the
proofs in the paper, a short introduction to basic measure theory is needed. Careful
treatment of the necessary measure theory topics is handled in Chapter 11 of Rudin’s
Principles of Mathematical Analysis (pgs. 300-315 of [3]). For more resources on the
topic see the reviews in [4]. If the reader chooses to forego the short introduction to
measure theory, it will at least help to understand the advantages of Lebesgue integra-
tion over the standard Riemann integration taught in introductory calculus.

For one, the Lebesgue integral extends to a much wider class of functions than the
Riemann integral. A classic example is that of the Dirichlet function δ which takes
value 1 on rationals and 0 on irrationals. This function is not Riemann integrable on
the interval [0,1], since no matter what partition P we pick for the interval, at least
one irrational and one rational must lie in each interval of the partition. Thus for every
partition P, U(P,δ ) = 1 and L(P,δ ) = 0, where U and L are the upper and lower sums
of δ with partition P, respectively. This shows that δ is not Riemann integrable.

The Dirichlet function is Lebesgue integrable however, and its Lebesgue integral over
the interval [0,1] is simple to compute. Let λ be the Lebesgue measure on R. By
definition of the Lebesgue integral, we have∫

[0,1]
δ dλ = 1 ·λ ([0,1]∩Q)+0 ·λ ([0,1]\Q) = 0

since the rationals form a Lebesgue measure 0 subset of the reals. This example shows
in particular that a "large" number of discontinuities (think uncountably many, as in
the Dirichlet function) does not necessarily prevent a function from being Lebesgue
integrable, while it does prevent it from being Riemann integrable.

Another limitation of Riemann integration is the difficulty in passing a limit under the
integral sign. Given a sequence of Riemann-integrable functions { fn} which converge
to some function f , it would be convenient if

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
lim
n→∞

fn(x)dx.

Indeed, there are cases where this holds – for instance, if { fn} converges to a function f
uniformly (rather than just pointwise) on the finite interval [a,b]. This fact can be seen
as a consequence of Lebesgue’s Dominated Convergence Theorem, again demonstrat-
ing its utility (see the comment under Exercise 11.6 in [3]). It is mainly for this reason
we use the integral of Lebesgue rather than that of Riemann, since in the Lebesgue
context it is much easier to justify switching the limit and integral.

The reader should also notice that we discuss measurability and integrability of func-
tions with codomain C rather than R (see pg. 325 of [3]). Recall that f : R→ C may
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be written in terms of two component functions u,v : R→ R
f (t) = u(t)+ iv(t),

and the integral of f over A ⊆ R is aptly defined∫
A

f (t) dλ :=
∫

A
u(t) dλ + i

∫
A

v(t) dλ .

It is natural then that the function f : R→C be integrable over A so long as u and v are.
This also corroborates the definition that f : R→C is measurable if u and v are.

The need to discuss complex valued functions stems from our use of line integrals (pgs.
101-102 in [5]). Let Ω ⊆ C, and recall that the integral of the function f : Ω → C over
a piecewise differentiable arc γ parameterized by z : [a,b]→ C is defined as∫

γ

f (z) dz :=
∫ b

a
f (z(t))z′(t) dt.

Defining uγ ,vγ : [a,b]→ R such that
[( f ◦ z)z′](t) = uγ(t)+ ivγ(t),

the integral of f over γ can be written terms of two real integrals:∫
γ

f (z) dz =
∫ b

a
uγ(t) dt + i

∫ b

a
vγ(t) dt.

If f is continuous on the piecewise-continuously differentiable curve γ , then certainly
( f ◦ z)z′ : [a,b]→ C is piecewise continuous and bounded. From here one concludes
that uγ ,vγ are also piecewise continuous, bounded functions; the component functions
are in fact Riemann integrable. It is known that if a function g : R→ R is Riemann
integrable on [a,b], then g is also Lebesgue integrable on [a,b] and the two separate
notions of integration yield the exact same result (Theorem 11.33 [3]). In this paper,
every claim of integrability is justified through this sense.

Now we state Lebesgue’s Dominated Convergence Theorem (Theorem 11.32 in
[3]).

Theorem 2. Suppose A is a measurable set with respect to some measure µ , and let
{ fn} be a sequence of measurable functions (with respect to the same measure) such
that

fn(x)→ f (x) as n → ∞ ∀x ∈ A.

If there exists a µ-integrable function g on A such that

| fn(x)| ≤ g(x) ∀n ∈ N,∀x ∈ A,

then

lim
n→∞

∫
A

fn dµ =
∫

A
f dµ.

Remark 3. In our case, the sets we integrate over are always intervals. Since we choose
µ = λ when applying Theorem 2, and since intervals are Lebesgue measurable, the
first condition of Theorem 2 holds easily.
In the mainline discussion, we sweep under the rug the application of Theorem 2 to
separate real and imaginary components. However it should be clear that the arguments
laid out there justify the separate applications — the following points support this:
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(a) a sequence of functions fn :R→C are measurable in our sense, then by definition
one had to have shown the component sequences un,vn are measurable.

(b) fn → f pointwise, then also the components converge un → u and vn → v point-
wise.

(c) | fn| ≤ g, then |un|, |vn| ≤ | fn| ≤ g.
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Abstract
Both the Mandelbrot set and filled Julia sets are subsets in the complex plane derived
by studying iterations of complex polynomials. We develop a matricial framework
to establish an alternate form of iteration by complex polynomials using a sequence
of affine transformations. Using this framework, we are able to check membership
in a filled Julia set and the Mandelbrot set by studying boundedness of sequences of
matrices. Specifically, we show that a complex number belongs to the Mandelbrot set
if and only if a particular sequence of matrices is bounded in the operator norm, and
a complex number belongs to a filled Julia set if and only if a particular sequence of
matrices is bounded in operator norm.

1 Introduction
The complex plane (denoted C) is comprised of values x+ yi, where x and y belong to
the real numbers (denoted R) and i is the imaginary number

√
−1. We call x the real

part of x+yi and y the imaginary part of x+yi. When we don’t need to display the real
and imaginary parts of a complex number, we simply denote it by a single variable,
like z, c, or w.

1.1 Visualizations of the Complex Plane

To the unfamiliar eye, the complex plane looks no different than the familiar xy-
coordinate plane, denoted R2. Indeed, a complex number x+ yi in C is spatially in the
exact same location as the coordinate pair (x,y) in R2.

The perspective of vector geometry further supports the notion that these two spaces
are not distinct. To do this, we can view a complex number of the from x+ yi as
a vector with head at the origin which points a value of y in the direction of the
vertical axis (imaginary values) and a value of x in the horizontal axis. Simply put,
this representation allows for the complex plane to be viewed as a two-dimensional
real vector space. Now, let x1,y1,x2,y2 ∈ R. If we consider x1 + y1i,x2 + y2i ∈ C and
(x1,y1),(x2,y2) ∈ R2 as 2-dimensional vectors emanating from their respective origins
(in C and R2), vector addition will yield outputs also in the exact same locations:

In R2 : (x1,y1)+(x2,y2) = (x1 + x2,y1 + y2).

In C : (x1 + y1i)+(x2 + y2i) = x1 + x2 +(y1 + y2)i.

In contrast, there is a natural multiplication on C that R2 does not have.
In C : (x1 + y1i)∗ (x2 + y2i) = x2x2 + x1y2i+ x2y1i+ y1y2i2

= x2x2 + x1y2i+ x2y1i+ y1y2(−1)
= x1x2 − y1y2 +(x1y2 + x2y1)i.

Clearly, coordinate-version of the complex product, (x1x2 − y1y2,x1y2 + x2y1) is not
equal to the R2 product (x1x2,y1y2). An interesting way to interpret the strange multi-
plication on C, is that we can also think of elements of C not only as 2-dimensional
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vectors, but also as 2×2-matrices with real entries:

x+ yi 7→
[

x y
−y x

]
Matrix multiplication appropriately implements the multiplication on C. Observe:[

x1 y1
−y1 x1

][
x2 y2
−y2 x2

]
=

[
x1x2 − y1y2 x1y2 + x2y1
−x1y2 − x2y1 x1x2 − y1y2

]
Notice that the (1,1)-entry of the matrix product above is x1x2 − y1y2, which is the
real part of the complex product x1x2 − y1y2 +(x1y2 + x2y1)i, and the (1,2)-entry of
the matrix product above is x1y2 + x2y1, which is the imaginary part of the complex
product x1x2 − y1y2 +(x1y2 + x2y1)i.

Functions like f (z) = z2 + i, or more generally, f (z) = z2 + c for some complex
constant c, play a central role in the definitions of the Mandelbrot and filled Julia sets.
Throughout the paper, we study particular properties of functions like f , and these
properties depend deeply on the constant c. So, instead of denoting the map z 7→ z2 + c
by just “ f ," we will denote it by fc to emphasize the dependence on c.

The function fc(z) = z2 + c does two sequential processes to an input w:

w
(1)−→ w2 (2)−→ w2 + c

The first process is most easily visualized in yet another representation of complex
numbers, called polar form. In this perspective, w = reiθ , where r,θ ∈ R+, which is
graphed by going a distance r along the positive real axis and then rotating that point an
angle of θ counterclockwise. In polar form, w 7→ w2 is equivalent to reiθ 7→ (reiθ )2 =
r2ei(2θ). In the latter, the distance r that w was from the origin is squared, and the angle
θ that w was from the origin is doubled. The second process sending w2 to w2 + c is
most easily visualized in the 2-dimensional vector representation of C as translation of
the point w2 along the vector representation of c.

We want to emphasize here that neither of these two processes are linear. Indeed,
squaring a number is a quadratic transformation, while translating a number is an affine
transformation. The main results of this paper nonetheless reframe the iterative process
applying fc to w into a linear transformation. Our goal in pursuing this unnatural
framework is to leverage the robust tools of linear algebra.

1.2 Filled Julia Sets and the Mandelbrot Set
While the debate of who discovered Julia sets and, subsequently, the Mandelbrot set
(named after mathematician Benoit Mandelbrot), is ongoing within the mathematical
research community [4], there is no debate on the important role Julia sets and the
Mandelbrot set play in seemingly disparate scientific fields. Within mathematics, the
Mandelbrot set and most Julia sets are examples of fractals, which are geometric
subsets of the complex plane that have properties similar to the frozen crystals on a
snowflake when you zoom in under a microscope. These subsets arise not only in
fractal geometry, but also in computer graphics, control theory [11], robotics, and even
various methods of encryption. For example, strong QR codes often have a fractal
embedded in them, such as a Julia set [7]. The strength of using a Julia set as means of
creating a “password” comes from the complexity of drawing the Julia set itself.
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Classically, the Mandelbrot set and filled Julia sets are constructed by repeatedly
iterating a complex polynomial of the form fc(z) = z2 + c at points in the complex
plane. Each point iterated is called a seed. A seed belongs to a filled Julia set and/or
the Mandelbrot set depending on the long run behavior of repeated iterations by fc – in
particular, whether or not repeated iterations form a bounded sequence.

The largest road block in studying these fractals is the computational complexity of
this process of iteration. Below is an image of a Julia set created in C++ whose pixels
are colored by how quickly they escape boundedness. The light green points escape
very slowly and border the points inside the filled Julia set who do not escape. The
dark points on the outside escape very quickly.

Figure 1.1: Julia Image for c = -.4 + -.59i

2 Preliminaries
For each c ∈ C, define fc : C→ C by fc(z) = z2 + c.

2.1 Orbits and filled Julia sets
For c ∈ C, the orbit of a complex number w under iterations of fc, denoted Oc(w), is

the sequence Oc(w) =
{

f (k)c (w)
}∞

k=0
, where f (k)c (z) is the composition of k copies of

fc for k ∈ N and f (0)c (z) = z. We call w the seed of the orbit and c the root of the orbit.
We say the orbit Oc(w) is bounded if there exists an R > 0 such that Oc(w) is a subset
of D(0,R) = {z ∈ C : |z|< R}. That is, an orbit is bounded if there exists an open disc
centered at the origin in C that contains all elements of Oc(w).

Each orbit contains infinitely many complex numbers, and some orbits display their
behavior relatively quickly (in the first few values), while other orbits take much longer
(a lot of values) to show their true nature. Indeed, an orbit can produce two behaviors:
the first being trending towards infinity and the second being bounded. When an orbit
Oc(w) is bounded, it can have multiple sub behaviors–it could stay in a closed distance
from a specific point, or it can produce a periodic orbit within a set of finitely many
points.
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Definition 2.1. For c ∈ C, the filled Julia set for c, denoted Jc, is the set

Jc = {w ∈ C : Oc(w) is bounded} .

Definition 2.2. The Mandelbrot set, denoted M, is the set of all c ∈ C such that Jc is
connected, i.e., Jc cannot be separated by two or more disjoint open subsets of C.

We will use an equivalent definition for this paper, which follows from Theorem 2.3 –
see Proposition 3.1 in [2].

Theorem 2.3. A complex number c is in the Mandelbrot set M if and only if 0 ∈ Jc.

For c ∈ C, it is easy to see that Oc(0) is bounded if and only if Oc(c) = Oc(0)\{0}
is bounded, which yields the following definition. The Mandelbrot set is the set
of all complex numbers c such that Oc(c) is bounded, or equivalently, c ∈ Jc, i.e.,
M= {c ∈ C : c ∈ Jc} .

2.2 Norms on Matrix Algebras
In our work, we will be interested determining the convergence of sequences of
matrices. Given a matrix norm ∥·∥ on Mn(R), a sequence {Ak}∞

n=1 of matrices in
Mn(R) converges to a matrix A with respect to ∥·∥ if

lim
k→∞

∥Ak −A∥= 0.

The two primary matrix norms we use are the operator and Frobenius norms, denoted
∥·∥op and ∥·∥F , respectively. Given a matrix A ∈ Mn(R), the operator norm of A
is

∥A∥op = sup
∥x∥=1

∥Ax∥

and the Frobenius norm of A is

∥A∥F =

√
n

∑
i=1

n

∑
j=1

∣∣Ai j
∣∣2,

where Ai j is the i j-entry of A. It is well-known that the operator norm of a matrix A
always equals its largest singular value, where the singular values of A are defined to
be the square root of the eigenvalues of the matrix AT A, and the Frobenius norm of A
is always an upper bound for the operator norm of A, i.e., ∥A∥op ≤ ∥A∥F .

2.3 Real and Imaginary Parts of an Iteration
Let z = x+ yi and c = a+bi. We denote the first iteration of z under fc by z1 – that is,
z1 := fc(z) = z2 + c. Observe

z1 = z2 + c

= (x+ yi)2 +(a+bi)

= x2 +2xyi− y2 +a+bi

= (x2 − y2 +a)︸ ︷︷ ︸
x1

+(2xy+b)︸ ︷︷ ︸
y1

i.
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When we compute z1 whilst keeping track of the real and imaginary parts of the seed
z and root c, we are able to give a precise formula for the real and imaginary parts of
z1 = x1 + y1i:

x1 = x2 − y2 +a and y1 = 2xy+b.

In fact, for all k ∈ N, the real and imaginary parts of zk = xk + yki are given recursively
by the formulae

xk+1 = x2
k − y2

k +a and yk+1 = 2xkyk +b. (1)

2.4 Affine Transformations
Our work aims to build a matricial framework for determining membership in the
Mandelbrot and filled Julia sets. We do so by viewing C as a 2-dimensional real vector
space and each consecutive element of an orbit under fc as an affine transformation
of the previous element. Thus, each orbit yields a sequence of affine transformation
matrices from the algebra of 3×3 matrices with real entries, denoted M3(R).

Viewing R2 as a 2-dimensional real vector space, an affine transformation T : R2 →R2

is a transformation that can be decomposed as T (x) = Ax+b, where A is a linear
transformation and b is a vector along which you subsequently translate the vector
Ax. In our work, we prefer to work solely with linear transformations, which requires
us to utilize what are called homogeneous coordinates. Each vector x in R2 can be
written in homogeneous coordinates as

[
x 1

]T , and as such, an affine transformation
T defined above can be realized as the projection of a matrix transformation T̃ on R3

given by

T̃
([

x
1

])
=

[
A b
0T 1

][
x
1

]
=

[
Ax+b

1

]
,

where the standard matrix for T̃ is called the affine transformation matrix for T .

3 Matricial Framework for the Mandelbrot Set
As R-vector spaces, R2 and C are isomorphic: given z = x+ yi ∈ C, identify z with

the vector
[

x
y

]
∈ R2. Fix c = a+ bi ∈ C. Then the complex number fc(z) would be

identified with the corresponding vector in R2:

[
x
y

]
∼ z 7→ fc(z)∼

[
x2 − y2 +a

2xy+b

]
.

Not surprisingly, this mapping on R2 is not linear, and thus cannot be implemented by
matrix multiplication of a single 2×2-matrix with real entries. Instead, notice:

[
x2 − y2 +a

2xy+b

]
=

[
x −y
2y 0

][
x
y

]
+

[
a
b

]
.

When the input z is the fixed complex number c, as is of interest when determining if c
belongs to the Mandelbrot set, the transformation c 7→ fc(c) is implemented in R2 by
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first applying a linear transformation to
[

a
b

]
and then translating by

[
a
b

]
:[

a
b

]
∼ c 7→ fc(c)∼

[
a2 −b2 +a

2ab+b

]
=

[
a −b
2b 0

][
a
b

]
+

[
a
b

]
.

As described in subsection 5.1, this is an affine transformation, and thus can be realized
as a linear transformation when we “lift" to R3 :

a
b
1

∼ c 7→ fc(c)∼

a2 −b2 +a
2ab+b

1

=

 a −b a
2b 0 b
0 0 1

a
b
1



Recall that c belongs to the Mandelbrot set if and only if Oc(c) = { f (k)c (c) : k ∈ N}
is bounded. Set a0 = a and b0 = b. For k ∈ N, define ak and bk to be the real and
imaginary parts of f (k)c (c), respectively, i.e.,

ak+1 +bk+1i = f (k+1)
c (a+bi) = fc(ak +bki).

For each k ∈ N, consider the 3×3 matrix ak −bk a
2bk 0 b
0 0 1

 ,
and observe that  ak −bk a

2bk 0 b
0 0 1

ak
bk
1

=

a2
k −b2

k +a
2akbk +b

1


By Equation 1, this means that for each k ∈ N we haveak+1

bk+1
1

=

 ak −bk a
2bk 0 b
0 0 1

ak
bk
1

 . (2)

Equation 2 shows that the orbit Oc(c) can be generated by recursively applying affine
transformations to the real and imaginary parts of the previous image. In particular, for
each k ∈ N, define Ak : R2 → R2 by

Ak(x) =
[

ak−1 −bk−1
2bk−1 0

]
x+
[

a
b

]
.

Then Equation 2 shows that the kth iteration (written as an R2 vector in homogeneous
coordinates) of fc can be obtained by multiplying the (k− 1)th iteration (written as
an R2 vector in homogeneous coordinates) by the affine transformation matrix for
Ak−1.

Define M : R2 → M3(R) by M(x,y) =

 x −y 0
2y 0 0
0 0 0

. Hence, we can rewrite Equa-
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tion 2 as ak
bk
1

=

M(ak−1,bk−1)+

0 0 a
0 0 b
0 0 1

ak−1
bk−1

1

 . (3)

We continue by studying properties of the sequence of matrices {M(ak,bk)}∞

k=0, which
arise from the generation of Oc(c).

3.1 Properties of M(x,y)

Our work was motivated by determining if properties of {M(ak,bk)}∞

k=0 tells us any-
thing about whether or not c = a+ bi is in the Mandelbrot set. In this section, we
outline the spectral theory of M(x,y).

Let x,y ∈ R be given. A quick computation shows that the eigenvalues for M(x,y)
are

λ (x,y) =
x±
√

x2 −8y2

2
and λ = 0.

Hence, we can define functions λ+,λ− : R2 → C by

λ+(x,y) =
x+
√

x2 −8y2

2
and λ−(x,y) =

x−
√

x2 −8y2

2
.

If y ̸= 0, i.e., x+ yi /∈ R, it’s easy to check that the eigenspaces corresponding to
λ±(a,b) are

Eλ+(x,y) = span


 x+

√
x2−8y2

4y
1
0


 and Eλ−(x,y) = span


 x−

√
x2−8y2

4y
1
0


 .

Likewise, if y = 0, i.e., x+ yi ∈ R, then M(x,0) is diagonal with eigenspaces Ex =
span{e1} and E0 = span{e2,e3} , where {e1,e2,e3} is the standard basis for R3.

Lemma 3.1. M(x,y) has distinct eigenvalues if and only if x ̸=±2
√

2y.

Proof. A quick computation yields λ+(x,y) = λ−(x,y) if and only if x = ±2
√

2y,
which proves the lemma.

Proposition 3.2. If (x,y) ̸= (0,0), then M(x,y) is diagonalizable if and only if x ̸=
±2

√
2y.

Proof. Note that M(0,0) is the 3× 3 zero matrix, which is trivially diagonalizable.
Suppose (x,y) ̸= (0,0). If x ̸= ±2

√
2y, then M(x,y) is diagonalizable since it has 3

distinct eigenvalues by the previous lemma.

It remains to show that if M(x,y) is diagonalizable, then x ̸= ±2
√

2y. We prove the
contrapositive. If x =±2

√
2y, then

λ+(x,y) = λ−(x,y)

by the previous lemma. Hence, we have Eλ+(x,y) = Eλ−(x,y) is 1-dimensional, which
implies M(x,y) is not diagonalizable.



126 BSU Undergraduate Mathematics Exchange Vol. 17, No. 1 (Fall 2023)

Proposition 3.3. M(x,y) is singular for all x,y ∈ R.

Proof. Since λ = 0 is an eigenvalue, M(x,y) is not invertible.

It can be computed directly that the nonzero singular values of M(x,y) are

σ−(x,y) :=
1√
2

(
x2 +5y2 −

√
x4 +10x2y2 +9y4

)1/2

σ+(x,y) :=
1√
2

(
x2 +5y2 +

√
x4 +10x2y2 +9y4

)1/2

Proposition 3.4. The operator norm of M(x,y) is σ+(x,y).

Proof. The maximum singular value of M(x,y) is σ+(x,y).

3.2 Boundedness and Convergence of Iterations
We show that boundedness of an orbit Oa+bi(a+bi) is equivalent to boundedness of
the sequence of matrices {M(ak,bk)}∞

k=0 with respect to the operator norm.

Proposition 3.5. Let c = a+ bi and A+Bi ∈ C be given. Then { f (k)c (c)}∞
k=0 con-

verges to A+Bi if and only if {M(ak,bk)}∞

k=0 converges to M(A,B) in operator (and
Frobenius) norm.

Proof. Observe that

M(ak,bk)−M(A,B) =

 ak −A −(bk −B) 0
2(bk −B) 0 0

0 0 0

 .
Hence, we have ∥M(ak,bk)−M(A,B)∥2

F =(ak−A)2+5(bk−B)2. Since (ak−A)2,(bk−
B)2 ≥ 0 for all k ∈N, it follows that limk→∞ ∥M(ak,bk)−M(A,B)∥F = 0 if and only if

lim
k→∞

∣∣∣ f (k)c (c)− (A+Bi)
∣∣∣= lim

k→∞

√
(ak −A)2 +(bk −B)2 = 0.

Therefore, { f (k)c (c)}∞
k=0 converges to A+Bi if and only if {M(ak,bk)}∞

k=0 converges
to M(A,B) in Frobenius norm.

Since the operator and Frobenius norms are equivalent on M3(R), it follows that
{M(ak,bk)}∞

k=0 converges to M(A,B) in operator norm if and only if {M(ak,bk)}∞

k=0
converges to M(A,B) in Frobenius norm, which completes the proof.

The following result justifies the study of our matricial framework in the context of the
Mandelbrot set.

Theorem 3.6. A complex number c = a+ bi is in the Mandelbrot set if and only if
{M(ak,bk)}∞

k=0 is uniformly bounded in operator norm.
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Proof. Suppose c = a+bi is in the Mandelbrot set. Then there exists an R > 0 such

that
∥∥∥∥[ak

bk

]∥∥∥∥2

=
∣∣∣ f (k)c (c)

∣∣∣2 < R for all k ∈ N∪{0}. It follows that for each k ∈ N∪{0}

we have
∥M(ak,bk)∥2

F = a2
k +5b2

k ≤ 5a2
k +5b2

k < 5R.

Thus,
√

5R is an upper bound for
{
∥M(ak,bk)∥op

}∞

k=0
since the operator norm is

bounded above by the Frobenius norm.

Conversely, suppose that {M(ak,bk)}∞

k=0 is bounded in operator norm. Then there
exists a C > 0 such that ∥M(ak,bk)∥op < C for all k ∈ N∪ {0}. Hence, for each
k ∈ N∪{0} the definition of the operator norm yields

C > ∥M(ak,bk)∥op ≥ ∥M(bk,ak)e1∥=

∥∥∥∥∥∥
 ak

2bk
0

∥∥∥∥∥∥≥
∥∥∥∥∥∥
ak

bk
0

∥∥∥∥∥∥=
∥∥∥∥[ak

bk

]∥∥∥∥ ,
where {e1,e2,e3} is the standard basis for R3. Thus,

{∥∥∥∥[ak
bk

]∥∥∥∥}∞

k=0
is bounded, which

implies c = a+bi is in the Mandelbrot set.

As a consequence of Theorem 3.6, we obtain a bound on the sequence of eigenvalues
arising from the sequence of affine transformation matrices implementing fc.

Corollary 3.7. If c = a+bi is in the Mandelbrot set, then {λ±(ak,bk)}∞

k=0 is bounded.

Proof. The spectral radius of a matrix is bounded above by its operator norm.

4 Matricial Framework for Filled Julia Sets
Definition 4.1. Given a,b,x,y ∈ R, let c := a+bi and z := x+ yi. Define

J(c,z) :=

 x −y a
2y 0 b
0 0 1


Note that J(c,z) can be decomposed similar to M(x,y):

J(c,z) =

 x −y a
2y 0 b
0 0 1

=

 x −y 0
2y 0 0
0 0 0

+
0 0 a

0 0 b
0 0 1

= M(x,y)+Tc,1

where Tc,1 denotes translation of a point in R3 along the vector
[
a b 1

]T
. Just like

the action of fc on a seed z = x+ yi, the action of the linear operator J(c,z) moves the
vector

[
x y 1

]T to
[
x1 y1 1

]T via two processes, (1) M(x,y) and (2) Tc,1.

Below we collect some properties of the matrix J(c,z).

• The eigenvalues for J(c,z) are {1,λ+(c,z),λ−(c,z)}, where

λ±(c,z) =
x±
√

x2 −8y2

2
.
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At first glance, the eigenvalues for J(c,z) appear to be identical to those for
M(x,y). This is strange because J(c,z) is a matrix which has nonzero entries in
the (1,3) and (2,3)-entries, while M(x,y) is 0 in these two places. When one
computes the eigenvalues of a matrix T by solving the equation det(T −λ I) = 0,
the algorithm can indeed ignore values along which one is not expanding. What
is important to note, however, is that the eigenvalues for J(c,zk) will include
information about c because zk includes information about c.

• The corresponding eigenspaces for J(c,z) are spanned by the eigenvectors

e1 =


by−a

1−x+2y2

b(x−1)−2ay
1−x+2y2

1

 e+ =

 x−
√

x2−8y2

4y
1
0

 e− =

 x+
√

x2−8y2

4y
1
0


• Information about the real and imaginary parts of z can be stripped off the matrix

J(c,z): the trace of J(c,z) is x+1 and the determinant of J(c,z) is 2y2.

• J(c,z)T J(c,z) =

x2 +4y2 −xy ax+2by
−xy y2 −ay

ax+2by −ay a2 +b2 +1

 is symmetric.

In applications of linear algebra to quantum physics, mathematicians are particularly
interested in commutation relations between pairs of matrices. Recall that for x,y ∈ R,
multiplication is commutative: xy = yx. However, given two matrices A,B ∈ Mn(R),
matrix multiplication is not always commutative: AB ̸= BA. A commutation relation
is simply the formula one finds when computing AB−BA, which, when A and B
do not commute, will yield a nonzero matrix. Because of its frequency in literature,
mathematicians denote AB−BA by [A,B]. In the following two lemmas, we determine
precisely when two matrices J(c,z) and J(c,w), where z might be different from w,
will commute, and we also show when J(c1,z) and J(c2,z) commute, where c1 and c2
may also be different.

Lemma 4.2. Let c,z,w ∈ C and set c = a+bi, z := x+ yi and w := f +gi. If a ̸= 0,
[J(c,z),J(c,w)] = 0 if and only if x = f and y = g. If a = 0, [J(c,z),J(c,w)] = 0 if and
only if f y = xg.

Proof. Observe

[J(c,z),J(c,w)] = 0 ⇐⇒

x f −2yg −xg ax−b f +a
2 f y −2yg 2ay+b

0 0 1


−

 f x−2yg − f y a f −bg+a
2xg −2yg 2ag+b
0 0 1


= 0

⇐⇒ f y1
(1)
= xg and ax−by

(2)
= a f −g and ay

(3)
= ag.

Case 1 (a ̸= 0): If a ̸= 0, (3) is equivalent to y = g, and if y,g ̸= 0, this implies x
(1)
= f .

If y = 0 (g = 0) without loss of generality) then (3) implies g = 0 (y = 0). Finally, this
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yields ax
(2)
= a f , which implies x = f when a ̸= 0.

Case 2 (a = 0): If a = 0, then −by
(2)
= −bg. If b = 0, equations (2) and (3) are vacuous

and xg
(1)
= f y is equivalent to [J(c,z),J(c,w)] = 0. If b ̸= 0, we get y

(2)
= g. If y1 ̸= 0 (or,

equivalently, g ̸= 0) then x = f . If a = y = g = 0, then x and f can be distinct.

Lemma 4.3. Let c1,c2,z∈C, and set c1 := a1+b1i, c2 := a2+b2i, and z= x+yi. Then
[J(c1,z),J(c2,z)] = 0 if and only if either a= c or a ̸= c, y= b−d

2(a−c) and x= −(b−d)2

2(a−c)2 −1.

Proof. One can easily show that [J(c1,z),J(c2,z)] = 0 if and only if

(a1 −a2)x+(b1 −b2)y+(a1 −a2)
(1)
= 0 and 2ya2 +b1

(2)
= 2ya1 +b2.

When a1 ̸= a2, (2) can be written as y = b1−b2
2(a1−a2)

. One can then plug this expression in

for y in (1) and simplify to get x = −(b1−b2)
2

2(a1−a2)2 −1. When a1 = a2, (2) implies b1 = b2,

in which case c1 = c2.

The last result in this section is a generalization of the previous section’s main theorem.
Specifically, in the previous section’s main theorem we showed that a complex number
c = a + bi belongs to the Mandelbrot set if and only if the sequence of matrices
{M(ak,bk)}∞

k=0 is uniformly bounded in the operator norm. Equivalently, c ∈ Jc if
and only if {M(ak,bk)}∞

k=0 is uniformly bounded in the operator norm. Below, we
allow for the seed z to differ from c and prove an analogous result.

Theorem 4.4. A complex number z belongs to Jc if and only if the set of matrices
{J(c,zk) : n ∈ N} is bounded in operator norm.

Proof. Fix c = a+bi and suppose z = x+ yi ∈ Jc. Then there exists an R > 0 such

that
∥∥∥∥[xk

yk

]∥∥∥∥2

=
∣∣∣ f (k)c (zk)

∣∣∣2 < R for all k ∈N∪{0}. It follows that for each k ∈N∪{0}

we have

∥J(c,zk)∥2
F = x2

k +5y2
k +

∥∥∥∥∥∥
a

b
1

∥∥∥∥∥∥
2

≤ 5x2
k +5y2

k +

∥∥∥∥∥∥
a

b
1

∥∥∥∥∥∥
2

< 5R+

∥∥∥∥∥∥
a

b
1

∥∥∥∥∥∥
2

.

Thus,
√

5R+a2 +b2 +1 is an upper bound for
{
∥J(c,zk)∥op

}∞

k=0
since the operator

norm is bounded above by the Frobenius norm.

Conversely, suppose that {J(c,zk)}∞

k=0 is bounded in operator norm. Then there exists
a C > 0 such that ∥J(c,zk)∥op <C for all k ∈N∪{0}. Hence, for each k ∈N∪{0} the
definition of the operator norm yields

C > ∥J(c,zk)∥op ≥ ∥J(c,zk)e1∥=

∥∥∥∥∥∥
 xk

2yk
0

∥∥∥∥∥∥≥
∥∥∥∥∥∥
xk

yk
0

∥∥∥∥∥∥=
∥∥∥∥[xk

yk

]∥∥∥∥ ,
where {e1,e2,e3} is the standard basis for R3. Thus,

{∥∥∥∥[xk
yk

]∥∥∥∥}∞

k=0
is bounded, which

implies z = x+ yi ∈ Jc.
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5 Future Directions

5.1 Dynamical Systems and Markov Processes
In this section, we take N to denote {0,1,2, ...}. Consider the set of countably infinite
sequences of complex numbers:

CN = {(z0,z1,z2, ...) : zk ∈ C ∀n ∈ N}.
We denote an element of CN by (zk)

∞
n=0. For any k ∈ N, we write zk to denote a single

complex number within the sequence (zk). Some of these sequences are related to the
orbit of a seed z ∈ C under iterations of fc for some root c ∈ C. Indeed, if a sequence
(zk)

∞
n=0 ∈ CN satisfies zn+1 = fc(zn) for all n ∈ N, then Oc(z) = (zk)

∞
n=0.

Example 5.1. Below we give some simple examples that show the presence of Julia
set orbits inside the set CN.

(i) If c = 1 and z = 1, then O1(1) = (1,2,5,26, ...).

(ii) If c = i and z = i, then Oi(i) = (i, i−1,−i, i−1, ...).

(iii) If c = i and z = 2i, then Oi(2i) = (2i, i−4,15−7i,176−209i, ...).

(iv) If c =−1 and z = 1, then O−1(1) = (1,0,−1,0, ...).

To parallel our previous sections’ work of re-framing iterations and orbits in terms of
2-dimensional real vectors, in this case, we would consider the set

(R2)N = {(z0,z1,z2, ...) : zk ∈ R2 ∀n ∈ N}.

Example 5.2. The analogue of the above examples for CN are easily translated into
the (R2)N picture.

(i) If c = 1 and z =
[

1
0

]
, then O1(z) =

([
1
0

]
,

[
2
0

]
,

[
5
0

]
,

[
26

0

]
, ...

)
.

(ii) If c = i and z =
[

0
1

]
, then Oi(z) =

([
0
1

]
,

[
−1

1

]
,

[
0
1

]
,

[
−1

1

]
, ...

)
.

(iii) If c = i and z =
[

0
2

]
, then Oi(z) =

([
0
2

]
,

[
−4

1

]
,

[
15
−7

]
,

[
176

−209

]
, ...

)
.

(iv) If c =−1 and z =
[

1
0

]
, then O−1(z) =

([
1
0

]
,

[
0
0

]
,

[
−1

0

]
,

[
0
0

]
, ...

)
.

Just like in the CN setting, a sequence (zk)
∞
n=0 of vectors in (R2)N is the orbit Oc(z)

if
for every n ∈ N, zn+1 = J(zk,c)zk.

We can sort of think of the matrices J(c,zk) as detecting these orbits, but, of course, we
have to check this equality holds at all n ∈ N.
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Given w ∈ C, define a map Jc,w : (R2)N → (R2)N by
Jc,w(z0,z1,z2, ...) := (J(c,w0)z0,J(c,w1)z1,J(c,w2)z2, ...).

When z = w, Jc,w is the direct sum of the matrices J(c,wk), commonly denoted
⊕∞

n=0J(c,wk). The notation and definition of direct sums will not be used in the rest
of the paper, so we mention it only in case the reader is familiar with these opera-
tors.

Note that the action of Jc,w on the specific vector sequence (w0,w1,w2, ...) just pushes
each wk to the left one position:
Jc,w(w0,w1,w2, ...) = (J(c,w0)w0,J(c,w1)w1,J(c,w2)w2, ...) = (w1,w2,w3, ...).

Since there’s no place on the left for the w⃗0 term to go, it just gets tossed off the left
edge of the sequence; it walks the plank of the Jc,w pirate ship.

We will call Jc,w a “left shift operator," but we must note that, unlike classic left shift
operators, Jc,w is only acting as a left shift on the subspace of vectors spanned by
(w0,w1,w2, ...) and images of (w0,w1,w2, ...) under Jc,w.

These operators have an interesting property. Recall that we found the eigenvalues for
each J(c,zk) in a previous section: σ(J(c,zk)) = {1,λ+(c,zk),λ−(c,zk)}. It’s not hard
to show that σ(Jc,z) contains all of these eigenvalues, ∪∞

n=0σ(J(c,zk)), and possibly
more. We plan to study the operators Jc,z and their spectra in a future project and see
how these relate to the filled Julia set Jc.
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6 Notation

• c = a+bi

• z = x+ yi, zk = xk + yki

• Oc(z) - orbit of z under fc

• Jc - filled Julia Set for c

• M - Mandelbrot Set

• fc - mapping of z 7→ z2 + c

• M(x,y) =

 x −y 0
2y 0 0
0 0 0


• J(c,z) =

 x −y a
2y 0 b
0 0 1


• Jc,z - ⊕∞

k=0J(c,zk)

• Mn(R) - set of n×n-matrices with
real entries

• ∥·∥op - operator norm on Mn(R)

• ∥·∥F - Frobenius norm on Mn(R)

• [A,B] = AB−BA
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